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1 Introduction

Logic programming is a well-known declarative method of knowledge representation and programming
based on the idea that the language of first-order logic is well-suited for both representing data and de-
scribing desired outputs [Kowalski 1974]. Logic programming was developed in the early 1970’s based on
work in automated theorem proving [Green 1969, Kowalski & Kuehner 1971], in particular, on Robinson’s
resolution principle[Robinson 1965].

A pure logic program consists of a set ofrules, also called definite Horn clauses. Each such rule has the
form head body, whereheadis a logical atom andbody is a conjunction of logical atoms. The logical
semantics of such a rule is given by the implicationbody) head(for a more precise account, see Section 2).
Note that the semantics of a pure logic program is completelyindependent of the order in which its clauses
are given, and of the order of the single atoms in each rule body.

With the advent of the programming language Prolog [Colmerauer, Kanoui, Roussel & Passero 1973],
the paradigm of logic programming became soon ready for practical use. Many applications in different
areas were and are successfully implemented in Prolog. Notethat Prolog is — in a sense — only an approx-
imation to fully declarative logic programming. In fact, the clause matching and backtracking algorithms at
the core of Prolog are sensitive to the ordering of the clauses in a program and of the atoms in a rule body.

While Prolog has become a popular programming language taught in many computer science curricula,
research focuses more on pure logic programming and on extensions thereof. Even in some application areas
such asknowledge representation(a subfield of artificial intelligence) anddatabasesthere is a predominant
need for full declarativeness, and hence for pure logic programming. In knowledge representation, declar-
ative extensions of pure logic programming, such as negation in rule bodies and disjunction in rule heads,
are used to formalize common sense reasoning. In the database context, the query languagedatalogwas
designed and intensively studied (see [Ullman 1988, Ullman1989, Ceri, Gottlob & Tanca 1990]).

There are many interesting complexity results on logic programming. These results are not limited to
“classical” complexity theory but also comprise expressiveness results in the sense ofdescriptive complexity
theory. For example, it was shown that (a slight extension of) datalog cannot just expresssome, but actually
all polynomially computable queries on ordered databases and only those. Thus datalog preciselyexpresses
or capturesthe complexity classP on ordered databases. Similar results were obtained for many variants
and extensions of datalog. It turned out that all major variants of datalog can be characterized by suitable
complexity classes. As a consequence, complexity theory has become a very important tool for comparing
logic programming formalisms.

This paper surveys various complexity and expressiveness results on different forms of (purely declar-
ative) logic programming. The aim of the paper is twofold. First, a broad survey and many pointers to
the literature are given. Second, in order to give a flavor of complexity issues in logic programming, a few
fundamental topics are explained in greater detail, in particular, the basic results on plain logic programming
(Section 4) and some fundamental issues related to descriptive complexity (Section 7). These two sections
are written in a more tutorial style and contain several proofs, while the other sections are written in a rather
succinct survey style.

Note that the present paper does not consist of an encyclopedic listing of all published complexity results
on logic programming, but rather of a more or less subjectivechoice of results. There are many interesting
results which we cannot mention for space reasons; such results may be found in other surveys, such as,
e.g., [Cadoli & Schaerf 1993, Schlipf 1995a]. For example, results on abductive logic programming [Eiter,
Gottlob & Leone 1997a, Inoue & Sakama 1993, Sakama & Inoue 1994b, Marek, Nerode & Remmel 1996],
on intuitionistic logic programming [Bonner 1990, Bonner 1999], and on Prolog [Dikovsky 1993].
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The paper is organized as follows. Section 2 defines syntax and semantics of logic programs, describe
datalog and introduce complexity measures. Computationalmodels are complexity notation are discussed
in Section 3. Section 4 presents the main complexity resultson plain logic programming and datalog. Sec-
tion 5 discusses various semantics for logic programming with negation and respective complexity results.
Section 6 deals with disjunctive logic programming. Section 7 studies the expressive power of datalog and
logic programming with complex values. Section 8 characterizes the complexity of unification. Section 9
deals with logic programming extended by equality. Finally, Section 10 describes complexity results on
constraint logic programming.

This article is an extended version of [Dantsin, Eiter, Gottlob & Voronkov 1997].

2 Preliminaries

In this section, we introduce some basic concepts of logic programming. Due to space reasons, the presenta-
tion is necessarily succinct; for a more detailed treatment, see [Lloyd 1987, Apt 1990, Apt & Bol 1994, Baral
& Gelfond 1994].

We use lettersp; q; : : : for predicate symbols,X;Y;Z; : : : for variables,f; g; h; : : : for function symbols,
anda; b; c; : : : for constants; a bold face version of a letter denotes a list of symbols of the respective type.
In logic programs, we sometimes denote predicate and function symbols by arbitrary strings.

2.1 Syntax of logic programs

Logic programs are formulated in a languageL of predicatesand functionsof nonnegative arity; 0-ary
functions areconstants. A languageL is function-freeif it contains no functions of arity greater than 0.

A term is inductively defined as follows: each variableX and each constantc is a term, and iff is ann-ary function symbol andt1; : : : tn are terms, thenf(t1; : : : ; tn) is a term. A term isground, if no variable
occurs in it. TheHerbrand universeof L, denotedUL, is the set of all ground terms which can be formed
with the functions and constants inL.

An atomis a formulap(t1; : : : ; tn), wherep is apredicate symbol of arityn and eachti is a term. An
atom isground, if all ti are ground. TheHerbrand baseof a languageL, denotedBL, is the set of all ground
atoms that can be formed with predicates fromL and terms fromUL.

A Horn clauseis a rule of the formA0  A1; : : : ; Am (m � 0);
where eachAi is an atom. The parts on the left and on the right of “ ” are called theheadand thebodyof
the rule, respectively. A ruler of the formA0  , i.e., whose body is empty, is called afact, and ifA0 is a
ground atom, thenr is called aground fact.

A logic programis a finite set of Horn clauses. A clause or logic program isground, if it contains no
variables.

With each logic programP , we associate the languageL(P ) that consists of the predicates, functions
and constants occurring inP . If no constant occurs inP , we add some constant toL(P ) for technical
reasons. Unless stated otherwise,L(P ) is the underlying language, and we use simplified notationUP andBP for UL(P ) andBL(P ), respectively.

A Herbrand interpretationof a logic programP is any subsetI � BP of its Herbrand base. Intuitively,
the atoms inI are true, while all others are false. AHerbrand modelof P is a Herbrand interpretation ofP
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such that for each ruleA0  A1; : : : ; Am in P , this interpretation satisfies the logical formula8X((A1 ^� � � ^Am)) A0), whereX is a list of the variables in the rule.
Propositional logic programs are logic programs in which all predicates have arity 0, i.e., all atoms are

propositional ones.

Example 2.1 Here is an example of a propositional logic program, which captures knowledge (in a simpli-
fied form) about a steam engine equipped with three signal gauges.

shut down  overheat
shut down  leak

leak  valve closed;pressureloss
valve closed  signal 1
pressureloss  signal 2

overheat  signal 3
signal 1  
signal 2  

Informally, the rules of the program tell that the system hasto be shut down if it is in a dangerous state.
Such states are connected to causes and signals by respective rules. The factssignal 1 andsignal 2 state
that signals #2 and #3, respectively, are being observed.

Note that ifP is a propositional logic program thenBP is a set of propositional atoms. Any interpretation
of P is a subset ofBP .

2.2 Semantics of logic programs

The notions of a Herbrand interpretation and model can be generalized for infinite sets of clauses in a natural
way. LetP be a set (finite or infinite) of ground clauses. Such a setP defines an operatorTP : 2BP ! 2BP ,
where2BP denotes the set of all Herbrand interpretations ofP , byTP (I) = fA0 2 BP j P contains a ruleA0  A1; : : : ; Am

such thatfA1; : : : ; Amg � I holdsg:
This operator is called theimmediate consequence operator; intuitively, it yields all atoms that can be
derived by a single application of some rule inP given the atoms inI.

SinceTP is monotone, by the Knaster-Tarski Theorem it has the least fixpoint, denoted byT1P ; since,
moreover,TP is also continuous, by Kleene’s TheoremT1P is the limit of the sequenceT 0P = ;, T i+1P =TP (T iP ), i � 0.

A ground atomA is called aconsequenceof a setP of clauses, ifA 2 T1P (we writeP j= A). Also, by
definition, a negated ground atom:A is a consequence ofP , denotedP j= :A, if A =2 T1P . Thesemantics
of a setP of ground clauses, denotedM(P ), is defined as the following set consisting of atoms and negated
atoms: M(P ) = fA j P j= Ag [ f:A j P j= :Ag= T1P [ f:A j A 2 BP n T1P g:
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Example 2.2 (See Example 2.1.) For the programP above, we haveT 0P = ;;T 1P = fsignal 1; signal 2g;T 2P = T 1P [ fvalve closed;pressurelossg;T 3P = T 2P [ fleakg;T 4P = T1P = T 3P [ fshutdowng:
Thus, the least fixpoint is reached in four steps; e.g.,P j= shutdownandP j= :overheat.

For each setP of clauses,T1P coincides with the uniqueleast Herbrand model ofP , where a modelM
is smaller than a modelN , if M is a proper subset ofN [van Emden & Kowalski 1976].

The semantics of nonpropositional logic programs is now defined as follows. Let thegroundingof a
clauser in a languageL, denotedground(r;L), be the set of all clauses obtained fromr by all possible
substitutions of elements ofUL for the variables inr. For any logic programP , we define

ground(P;L) = [r2P ground(r;L);
and we writeground(P ) for ground(P;L(P )). The operatorTP : 2BP ! 2BP associated withP is defined
by TP = Tground(P ). Accordingly,M(P ) =M(ground(P )).
Example 2.3 LetP be the program p(a)  p(f(x))  p(x)
Then,UP = fa; f(a); f(f(a)); : : :g and ground(P ) contains the clausesp(a)  , p(f(a))  p(a),p(f(f(a))) p(f(a)), . . . . The least fixpoint ofTP isT1P = T1ground(P ) = fp(fn(a)) j n � 0g:

Hence, e.g.,P j= p(f(f(a))).
In practice, generatingground(P ) is often cumbersome, since, even in case of function-free languages,

it is in general exponential in the size ofP . Moreover, it is not always necessary to computeM(P ) in order
to determine whetherP j= A for some particular atomA. For these reasons, completely different strategies
of deriving atoms from a logic program have been developed. These strategies are based on variants of
the famousResolution Principleof Robinson [1965]. The major variant is SLD-resolution [Kowalski &
Kuehner 1971, Apt & van Emden 1982].

Roughly, SLD-resolution can be described as follows. Agoal is a conjunction of atoms, and asubstitu-
tion is a function# that maps variablesv1; : : : ; vn to termst1; : : : ; tn. The result of simultaneous replace-
ment of variablesvi by termsti in an expressionE is denoted byE#. For a given goalG and a programP ,
SLD-resolution tries to find a substitution# such thatG# logically follows fromP . The initial goal is re-
peatedly transformed until the empty goal is obtained. Eachtransformation step is based on the application
of the resolution rule to aselected atomBi from the goalB1; : : : ; Bm and a clauseA0  A1; : : : ; An fromP . SLD-resolution tries tounifyBi with the headA0, i.e., to find a substitution# such thatA0# = Bi#.
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Such a substitution# is called aunifier of A0 andBi. If a unifier# exists, a most general such# (which is
essentially unique) is chosen and the goal is transformed into(B1; : : : ; Bi�1; A1; : : : ; An; Bi+1; : : : ; Bm)#:
For a more precise account, [see Apt 1990, Lloyd 1987]; for resolution on general clauses, see e.g., [Leitsch
1997]. The complexity of unification will be dealt with in Section 8.

2.3 Datalog

The interest in using logic in databases gave rise to the fieldof deductive databases; see [Minker 1996] for
a comprehensive overview of the development of this area. Itappeared that logic programming is a suitable
formalism for querying relational databases. In this context, the logic programming based query language
datalog and various extensions thereof have been defined.

In the context of logic programming, relational databases are identified with sets of ground factsp(c1; : : : ;cn). Intuitively, all ground facts with the same predicate symbol p represent a data relation. The set of all
predicate symbols occurring in the database together with apossibly infinitedomainfor the argument con-
stants is called theschemaof the database. With each databaseD, we associate a finite universeUD of
constants which encompasses at least all constants appearing in D, but possibly more. In the classical
database context,UD is often identified with the set of all constants appearing inD. But in the datalog
context, a larger universeUD may be suitable in case one wants to derive assertions about items that do not
explicitly occur in the database.

To understand how datalog works, let us consider a clarifying example.

Example 2.4 Consider a databaseD containing the ground facts

father(john;mary)  
father(joe; kurt)  

mother(mary; joe)  
mother(tina; kurt)  

The schema of this database is the set of relation symbolsffather, motherg together with the domain
STRINGof all alphanumeric strings. With this database, we associate the finite universeUD = f john,
mary, joe, tina, kurt, susang. Note thatsusandoes not appear in the database but is included in the universeUD.

The following datalog program (or query)P computes all ancestor relationships relative to this database:

parent(X;Y )  father(X;Y )
parent(X;Y )  mother(X;Y )

ancestor(X;Y )  parent(X;Y )
ancestor(X;Y )  parent(X;Z);ancestor(Z; Y )

person(X)  
In the programP , father andmotherare theinput predicates, also calleddatabase predicates. Their

interpretation is fixed by the given input databaseD. The predicatesancestorandpersonareoutput predi-
cates, and the predicateparent is anauxiliary predicate. Intuitively, the output predicates are those which
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are computed as the visible result of the query, while the auxiliary predicates are introduced for representing
some intermediate results, which are not to be considered part of the final result.

The datalog programP on input databaseD computes a result databaseR with the schemafancestor;
persong containing among others the following ground facts:

ancestor(mary; joe);
ancestor(john; joe);
person(john);
person(susan):

The last fact is inR becausesusanis included as a constant inUD. However, the factperson(harry) is not
in R, becauseharry is not a constant in the finite universeUD of the databaseD.

Formally, adatabase schemaD consists of a finite setRels(D) of relation names with associated arities
and a (possibly countable infinite) domainDom(D). For each database schemaD, we denote byHB(D)
the Herbrand base corresponding to the function-free language whose predicate symbols areRels(D) and
whose constant symbols areDom(D).

A database(also,database instance) D over a schemaD is given by a finite subset of the Herbrand baseD � HB(D) together with an associated finite universeUD � Dom(D), containing all constants actually
appearing inD. By abuse of notation, we also writeD instead ofhD;UDi. We denote byDjp the extension
of the relationp 2 Rels(D) in D. Moreover,INST(D) denotes the set of all databases overD.

A datalog queryor adatalog programis a function-free logic programP with three associated database
schemas: the input schemaDin , the output schemaDout and the complete schemaD, such that the following
is satisfied:

Dom(Din) = Dom(Dout ) = Dom(D);
Rels(Din) � Rels(D);
Rels(Dout ) � Rels(D); and

Rels(Din) \ Rels(Dout ) = ;:
Moreover, each predicate symbol appearing inP is contained inRels(D) and no predicate symbol fromDin
appears in a rule head ofP (the latter means that the predicates of the input database are never redefined by
a datalog program).

The formal semantics of a datalog programP over the input schemaDin , output schemaDout , and
complete schemaD is given by a partial mapping from instances ofDin to instances ofDout over the
same universe. A result instance ofDout is regarded as the result of the query. More formally,MP :
INST(Din) ! INST(Dout ) is defined for all instancesDin 2 INST(Din) such that all constants occurring
in P appear inUDin , and maps every suchDin to the databaseDout =MP (Din) such thatUDout = UDin
and, for every relationp 2 Rels(Dout ),Dout jp = fa j p(a) 2M(ground(P [Din ;L(P;Din)))g;
whereM andgroundare defined as in Section 2.2, andL(P;Din ) is the language ofP extended by all
constants in the universeUDin . For all ground atomsA 2 HB(Dout ), we writeP [ Din j= A if A 2MP (Din) and writeP [Din j= :A if A =2MP (Din).

The semantics of datalog is thusinherited from the semantics of logic programming. In a similar way,
the semantics of various extensions of datalog is inheritedfrom the corresponding extensions of logic pro-
gramming.
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There are three main kinds of complexity connected to plain datalog and its various extensions [Vardi
1982]:� Thedata complexity is the complexity of checking whetherDin [ P j= A when datalog programsP

arefixed, while input databasesDin and ground atomsA are aninput.� The program complexity (also calledexpression complexity) is the complexity of checking whetherDin [P j= A when input databasesDin arefixed, while datalog programsP and ground atomsA are
an input.� Thecombined complexity is the complexity of checking whetherDin [P j= A when input databasesDin , datalog programsP and ground atomsA are aninput.

Note that for plain datalog, as well as for all other versionsof datalog considered in this paper, the
combined complexity is equivalent to the program complexity with respect to polynomial-time reductions.
This is due to the fact that with respect to the derivation of ground atoms, each pairhDin ; P i can be easily
reduced to the pairhD;; P �i, whereD; is the empty database instance associated with a universe oftwo
constantsc1 andc2, andP � is obtained fromP[Din by straightforward encoding of the universeUDin usingn-tuples overfc1; c2g, wheren = djUDin je. For this reason, we mostly disregard the combined complexity
in the material concerning datalog. We remark, however, that due to a fixed universe, program complexity
may allow for slightly sharper upper bounds than the combined complexity (e.g.,ETIME vsEXPTIME).

Another approach to measuring complexity of query languages is theparametric complexity[Papadimi-
triou & Yannakakis 1997]. In this approach, the complexity is expressed as a function of some “reasonable”
parameters. An example of such a parameter is the number of variables appearing in the query (interest in
this parameter is motivated by [Vardi 1995], where it is shown that data and program complexity become
close when the number of query variables is bounded).

As for logic programming in general, a generalization of thecombined complexity may be regarded
as the main complexity measure. Below, when we speak about the complexity of a fragment of logic
programming, we mean the following kind of complexity:� The complexity of (some fragment of) logic programming is the complexity ofchecking whetherP j= A for variableboth programsP and ground atomsA.

3 Complexity classes

This section contains definitions for most of the complexityclasses which are encountered in this survey
and provides other related definitions. A detailed exposition of most complexity notions can be found e.g. in
[Papadimitriou 1994]. We follow the notation of [Johnson 1990], where definitions of all complexity classes
used in this article can be found.

3.1 Turing machines

Deterministic Turing machines. Informally, we think of a Turing machine as a device able to read from
and write on a semi-infinitetape, whose contents may be locally accessed and changed in a computation.
Formally, adeterministic Turing machine (DTM)is defined as a quadruple(S;�; �; s0), whereS is a finite
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set ofstates, � is a finite alphabet ofsymbols, � is a transition function, ands0 2 S is theinitial state. The
alphabet� contains a special symbolcalled theblank. The transition function� is a map� : S � � ! (S [ fhalt;yes;nog)� �� f-1, 0, +1g;
wherehalt, yes, andno denote three additional states not occurring inS, and-1, 0, +1 denote
motion directions. It is assumed here, without loss of generality, that the machine is well-behaved and never
moves off the tape, i.e.,d 6= -1 whenever the cursor is on the leftmost cell; this can be ensured by proper
design of�.1

Let T be a DTM(�; S; �; s0). The tape ofT is divided intocellscontaining symbols of�. There is a
cursor that may move along the tape. At the start,T is in the initial states0, and the cursor points to the
leftmost cell of the tape. Aninput stringI is written on the tape as follows: the firstjIj cellsc0; : : : ; cjIj�1
of the tape, wherejIj denotes the length ofI, contains the symbols ofI, and all other cells contain.

The machine takes successivestepsof computation according to�. Namely, assume thatT is in a states 2 S and the cursor points to the symbol� 2 � on the tape. Let�(s; �) = (s0; �0; d):
ThenT changes its current state tos0, overwrites�0 on�, and moves the cursor according tod. Namely, ifd = -1 or d = +1, then the cursor moves to the previous cell or the next one, respectively; ifd = 0, then
the cursor remains in the same position.

When any of the stateshalt, yes or no is reached,T halts. We say thatT acceptsthe inputI if T
halts inyes. Similarly, we say thatT rejectsthe input in the case of halting inno. If halt is reached, we
say that theoutputof T on I is computed. This output, denoted byT (I), is defined as the string contained
in the initial segment of the tape which ends before the first blank.

Nondeterministic Turing machines. Like a DTM, anondeterministic Turing machine, or NDTM,is de-
fined as a quadruple(S;�;�; s0), whereS;�; s0 are the same as before. Possible operations of the machine
are described by�, which is no longer a function. Instead,� is a relation:� � (S � �)� (S [ fhalt;yes;nog)� �� f-1, 0, +1g:
A tuple whose first two members ares and� respectively, specifies the action of the NDTM when its current
state iss and the symbol pointed at by its cursors is�. If the number of such tuples is greater than one, the
NDTM nondeterministically chooses any of them and operatesaccordingly.

Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM is asymmetric. We
say that a NDTMacceptsan input if there is at least one sequence of choices leading to the stateyes. A
NDTM rejectsan input if no sequence of choices can lead toyes.

Time and space bounds. Thetimeexpended by a DTMT on an inputI is defined as the number of steps
taken byT on I from the start to halting. IfT does not halt onI, the time is considered to be infinite. For
a NDTM T , we define thetimeexpended byT on I as 1, ifT does not acceptI (respectively, computes no
output forI), and otherwise as the minimum over the number of steps in anyaccepting (respectively, output
producing) computation ofT .

1Some texts assume that� has a special symbol which marks the left end of the tape. Thissymbol can be eliminated by a proper
redesign of the machine. For the purpose of this paper, the simpler model without a left end marker is convenient.



INFSYS RR 1843-99-05 9

Thespacerequired by a DTMT onI is the number of cells visited by the cursor during the computation
on I. In the case of a NDTM, thespaceis defined as 1, ifT does not acceptI (respectively, computes
no output forI), and otherwise as the minimum number of cells visited on thetape over all accepting
(respectively, output producing) computations.

Let T be a DTM or a NDTM. Letf be a function from the positive integers to themselves. We say
thatT halts in timeO(f(n)), if there exist positive integersc andn0 such that the time expended byT on
any input of lengthn is not greater thancf(n) for all n � n0. Likewise, we say thatT haltswithin spaceO(f(n)) if the space required byT on any input of lengthn is not greater thancf(n) for all n � n0, wherec andn0 are positive integers.

Assume that a DTM (NDTM)T halts in timeO(nd), whered is a positive integer. Then we callT
a polynomial-time DTM (NDTM)and we say thatT halts inpolynomial time. Similarly, if T halts within
spaceO(nd), we callT apolynomial-space DTM (NDTM).

3.2 Notation for complexity classes

As above, let� be a finite alphabet containing. Let�0 = � n f g, and letL � �0� be alanguagein �0,
i.e. a set of finite strings over�0. LetT be a DTM or a NDTM such that(i) if x 2 L thenT acceptsx, and(ii) if x 62 L thenT rejectsx. Then we say thatT decidesL. In addition, ifT halts in timeO(f(n)), we
say thatT decidesL in timeO(f(n)). Similarly, if T halts within spaceO(f(n)), we say thatT decidesL
within spaceO(f(n)).

Observe that iff(n) is a sublinear function, then a Turing machine which halts within spacef(n) can
not read the whole input string, nor produce a large output. To remedy this problem, a Turing machineT is
equipped with a read-only input-tape and a write-only output tape besides the work tape, which contain the
input string and the output computed byT , respectively. The time and space requirement ofT is defined
as above, where only the space used on the work tape counts. IncaseT halts within sublinear timef(n),
random access to the input symbols on the input-tape is provided using a further tape which serves as an
index register. In the following, we assume that multi-tapemachines as described may be used for deciding
languages within sublinear bounds.

Let f be a function on positive integers. We define the following sets of languages:TIME(f(n)) = fL j L is decided by some DTM in timeO(f(n))g;NTIME(f(n)) = fL j L is decided by some NDTM in timeO(f(n))g;SPACE(f(n)) = fL j L is decided by some DTM within spaceO(f(n))g;NSPACE(f(n)) = fL j L is decided by some NDTM within spaceO(f(n))g:
All these sets are examples ofcomplexity classes, other examples will be given below. Note that some

functionsf can lead to complexity classes with unnatural properties (see [Papadimitriou 1994] for details).
However, for “normal” functions such as polynomials, exponents or logarithms, the corresponding com-
plexity classes are “normal” too.

Complexity classes of most interest are not classes corresponding to particular functions but their unions
such as, for example, the union

Sd>0 TIME(nd) taken over all polynomials of the formnd. The following
abbreviations are used to denote main complexity classes ofsuch a kind:
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P = Sd>0 TIME(nd);NP = Sd>0 NTIME(nd);EXPTIME = Sd>0 TIME(2nd);NEXPTIME = Sd>0 NTIME(2nd);PSPACE = Sd>0 SPACE(nd);EXPSPACE = Sd>0 SPACE(2nd);L = SPACE(log n);NL = NSPACE(log n):
The list contains no abbreviations for the nondeterministic counterparts ofPSPACE andEXPSPACE be-
cause

Sd>0NSPACE(nd) coincides with the classPSPACE and
Sd>0 NSPACE(2nd) coincides with the

classEXPSPACE [Sawitch 1970].

Complementary classes. Any complexity classC has itscomplementary classdenoted byco-C and de-
fined as follows. For every languageL in �0, letL denote itscomplement, i.e. the set�0� n L. Thenco-C isfL j L 2 Cg.
The polynomial hierarchy. To define the polynomial hierarchy classes, we need to introduce oracle Tur-
ing machines. LetA be a language. Anoracle DTMTA, also called aDTM with oracleA, can be thought of
as an ordinary DTM augmented by an additional write-onlyquery tapeand additional three statesquery,2 and 62. WhenTA is not in the statequery, the computation proceeds as usual (in addition,TA can write
on the query tape). WhenTA is inquery, TA changes this state to2 or 62 depending on whether the string
written on the query tape belongs toA or not; furthermore, the query tape is instantaneously erased. Like
the case of an ordinary DTM, the expended time is the number ofsteps and the required space is the number
of cells used on the tape and the query tape. Anoracle NDTMis defined as the same augmentation of a
NDTM.

Let C be a set of languages. We define complexity classesPC andNPC as follows. For a languageL, we
haveL 2 PC (or L 2 NPC) if and only if there is some languageA 2 C and some polynomial-time oracle
DTM (or NDTM) TA such thatTA decidesL.

Thepolynomial hierarchyconsists of classes�pi , �pi , and�pi defined by the following equalities:�p0 = �p0 = �p0 = P;�pi+1 = P�pi ;�pi+1 = NP�pi ;�pi+1 = co-�pi+1;
for all i � 0. The classPH is defined as

Si�0 �pi .
Exponential time. BesidesEXPTIME andNEXPTIME, we mention in this paper some other classes that
characterize computation in exponential time. The classesETIME andNETIME are defined as
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respectively; they capture linear exponents instead of polynomial exponents. The classEXPTIME can be
viewed as 1-EXPTIME where 1 means the first level of exponentiation. Double exponents, triple exponents,
etc. are captured by the classes 2-EXPTIME, 3-EXPTIME etc. defined as[d>0TIME(22nd ); [d>0TIME(222nd ); : : : :
Their nondeterministic counterparts are defined in the sameway but with the replacement ofTIME(fn) byNTIME(f(n)).
3.3 Reductions

LetL1 andL2 be languages. Assume that there is a DTMR such that

1. For all input stringsx, we havex 2 L1 if and only ifR(x) 2 L2, whereR(x) denotes the output ofR on inputx.

2. R halts within spaceO(log n).
ThenR is called alogarithmic-space reductionfrom L1 toL2 and we say thatL1 is reducibletoL2.

Let C be a set of languages. A languageL is calledC-hard, if any languageL0 in C is reducible toL. IfL is C-hard andL 2 C, thenL is calledC-completeor complete forC.
Besides the above notion of a reduction, complexity theory also considers many other kinds of reduc-

tions, for example, polynomial-time many-one reductions or polynomial-time Turing reductions (stronger
kinds of reductions).In this paper, unless otherwise stated, a reduction means a logarithmic-space reduc-
tion. We note that in several cases, results that we shall review have been stated for polynomial-time many-
one reductions, but the proofs establish that they hold under logarithmic-space reduction. Furthermore,
many results hold under yet weaker reductions such as first-order reduction [see e.g. Immerman 1998].

In case of weak reductions, as well as in case of computation with sublinear resource constraints, the
particular representation of the problem input as a stringI may be a matter of concern. For most of the
problems that we describe, and in particular those having complexity at leastP, this is not an issue; any
“reasonable” representation is appropriate [see e.g. Johnson 1990]. In the other cases, the reader is requested
to the original sources for the details.

4 Complexity of plain logic programming

In this section, we survey some basic results on the complexity of plain logic programming. This section
is written in a slightly more tutorial style than the following sections in order to help both readers not
familiar with logic programming and readers not too familiar with complexity theory to grasp some key
issues relating complexity theory and logic programming.
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4.1 Simulation of deterministic Turing machines by logic programs

Let T be a DTM. Consider the computation ofT on an input stringI. The purpose of this section is to
describe a logic programL and a goalG such thatL j= G if and only if T acceptsI in at mostN steps.

The transition function� of a DTM with a single tape can be represented by a table whose rows are
tuplest = hs; �; s0; �0; di. Such a tuplet expresses the following if-then-rule:

if at some time instant� the DTM is in states, the cursor points to cell number�, and this cell contains
symbol�
then at instant� + 1 the DTM is in states0, cell number� contains symbol�0, and the cursor points
to cell number� + d.

It is possible to describe the complete evolution of a DTMT on input stringI from its initial configu-
ration at time instant0 to the configuration at instantN by a propositional logic programL(T; I;N). To
achieve this, we define the following classes of propositional atoms:

symbol�[�; �] for 0 � � � N , 0 � � � N and� 2 �. Intuitive meaning: at instant� of the computation,
cell number� contains symbol�.

cursor[�; �] for 0 � � � N and0 � � � N . Intuitive meaning: at instant� the cursor points to cell
number�.

states[� ] for 0 � � � N ands 2 S. Intuitive meaning: at instant� the DTMT is in states.
accept Intuitive meaning:T has reached stateyes.

Let us denote byIk the k-th symbol of the stringI = I0 � � � IjIj�1. The initial configuration ofT on
input I is reflected by the followinginitialization factsin L(T; I;N):

symbol�[0; �]  for 0 � � < jIj, whereI� = �
symbol [0; �]  for jIj � � � N

cursor[0; 0]  
states0 [0]  

Each entryhs; �; s0; �0; di of the transition table� is translated into the following propositional Horn
clauses, which we call thetransition rules. The clauses are asserted for each value of� and� such that0 � � < N , 0 � � < N , and0 � � + d.

symbol�0 [� + 1; �]  states[� ]; symbol�[�; �]; cursor[�; �]
cursor[� + 1; � + d]  states[� ]; symbol�[�; �]; cursor[�; �]

states0 [� + 1]  states[� ]; symbol�[�; �]; cursor[�; �]
These clauses almost perfectly describe what is happening during a state transition from an instant� to

an instant� + 1. However, it should not be forgotten that those tape cells which are not changed during the
transition keep there old values at instant� +1. This must be reflected by what we terminertia rules. These
rules are asserted for each time instant� and tape cells numbers�; �0, where0 � � < N , 0 � � < �0 � N ,
and have the following form:
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symbol�[� + 1; �]  symbol�[�; �]; cursor[�; �0]
symbol�[� + 1; �0]  symbol�[�; �0]; cursor[�; �]

Finally, a group of clauses termedaccept rulesderives the propositional atomaccept, whenever an
accepting configuration is reached.

accept  stateyes[� ] for 0 � � � N .

Denote byL the logic programL(T; I;N). Note thatT 0L = ; and thatT 1L contains the initial configura-
tion of T at time instant 0. By construction, the least fixpointT1L of L is reached atTN+2L , and the ground
atoms added toT �L , 2 � � � N + 1, i.e., those inT �L n T ��1L , describe the configuration ofT on the inputI at the time instant� � 1. The fixpointT1L containsacceptif and only if an accepting configuration has
been reached byT in at mostN computation steps. We thus have:

Lemma 4.1 L(T; I;N) j= acceptif and only if the DTMT accepts the input stringI within N steps.

A somewhat different simulation of deterministic multi-tape Turing machines by logic programs was
given by Itai & Makowsky [1987]. These authors also note thatsimulating Turing machines by Horn clause
theories, and, more generally, by logical deduction has a long history:

“The idea of simulating Turing machines by logical deductiongoes back to Turing’s original paper [Tu-
ring 1936-1937]. Turing introduced his abstract machine concept at a time when computations were con-
sidered to be something mechanical, and felt it was necessary to show that logical deduction can be reduced
to such a mechanistic model of computation. However, this reduction uses full first-order logic. A reduction
using only universal Horn formulas (with function symbols)appears buried in the exposition of Scholz &
Hasenjaeger [1961]. It also forms the basis of the theory of formal systems, as presented by Smullyan in his
thesis [Smullyan 1961]. The idea of coding Turing machines by logic Horn formulas appears explicitly in
[Büchi 1962] and has been used since 1971 in a series of papers byAandera, B̈orger, and Lewis [Aandera
& Börger 1979, B̈orger 1971, B̈orger 1974, B̈orger 1984, Lewis 1979] to obtain undecidability and com-
plexity results. Since then, various authors have rediscovered that such a reduction is possible and have
used this observation to show that logic programming is computationally complete. The earliest reference
we have found that states this result explicitly is [Andréka & Ńemeti 1978]; a slightly weaker result appears
in [Tärnlund 1977].”

Yet another translation and further references can be foundin the recent book [Börger, Grädel &
Gurevich 1997].

4.2 Propositional logic programming

The simulation of a DTM by a propositional logic program, as described in Section 4.1 is almost all we need
in order to determine the complexity of propositional logicprogramming, i.e., the complexity of deciding
whetherP j= A holds for a given logic programP and ground atomA.

Theorem 4.2 (implicit in [Jones & Laaser 1977, Vardi 1982, Immerman 1986]) Propositional logic pro-
gramming isP-complete.
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Proof.

1. Membership. It is obvious that the least fixpointT1P of the operatorTP , given programP , can be
computed in polynomial time: the number of iterations (i.e.applications ofTP ) is bounded by the
number of rules plus one. Each iteration step is clearly feasible in polynomial time.

2. Hardness. Let A be a language inP. ThusA is decidable inq(n) steps by a DTMT for some
polynomial q. Transform each instanceI of A to the corresponding logic programL(T; I; q(jIj))
as described in Section 4.1. By Lemma 4.1,L(T; I; q(jIj)) j= acceptif and only if T has reached
an accepting state withinq(n) steps. The translation fromI to L(T; I; q(jIj)) is very simple and is
clearly feasible in logarithmic space, since all rules ofL(T; I; q(jIj)) can be generated independently
of each other and each has size logarithmic injIj; note that the numbers� and� haveO(log jIj)
bits, while all other syntactic constituents of a rule have constant size. We have thus shown that every
languageA in P is logspace reducible to propositional logic programming.Hence, propositional logic
programming isP-hard. 2

Obviously, this theorem can be proved by simpler reductionsfrom otherP-complete problems, for
example from the monotone circuit value problem (see [Papadimitriou 1994]); however, our proof from
first principles unveils the computational nature of logic programming and provides a basic framework form
which further results will be derived by slight adaptationsin the sequel.

Notice that in a standard programming environment, propositional logic programming is feasible in
linear time by using appropriate data structures, as follows from results about deciding Horn satisfiability
[Dowling & Gallier 1984, Itai & Makowsky 1987]. This does notmean that all problems inP are solvable
in linear time; first, the model of computation used in [Dowling & Gallier 1984] is the RAM machine, and
second logarithmic-space reductions may in general polynomially increase the input.

Theorem 4.2 holds under stronger reductions. In fact, it holds under the requirement that the logspace
reduction is also apolylogtime reduction (PLT). Briefly, a mapf : �! �0 from a problem� to a problem�0 is a PLT-reduction, if there are polylogtime deterministicTuring machinesN andM such that for allw, N(w) = jf(w)j and for allw andn, M(w;n) = Bit(n; f(w)), i.e., then-th bit of f(w) (see e.g.
[Veith 1998] for details). (Recall thatN andM have separate input tapes whose cells can be accessed by
use of an index register tape.) Since the above encoding of a DTM into logic programming is highly regular,
it is easily seen that it is a PLT reduction.

Syntactical restrictions on programs lead to completenessfor classes insideP. Let LP(k) denote logic
programming where each clause has at mostk atoms in the body. Then, by results in [Vardi 1982, Immerman
1987], one easily obtains:

Theorem 4.3 LP(1) isNL-complete.

Proof. (Sketch)

1. MembershipThe membership part can be established by reducing this problem to graph reachability,
i.e., given a directed graphG = (V;E) and verticess; t 2 V , decide whethert is reachable froms. Since graph reachability is inNL andNL is closed under logarithmic-space reductions (i.e., re-
ducibility of a problemA to a problemB in NL implies thatA is in NL), it follows that LP(1) is inNL.

For a programP from LP(1), the question whetherP j= A is equivalent to the nodetrue (representing
truth) is reachable from the nodeA in the directed graphG = (V;E) as follows. The vertex setV
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is the set of atoms inP plus true; the edge setE contains an edge(A;B) directed fromA to B for
every ruleA  B in P , and an edge(A; true) for every factA  in P . Clearly, the graphG is
constructible fromP in logarithmic space. Thus, the problem is inNL.

2. HardnessConversely, graph reachability is easily transformed intoP j= A for a program in LP(1).
Since graph reachability isNL-complete (thusNL-hard), the result is established. 2

Observe that the above DTM encoding can be easily modified to programs in LP(2). Hence, LP(2) isP-complete.
Further syntactical restrictions on LP(1) yield problems complete forL (of course, under reductions

stronger than logspace reductions), which we omit here.

4.3 Complexity of datalog

Let us now turn to datalog, and let us first consider the data complexity. GroundingP on an input databaseD yields polynomially many clauses in the size ofD; hence, the complexity of propositional logic program-
ming is an upper bound for the data complexity. The same holdsfor the variants of datalog we shall consider
in the sequel. The complexity of propositional logic programming is also a lower bound. Thus,

Theorem 4.4 (implicit in [Vardi 1982, Immerman 1986]) Datalog is data complete forP.

In fact, this result follows from the proof of Theorem 7.2 below. An alternative proof ofP-hardness can
be given by writing a simple datalogmeta-interpreterfor propositional LP(k), wherek is a constant.

Represent rulesA0  A1; : : : ; Ai, where0 � i � k, by tupleshA0; : : : ; Aii in an(i + 1)-ary relationRi on the propositional atoms. Then, a programP in LP(k) which is stored this way in a databaseD(P )
can be evaluated by a fixed datalog programPMI(k) which contains for each relationRi, 0 � i � k, a ruleT (X0) T (X1); : : : ; T (Xi); Ri(X0; : : : ;Xi):
HereT (x) intuitively means that atomx is true. Then,P j= A just if PMI [P (D) j= T (A). P-hardness of
the data complexity of datalog is then immediate from Theorem 4.2.

The program complexity is exponentially higher.

Theorem 4.5 (implicit in [Vardi 1982, Immerman 1986]) Datalog is program complete forEXPTIME.

Proof. (Sketch)

1. Membership. GroundingP onD leads to a propositional programP 0 whose size is exponential in the
size of the fixed input databaseD. Hence, by Theorem 4.2, the program complexity is inEXPTIME.

2. Hardness. In order to proveEXPTIME-hardness, we show that if a DTMT halts in less thanN = 2nk
steps on a given inputI wherejIj = n, thenT can be simulated by a datalog program over a fixed
input databaseD. In fact, we useD;, i.e., the empty database with the universeU = f0; 1g.

We employ the scheme of the DTM encoding into logic programming from above, but use the pred-
icatessymbol�(X;Y ), cursor(X;Y ) and states(X) instead of the propositional letterssymbol�[X;Y ],
cursor[X;Y ] andstates[X] respectively. The time points� and tape positions� from 0 to 2m � 1,m = nk,
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are represented bym-ary tuples overU , on which the functions� + 1 and� + d are realized by means of
the successorSuccm from a linear order�m onUm.

For an inductive definition, supposeSucci(X;Y), Firsti(X), andLasti(X) tell the successor, the first,
and the last element from a linear order�i onU i, whereX andY have arityi. Then, use rules

Succi+1(Z;X; Z;Y)  Succi(X;Y)
Succi+1(Z;X; Z 0;Y)  Succ1(Z;Z 0);Lasti(X);Firsti(Y)

Firsti+1(Z;X)  First1(Z);Firsti(X)
Lasti+1(Z;X)  Last1(z);Lasti(X)

HereSucc1(X;Y ), First1(X), andLast1(X) onU1 = U must be provided. For our reduction, we use the
usual ordering0 �1 1 and provide those relations by the ground factsSucc1(0; 1), First1(0), andLast1(1).

The initialization factssymbol�[0; �] are readily translated into the datalog rules

symbol�(X; t) Firstm(X);
wheret represents the position�, and similarly the factscursor[0; 0] andstates0 [0]. The remaining initial-
ization factssymbol [0; �], wherejIj � � � N , are translated to the rule

symbol (X;Y)  Firstm(X); �m(t;Y)
wheret represents the numberjIj; the order�m is easily defined fromSuccm by two clauses�m(X;X)  X�m(X;Y)  Succm(X;Z); �m (Z;Y)
The transition and inertia rules are easily translated intodatalog rules. For realizing� +1 and�+ d, use in
the body atomsSuccm(X;X0). For example, the clause

symbol�0 [� + 1; �]  states[� ]; symbol�[�; �]; cursor[�; �]
is translated into

symbol�0(X0;Y)  states(X); symbol�(X;Y); cursor(X;Y);Succm(X;X0):
The translation of the accept rules is straightforward.

For the resulting datalog programP 0, it holds thatP 0 [ D; j= acceptif and only if T accepts inputI
in at mostN steps. It is easy to see thatP 0 can be constructed fromT andI in logarithmic space. Hence,
datalog hasEXPTIME-hard program complexity.

Note that straightforward simplifications in the construction are possible, which we omit here, as part of
it will be reused below. 2

Instead of using a generic reduction, the hardness part of this theorem can also be obtained by applying
complexity upgrading techniques [Papadimitriou & Yannakakis 1985, Balcázar, Lozano & Torán 1992]. We
briefly outline this in the rest of this section.

This technique utilizes a conversion lemma [Balcázar et al. 1992] of the form “If� X-reduces to�0, thens(�) Y -reduces tos(�0)”; here s(�) is the succinct variant of�, where the instancesI of �
are given by a Boolean circuitCI which computes the bits ofI (see [Balcázar et al. 1992] for details).



INFSYS RR 1843-99-05 17

The strongest form of the conversion lemma appears in [Veith1998], whereX is PLT andY is monotone
projection reducibility [Immerman 1987]. The conversion lemma gives rise to an upgrading theorem, which
has been subsequently sharpened [Balcázar et al. 1992, Eiter, Gottlob & Mannila 1994, Gottlob, Leone &
Veith 1995, Veith 1998] and is stated below in the strongest form of [Veith 1998]. For a complexity classC, denotelong(C) = flong(L) j L 2 Cg, wherelong(L) = Sbin(n)21Lf0; 1gn, i.e., contains all strings of
lengthn such thatn, in binary and with the leading 1 omitted, belongs toL.

Theorem 4.6 Let C1 andC2 be complexity classes such thatlong(C1) � C2. If � is hard forC2 under
PLT-reduction, thens(�) is hard forC1 under monotone projection reduction.

We remark that since monotone projection reduction is very weak, a special encoding of succinct problems
is necessary. From the observations in Section 4.2, we then obtain thats(LP(2)) is EXPTIME-hard under
monotone projection reductions, where each programP is stored in the databaseD(P ), which is represented
by a binary string in the standard way.s(LP(2)) can be reduced to evaluating a datalog programP � over a fixed database as follows. From a
succinct instance of LP(2), i.e., a Boolean circuitCI for I = D(P ), Boolean circuitsCi for computingRi,0 � i � 2 can be constructed which use negation merely on input gates.

Each such circuitCi(X) can be simulated by straightforward datalog rules. For example, an^-gategi
with input from gatesgj andgk is described by a rulegi(X) gj(X); gk(X), and an_-gategi is described
by the rulesgi(X)  gj(X) andgi(X)  gk(X). Observe that Boolean circuits with arbitrary use of
negation can be easily simulated in stratified datalog [Kolaitis & Papadimitriou 1991] or disjunctive datalog
[Eiter, Gottlob & Mannila 1997].

The desired programP � comprises the rules for the Boolean circuitsCi and the rules of the meta-
interpreterPMI(k), which are adapted for a binary encoding of the domainUD(P ) of the databaseD(P ) by
using binary tuples of aritydlog jUD(P )je. This construction is feasible in logarithmic space, from whichEXPTIME-hard program complexity of datalog follows. We refer the reader to [Eiter et al. 1994, Eiter,
Gottlob & Mannila 1997, Gottlob et al. 1995] for the technical details.

4.4 Logic programming with functions

Let us see what happens if we allow function symbols in logic programs. In this case, entailment of an
atom is no longer decidable. To prove it, we can, for example,reduce Hilbert’s Tenth Problem to the query
answering in full logic programming. Natural numbers can berepresented using the constant0 and the
successor functions. Addition and multiplication are expressed by the following simple logic program:X + 0 = X  X + s(Y ) = s(Z)  X + Y = ZX � 0 = 0  X � s(Y ) = Z  X � Y = U; U +X = Z

Now, undecidability of full logic programming follows fromthe undecidability of diophantine equa-
tions [Matiyasevič 1970]. More precisely, it shows that full logic programming can express r.e.-complete
languages. On the other hand, the least fixpointT1P of any logic programP is clearly a r.e. set. This shows
r.e.-completeness of logic programming.



18 INFSYS RR 1843-99-05

Theorem 4.7 ([Andréka & Németi 1978, Tärnlund 1977]) Logic programming is r.e.-complete.2

Of course, this theorem may as well be proved by a simple encoding of Turing machines similar to the
encoding in the proof of Theorem 4.5 (use termsfn(c), n � 0, for representing cell positions and time
instants). It is interesting to note that Smullyan [1956] asserted –quite some time before the first proposals
to logic programming – a closely related result which essentially says that, in our terms, the minimal model
semantics of logic programming over arithmetic yields the r.e. sets.

Theorem 4.7 was generalized in [Voronkov 1995] for more expressive S-semantics and C-semantics
[Falaschi, Levi, Martelli & Palamidessi 1989]. On the otherhand, it was sharpened to syntactical classes
of logic programs. E.g., Tärnlund [1977] used binary Horn clause programs to simulate a universal Turing
machine. By a transformation from binary Horn clause programs, Sebelík & Štěpánek [1982] showed
that a class of logic programs called stratifiable (in a sensedifferent from the one in Section 5.1) is r.e.-
complete. Furthermore, [Stěpánek &̌Stěpánková 1986] proved that (an inessential variant of) PRIMLOG
[see Markusz & Kaposi 1982] is r.e.-complete, which restricts considerably the size of AND- and OR-
branching and allows to use recursion explicitly in only a single clause of particular type. The proof shows
that all�-recursive functions can be expressed within this fragment.

A natural decidable fragment of logic programming with functions arenonrecursive programs, in which
intuitively no predicate depends syntactically on itself (see Section 5.1 for a definition). Their complexity is
characterized by the following theorem.

Theorem 4.8 ([Dantsin & Voronkov 1997b]) Nonrecursive logic programming isNEXPTIME-complete.

The membership is established by applying SLD-resolution with constraints. The size of the derivation
turns out to be exponential.NEXPTIME-hardness is proved by reduction from the tiling problem forthe
square2n � 2n.

Some other fragments of logic programming with function symbols are known to be decidable too. For
example, the following result was established in [Shapiro 1984], by using a simulation of alternating Turing
machines by logic programs and vice versa.

Theorem 4.9 ([Shapiro 1984]) Logic programming with function symbols isPSPACE-complete, if each
rule is restricted as follows: the body contains only one atom, the size of the head is greater than or equal
to that of the body, and the number of occurrences of any variable in the body is less than or equal to the
number of its occurrences in the head.

The simulation assumed that the input to an alternating Turing machine is written on the work-tape.
Extending the simulation by a distinguished input-tape, [Stěpánek &Štěpánková 1986] showed that the
class of logic programs having logarithmic (respectively,polynomial) goal-size complexity isP-complete
(respectively,EXPTIME-complete). Here, the goal-size complexity is the maximal size of any subgoal (in
terms of symbols) occurring in the proof tree of a goal. Related notions of complexity and normal forms of
programs, defined in terms of computation trees [Stěpánková & Štěpánek 1984], are studied in [Ochozka,
Štěpánek &Štěpánková 1988].

We refer to [Blair 1982, Fitting 1987a, Fitting 1987b] for further material on recursion-theoretic issues
related to logic programming.

2In the context of recursion theory, reducibility of a language (or problem)L1 toL2 is understood in terms of a Turing reduction,
i.e.,L1 can be decided by a DTM with oracleL2, rather than logarithmic-space reduction.
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4.5 Further issues

Besides data and combined complexity, many other complexity aspects of logic program have been inves-
tigated, in particular in the context of datalog. We discusshere some of issues that have received broad
attention.

Sirups. A strongly restricted class of logic programs often considered in the literature is the class ofsingle
rule programs(sirups) or programs consisting ofonerecursive rule and some nonrecursive (initialization)
rules or atoms.

For a long time, the decidability of the following problem was open: Given an LPP (with function
symbols) that consists of a unique recursive rule and a set ofground atoms, and given a ground goalG,
does it hold thatP j= G? This problem is equivalent to theHorn clause implication problem, i.e., checking
whether the universal closure of a Horn clauseC1 logically implies the universal closure of a Horn clauseC2. The problem was shown to be undecidable in [Marcinkowski & Pacholski 1992]. Some decidable
special cases of this problem were studied in [Gottlob 1987,Leitsch & Gottlob 1990, Leitsch 1990].

Several undecidability results of inference and satisfiability problems for various restricted forms of
sirups with non-ground atoms or with nonrecursive rules canbe found in [Devienne 1990, Devienne,
Lebègue & Routier 1993, Hanschke & Würtz 1993, Devienne, Lebègue, Parrain, Routier & Würtz 1996].

Datalog sirups areEXPTIME complete with respect toprogramandcombined complexity; this remains
true even for datalog sirups consisting of a unique rule and no facts [Gottlob 1999]. It follows that deciding
whether (the universal closure of) a datalog clause logically implies (the universal closure of) another datalog
clause isEXPTIME complete, too. The problem of evaluating anonrecursiveHorn clause (with or without
function symbols) over a set of ground facts isNP-complete [Chandra & Merlin 1977] (even for a fixed
set of ground facts). (Here by “evaluation”, we mean determining whether a rule fires.) This problem is
computationally equivalent to the problem of evaluating a Booleanconjunctive queryover a database, i.e., a
datalog clause whose body contains only input predicates, and also to the well knownNP-complete clause
subsumption problem [Garey & Johnson 1979] (see below). Theparametric complexity of conjunctive
queries is studied on [Papadimitriou & Yannakakis 1997].

With respect todata complexity, datalog sirups are complete forP, and thus in general inherently se-
quential [cf. Kanellakis 1988]. There are, however, many interesting special cases in which sirup queries
can be evaluated in parallel.

Inside P and parallelization issues. In [Ullman & van Gelder 1988] thepolynomial fringe propertyis
studied. Roughly, a datalog programP has the polynomial fringe property if it is guaranteed that for each
databaseD and goalG such thatP [ D j= G, there is a derivation tree whosefringe (i.e., set of leaves)
is of polynomial size. The data complexity of datalog programs with the polynomial fringe property is inLOGCFL, which is the class of all languages (that is, problems) thatare reducible in logarithmic space to
a context-free language.LOGCFL is a subclass ofNC2, and thus contains highly parallelizable problems
[Johnson 1990]; furthermore, programs whose fringe is superpolynomial (i.e.,O(2logk n)) are inNC [Ullman
& van Gelder 1988, Kanellakis 1988]. HereNC2 is the second level of theNC-hierarchy of complexity
classesNCi. These classes are defined by families of uniform Boolean circuits of depthO(logi n) [Johnson
1990]. An example of programs with the polynomial fringe property are linearly recursive sirups; however,
there also exist nonlinear sirups that are not equivalent toany linear sirup and are still inNC [Afrati &
Cosmadakis 1989].
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In [Kanellakis 1988], thepolynomial (superpolynomial) tree-size property for width k is considered.
Roughly, a datalog program has this property if every derivable atom can be obtained by a width-k derivation
tree of polynomial (superpolynomial) size. A width-k derivation tree is a generalized derivation tree, where
each node may represent up tok ground atoms. For widthk = 1, the polynomial (resp., superpolynomial)
tree-size property coincides with the polynomial (resp., superpolynomial) fringe property; however, for
higher widths, the former properly generalizes the latter.Kanellakis [1988] shows that the data complexity
of datalog programs having the polynomial (resp., superpolynomial) tree-size property for any fixed constant
width is inLOGCFL (resp., inNC).

Thehypergraph(V;E) associated with a Horn clause or conjunctive query has as setV of vertices the
set of variables occurring in the rule; its setE of hyperedges contains for each atomA in the rule body a
hyperedge consisting of the variables occurring inA. If the hypergraph associated with a nonrecursive rule
is acyclic, the evaluation problem is feasible in polynomial time [Yannakakis 1981] and is actually complete
for LOGCFL and thus highly parallelizable [Gottlob, Leone & Scarcello1998]. For generalizations of this
result to various types of nearly acyclic hypergraphs, see [Gottlob, Leone & Scarcello 1999].

While determining whether a datalog program is parallelizable, i.e., has data complexity inNC, is in
general undecidable [Ullman & van Gelder 1988, Gaifman, Mairson, Sagiv & Vardi 1987], the problem has
been completely resolved by [Afrati & Papadimitriou 1993] for an interesting and relevant class of sirups
calledsimple chain queries. These are logic programs with a single recursive rule whoseright hand side
consists of binary relations forming a chain. An example of such a rule, involving a database predicatea, iss(X;Y ) a(X;Z1); s(Z1; Z2); s(Z2; Z3); a(Z3; Y ):
Afrati & Papadimitriou [1993] show that (unlessP = NC) simple chain queries are either complete forP or
in NC. They give a precise characterization of theP-complete andNC-computable simple chain queries.

Boundedness. Many papers have been devoted to the decidability of theboundedness problemfor datalog
programs. A datalog programP is bounded, if there exists a constantk such that for all databasesD, the
number of iteration steps needed in order to compute the least fixed pointM(ground(P [D;L(P;D))) is
bounded byk and is thus independent ofD (it depends onP only). Boundedness is an interesting property,
because as shown in [Ajtai & Gurevich 1994], a datalog program is bounded if and only if it is equivalent
to a first-order query. For important related results on the equivalence of recursive and nonrecursive dat-
alog queries, see [Chaudhuri & Vardi 1997]. The undecidability of the boundedness for general datalog
programs was shown in [Gaifman et al. 1987], for linear recursive queries in [Vardi 1988], and for sirups
in [Abiteboul 1989]. There is a very large number of papers discussing the decidability of boundedness
issues, both for syntactic restrictions of datalog programs or sirups and for variants of boundedness such as
uniform boundedness. Good surveys of early work are given in [Kanellakis 1988] and in [Kanellakis 1990].
The following is an incomplete list of papers where important results and further relevant references on de-
cidability issues of boundedness or uniform boundedness can be found: [Hillebrand, Kanellakis, Mairson &
Vardi 1995, Marcinkowski 1996b, Marcinkowski 1996a]. Sufficient conditions for boundedness were given
in [Minker & Nicolas 1982, Sagiv 1985, Ioannidis 1986, Vardi1988, Naughton 1989, Cosmadakis 1989,
Naughton & Sagiv 1987, Naughton & Sagiv 1991].

Containment, equivalence, and subsumption. Issues that have been studied repeatedly in the context of
query optimization are query equivalence and containment.Query containmentis the problem, given two
datalog programsP1 andP2 having the same input schemaDin and output schemaDout , whether for every
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input databaseDin , the output ofP1 is contained in the output ofP2, i.e,MP1(Din)jp�MP2(Din)jp holds,
for every relationp 2 Dout . As shown by Shmueli [1987], containment and equivalence are undecidable for
datalog programs; however, a stronger form of uniform containment is decidable [Sagiv 1988].

In the case whereP1 andP2 contain only conjunctive queries, containment and equivalence areNP-
complete [Sagiv & Yannakakis 1981], and remainNP-complete even ifP1 andP2 consist of single conjunc-
tive queries [Chandra & Merlin 1977]. If the domain has a linear order� and comparison literalst1 � t2,t1 < t2, andt1 6= t2 may be used in rule bodies, then the containment problem for single conjunctive queries
is �p2-complete [van der Meyden 1997]; this result generalizes tosets of conjunctive queries. As shown in
[van der Meyden 1997], conjunctive query containment is still co-NP-complete if the database relations are
monadic, but polynomial if an additional sequentiality restrictions is imposed on order literals.

Containment of a nonrecursive datalog programP1 in a recursive datalog programP2 is decidable, sinceP1 can be rewritten to a set of conjunctive queries, and deciding whether a conjunctive query is contained in
an arbitrary (recursive) datalog program isEXPTIME-complete [Cosmadakis & Kanellakis 1986, Chandra,
Lewis & Makowsky 1981]. Chaudhuri & Vardi [1994] have investigated the converse problem, i.e., con-
tainment of a recursive datalog programP1 in a nonrecursive datalog programP2. They showed that the
problem is 3-EXPTIME-complete in general and 2-EXPTIME-complete ifP2 is a set of conjunctive queries.
Furthermore, they showed that deciding equivalence of a recursive and a nonrecursive datalog program is
3-EXPTIME-complete.

We observe that the containment problem for conjunctive queries is equivalent to the clause subsumption
problem. A clauseC subsumesa clauseD, if there exists a substitution� such thatC� � D; subsumption
algorithms are discussed in [Gottlob & Leitsch 1985b, Gottlob & Leitsch 1985a, Bachmair, Chen, Ramakr-
ishnan & Ramakrishnan 1996]. This equivalence extends to sets of conjunctive queries, i.e., in essence to
nonrecursive datalog programs [Sagiv & Yannakakis 1981]. For a discussion of subsumption-based and
other notions of equivalence for logic programs, see [Maher1988].

The clause subsumption problem plays a very important role in the field ofinductive logic program-
ming (ILP) [Muggleton 1992]. For complexity results on ILP consult [Kietz & Dzeroski 1994, Gottlob,
Leone & Scarcello 1997]. A problem related to clause subsumption is clause condensation, i.e., remov-
ing redundancy from a clause. Complexity results and algorithms for clause condensation can be found
in [Gottlob & Fermüller 1993]. The complexity of the clauseevaluation problem and of other related prob-
lems ongeneralized Herbrand interpretations, which may contain nonground atoms, is studied in [Gottlob
& Pichler 1998].

5 Complexity of logic programming with negation

5.1 Stratified negation

A literal L is either an atomA (called apositive literal) or a negated atom:A (called anegative literal).
LiteralsA and:A arecomplementary; for any literalL, we denote by::L its complementary literal, and
for any setLit of literals,::Lit = f::L j L 2 Litg.

A normal clauseis a rule of the formA L1; : : : ; Lm (m � 0) (1)

whereA is an atom and eachLi is a literal. Anormal logic programis a finite set of normal clauses.
The semantics of normal logic programs is not straightforward, and numerous proposals exist [cf. Bidoit

1991, Apt & Bol 1994]. However, there is general consensus for stratified normal logic programs.
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A normal logic programP is stratified [see Apt, Blair & Walker 1988], if there is an assignmentstr(�)
of integers 0,1,. . . to the predicatesp in P , such that for each clauser in P the following holds: Ifp is the
predicate in the head ofr andq the predicate in anLi from the body, thenstr(p) � str(q) if Li is positive,
andstr(p) > str(q) if Li is negative.

Example 5.1 Reconsider the steam turbine scenario in Example 2.1, and let us add the following rules to
the program there:

checksensors  signal error
signal error  valve closed;:signal 1
signal error  pressureloss;:signal 2
signal error  overheat;:signal 3

These rules express knowledge about potential signal errors, which must handled by checking the sensors.
The augmented programP is stratified: E.g. for the assignmentstr(A) = 1 for A 2 fchecksensors;
signal errorg andstr(B) = 0 for any other atomB occurring inP , the condition of stratification is satisfied.

The reduct of a normal logic programP by a Herbrand interpretationI [Gelfond & Lifschitz 1988],
denotedP I , is the set of ground clauses obtained fromground(P ) as follows: first remove every clauser with a negative literalL in the body such that::L 2 I, and then remove all negative literals from the
remaining rules. Notice thatP I is a set of groundHorn clauses.

The semantics of a stratified normal programP is then defined as follows. Take an arbitrary stratificationstr . Denote byP=k the set of rulesr such thatstr (p) = k, wherep is the head predicate ofr. Define a
sequence of Herbrand interpretations:M0 = ;, andMk+1 is the least Herbrand model ofPMk=k [Mk fork � 0. Finally, let Mstr (P ) =[i Mi [ f:A j A =2[i Mig:
The semanticsMstr does not depend on the stratificationstr [Apt et al. 1988]. Note that in the proposi-

tional caseMstr (P ) is polynomially computable.

Example 5.2 We consider the programP in Example 5.1. For the stratificationstr(�) of P given there,P=0 contains the clauses listed in Example 2.1, andP=1 the clauses introduced in Example 5.1. Then,M0 = ; PM0=0 = P0;M1 = T1P0 PM1=1 = fchecksensors signal error; signal error overheatgM2 = T1P0
whereT1P0 = fsignal 1, signal 2, valve closed, pressureloss, leak, shutdowng. Thus,Mstr (P ) = T1P0[f:signal 3, :overheat, :signal error, :checksensorsg.
Theorem 5.3 (implicit in [Apt et al. 1988]) Stratified propositional logic programming with negation isP-complete. Stratified datalog with negation is data complete forP and program complete forEXPTIME.

For full logic programming, stratified negation yields the arithmetical hierarchy.

Theorem 5.4 ([Apt & Blair 1988]) Logic programming withn levels of stratified negation is�0n+1-
complete.
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signature (� 2; 0; 0) ( ; 1; 0) ( ;� 2; 0) ( ; ;� 1)
not range-restricted

no negation PSPACE PSPACE NEXPTIME NEXPTIME
with negation PSPACE PSPACE TA(2O(n= log n); O(n= logn)) NONELEMENTARY(n)

range-restricted
no negation PSPACE PSPACE PSPACE NEXPTIME
with negation PSPACE PSPACE PSPACE TA(2n= logn; n= logn)

Table 1: Summary of results.

Recall here that�0n+1 denotes the relations over the natural numbers that are definable in arithmetic by
means of a first-order formula�(Y) = 9X08X1 � � �QkXn (X0; : : : ;Xn;Y) with free variablesY, where
the quantifiers alternate and is quantifier-free; in particular,�01 contains the r.e. sets. Further complexity
results on stratification can be found in [Blair & Cholak 1994, Palopoli 1992].

A particular case of stratified negation are nonrecursive logic programs. A program isnonrecursiveif
and only if it has a stratification such that each predicatep occurs in its defining stratumP=str(p) only in the
heads of rules.

Theorem 5.5 (implicit in [Immerman 1987, Vardi 1982]) Nonrecursive propositional logic programming
with negation isP-complete. Nonrecursive datalog with negation is program complete forPSPACE, and its
data complexity is in the classAC0, which contains the languages recognized by unbounded fan-in circuits
of polynomial size and constant depth [Johnson 1990].

Vorobyov & Voronkov [1998] classified the complexity of nonrecursive logic programming depending
on the signature, presence of negation and range-restriction. A clauseP is calledrange-restrictedif every
variable occurring in this clause also occurs in a positive literal in the body. A programP is range-restricted
if so is every clause inP . Range-restricted clauses have a number of good properties, for exampledomain-
independence. Before presenting the results of Vorobyov & Voronkov [1998], we explain the notation for
signatures used in their paper. The tuple(k; l;m) denotes the signature withk constants,l unary function
symbols andm function symbols of arity� 2. The complexity of nonrecursive logic programming is
summarized in Table 1.

In this tableTA(f(n); g(n)) means the class of functions computable on alternating Turing machines
[Chandra, Kozen & Stockmeyer 1981] usingg(O(n)) alternations with timef(O(n)) on every branch. Such
classes are closed underpolylin (andloglin) reductions, i.e., those running in polynomial time (respectively,
logarithmic space), with output linearly bounded by the input. Such complexity classes arise in connection
with the complexity characterization of logical theories [Berman 1977, Berman 1980].

In order to defineNONELEMENTARY(n), define functionse0(n) = n, ek+1(n) = 2ek(n), ande1(n) =en(0). Recall that a problem is calledelementary recursive, if it can be decided within time bounded byek(n) for some fixed natural numberk. ThenNONELEMENTARY(f(n)) is the class of problems with
lower and upper time bounds of the forme1(f(cn)) ande1(f(dn)) for somec; d > 0. In all cases in the
table we have completeness in the corresponding complexityclass, except forNONELEMENTARY(n) (in
this case both lower and upper bounds are linearly growing towers of 2’s).

Thus, there is a huge difference between nonrecursive datalog with negation and nonrecursive logic
programming with negation in their program complexity, namely PSPACE vs. NONELEMENTARY(n).
At the same time, as [Vardi 1982] and the following result show, both the languages have polynomial data
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complexity.

Theorem 5.6 ([Dantsin & Voronkov 1998]) Nonrecursive logic programming with negation has polyno-
mial data complexity.

5.2 Well-founded negation

Roughly speaking, thewell-founded semantics (WFS)[van Gelder, Ross & Schlipf 1991] assigns value
“unknown” to an atomA, if it is defined by unstratified negation. Briefly, WFS can be defined as follows
[Baral & Subrahmanian 1993]. LetFP (I) be the operatorFP (I) = T1P I . SinceFP (I) is anti-monotone,F 2P (I) is monotone, and thus has a least and a greatest fixpoint, denoted byF 2P"1 andF 2P#1, respectively.
Then, the meaning of a programP under WFS,Mwfs(P ), isMwfs(P ) = F 2P"1 [ f:A j A =2 F 2P#1g:
Note that on stratified programs, WFS and stratified semantics coincide.

Theorem 5.7 (implicit in [van Gelder 1989, van Gelder et al. 1991]) Propositional logic programming
with negation under WFS isP-complete. Datalog with negation under WFS is data completefor P and
program complete forEXPTIME.

The question whetherP j=wfs A can be decided in linear time is open [Berman, Schlipf & Franco
1995]. A fragment of datalog with well-founded negation that has linear data complexity and, under certain
restrictions, also linear combined complexity, was recently identified in [Gottlob, Grädel & Veith 1998].
This fragment, calleddatalog LITE, is well-suited for expressing temporal properties of a finite state system
represented as a Kripke structure. It is more expressive than CTL and some other well-known temporal
logics used in automatic verification.

For full logic programming, the following is known.

Theorem 5.8 ([Schlipf 1995b]) Logic programming with negation under WFS is�11-complete.

The class�11 belongs to theanalytical hierarchy(in a relational form) and contains those relations which
are definable by a second-order formula�(X) = 8P�(P;X), whereP is a tuple of predicate variables and� is a first-order formula with free variablesX. For more details about this class in the context of logic
programming, see e.g. [Schlipf 1995b, Eiter & Gottlob 1997].

5.3 Stable model semantics

An interpretationI of a normal logic programP is a stable modelof P [Gelfond & Lifschitz 1988], ifI = T1P I , i.e.,I is the least Herbrand model ofP I .
In general, a normal logic programP may have zero, one, or multiple stable models.

Example 5.9 LetP be the following program:

sleep  :work
work  :sleep

ThenM1 = fsleepg andM2 = fworkg are the stable models ofP .
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Denote by SM(P ) the set of stable models ofP . The meaningMst of P under thestable model
semantics (SMS)is Mst(P ) = \M2SM(P )(M [ ::(BP nM)):
Note that every stratifiedP has a unique stable model, and its stratified and stable semantics coincide.
Unstratified rules increase complexity.

Theorem 5.10 (Marek & Truszczyński [1991], Bidoit & Froidevaux [1991])Given a propositional normal
logic programP , deciding whether SM(P ) 6= ; isNP-complete.

Proof.

1. Membership. Clearly,P I is polynomial time computable fromP andI. Hence, a stable modelM ofP can be guessed and checked in polynomial time.

2. Hardness. Modify the DTM encoding in Section 4 for a nondeterministicTuring machineT as fol-
lows. For each states and symbol�, introduce atomsBs;�;1[� ],. . . ,Bs;�;k[� ] for all 1 � � < N and
transitionshs; �; si; �0i; dii, where1 � i � k. AddBs;�;i[� ] in the bodies of the transition rules forhs; �; si; �0i; dii and the ruleBs;�;i[� ]  :Bs;�;1[� ]; : : : ;:Bs;�;i�1[� ];:Bs;�;i+1[� ]; : : : ;:Bs;�;k[� ]:
Intuitively, these rules nondeterministically select precisely one of the possible transitions fors and�
at time instant� , whose transition rules are enabled viaBs;�;i[� ]. Finally, add a rule

accept :accept:
It ensures thatacceptis true in every stable model. The stable modelsM of the resulting program
correspond to the accepting runs ofT . 2

As an easy consequence, we obtain

Theorem 5.11 ([Marek & Truszczyński 1991, Schlipf 1995b]; cf. also [Kolaitis & Papadimitriou 1991])
Logic programming with negation under SMS isco-NP-complete. Datalog with negation under SMS is
data complete forco-NP and program complete forco-NEXPTIME.

For full logic programming, SMS has the same complexity as WFS.

Theorem 5.12 ([Schlipf 1995b, Marek, Nerode & Remmel 1994]) Logic programming with negation under
SMS is�11-complete.

Further results on stable models of recursive (rather than only finite) logic programs can be found in
[Marek, Nerode & Remmel 1992].

Beyond inference, further complexity aspects of stable models have been analyzed, including compact
representations of stable models and the well-founded semantics of nonground logic programs [Gottlob,
Marcus, Nerode, Salzer & Subrahmanian 1996, Eiter, Lu & Subrahmanian 1998], and optimization issues
such as determining symmetries across stable models [Eiter, Gottlob & Leone 1997b].
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5.4 Inflationary and noninflationary semantics

Theinflationary semantics (INFS)[Abiteboul & Vianu 1991a, Abiteboul, Hull & Vianu 1995] is inspired by
inflationary fixpoint logic [Gurevich & Shelah 1986]. In place ofT1P , it uses the limiteT1P of the sequenceeT 0P = ;;eT i+1P = bTP (eT iP ); if i � 0;
where eTP is theinflationary operatoreT (I) = I [ TP I (I). Clearly, eT1P is computable in polynomial time
for a propositional programP . Moreover,eT1P coincides withT1P for Horn clause programsP . Therefore,
by the above results,

Theorem 5.13 ([Abiteboul & Vianu 1991a]; implicit in [Gurevich & Shelah 1986]) Logic programming
with negation under INFS isP-complete. Datalog with negation under INFS is data complete for P and
program complete forEXPTIME.

Thenoninflationary semantics (NINFS)[Abiteboul & Vianu 1991a], in the version of Abiteboul & Vianu
[1995, page 373], uses in place ofT1P the limit bT1P of the sequencebT 0P = ;;bT i+1P = bTP ( bT iP ); if i � 0;
where bTP (I) = TP I (I), if it exists; otherwise,bT1P is undefined. Similar equivalent algebraic query lan-
guages have been earlier described in [Chandra & Harel 1982,Vardi 1982]. In particular, datalog under
NINFS is equivalent to partial fixpoint logic [Abiteboul & Vianu 1991a, Abiteboul et al. 1995].

As easily seen,T1P is for a propositional programP computable in polynomial space; this bound is
tight.

Theorem 5.14 ([Abiteboul & Vianu 1991a, Abiteboul et al. 1995]) Logic programming with negation
under NINFS isPSPACE-complete. Datalog with negation under NINFS is data complete forPSPACE and
program complete forEXPSPACE.

5.5 Further semantics of negation

A number of interesting further semantics for logic programming with negation have been defined, among
them partial stable models, maximal partial stable models,regular models, perfect models, fixpoint models,
the 2- and 3-valued completion semantics, and the tie-breaking semantics; see e.g. [Schlipf 1995b, You
& Yuan 1995, Kolaitis & Papadimitriou 1991, Papadimitriou &Yannakakis 1997]. These semantics must
remain undiscussed here; see e.g. [Schlipf 1995b, Saccá 1995, Kolaitis & Papadimitriou 1991, Papadimitriou
& Yannakakis 1997] for more details and complexity results.

Extensions of logic programming with negation have been proposed which handle different kinds of
negation, namely strong and default negation [see e.g. Gelfond & Lifschitz 1991, Pearce & Wagner 1991].
The semantics we have considered above use default negationas the single kind of negation. Different kinds
of negation increase the suitability of logic programming as a knowledge representation formalism [Baral
& Gelfond 1994].

In the approach of Gelfond & Lifschitz [1991], strong negation is interpreted as classical negation. E.g.,
the rule

flies(X)  � :flies(X);bird(X)
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naturally expresses that a bird flies by default; here, “�” is default negation and “:” is classical negation.
The language ofextended logic programstreats literals with classical negation as atoms, on which default
negation may be applied. The notion ofanswer setfor such a program is defined by a natural generalization
of the concept of stable model [see Gelfond & Lifschitz 1991].

As for the complexity, there is no increase for extended logic programs over normal logic programs
under SMS.

Theorem 5.15 (Ben-Eliyahu & Dechter [1994]) Given a propositional extended logic programP , deciding
whetherP has an answer set isNP-complete, and extended logic programming isco-NP-complete.

Complexity results on extended logic programs with rule priorities can be found in [Brewka & Eiter
1998], and for an extension of logic programming using hierarchical modules in [Buccafurri, Leone &
Rullo 1998].

6 Disjunctive logic programming

Informally, disjunctive logic programming (DLP)extends logic programming by adding disjunction in the
rule heads, in order to allow more suitable knowledge representation and to increase expressiveness. For
example, male(X) _ female(X) person(X)
naturally represents that any person is either male or female.

A disjunctive logic programis a set of clausesA1 _ � � � _Ak  L1; : : : ; Lm (k � 1;m � 0); (2)

where eachAi is an atom and eachLj is a literal. For a background, see [Lobo, Minker & Rajasekar1992]
and the more recent [Minker 1994].

The semantics of negation-free disjunctive logic programsis based onminimalHerbrand models, as the
least (unique minimal) model does not exist in general.

Example 6.1 LetP consist of the single clausep_ q  . Then,P has the two minimal modelsM1 = fpg
andM2 = fqg.

Denote by MM(P ) the set of minimal Herbrand models ofP . TheGeneralized Closed World Assump-
tion (GCWA)[Minker 1982] for negation-freeP amounts to the meaningMGCWA(P ) = fL j MM(P ) j=Lg.
Example 6.2 Consider the following propositional programP 0, describing the behavior of a reviewer while
reviewing a paper:

good_ bad  paper
happy  good
angry  bad
smoke  happy
smoke  angry
paper  
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The following models ofP 0 are minimal:M1 = fpaper;good;happy; smokeg andM2 = fpaper;bad;angry; smokeg:
Under GCWA, we haveP j=GCWA smoke, whileP 6j=GCWA goodandP 6j=GCWA :good.

Theorem 6.3 ([Eiter & Gottlob 1993, Eiter et al. 1994]) LetP be a propositional negation-free disjunctive
logic program andA be a propositional atom.(i) Deciding whetherP j=GCWA A is co-NP-complete.(ii)
Deciding whetherP j=GCWA :A is�p2-complete.

Proof. It is not hard to argue that for an atomA, we haveP j=GCWA A if and only if P j=PC A, wherej=PC is the classical logical consequence relation. In addition, it is not hard to argue that any set of clauses
can be represented by a suitable disjunctive logic program.Hence, by the well-knownNP-completeness of
SAT, part(i) is obvious.

Let us thus consider part(ii).
1. Membership. We haveP 6j=GCWA :A if and only if there exists anM 2 MM(P ) such thatM 6j= :A,

i.e.,A 2 M . Clearly, a guess forM can be verified with an oracle forNP in polynomial time; from
this, membership of the problem in�p2 follows.

2. Hardness. We show�p2-hardness by an encoding of alternating Turing machines (ATM) [Chandra,
Kozen & Stockmeyer 1981]. Recall that an ATMT has its set of states partitioned into existential
(9) and universal (8) states. If the machine reaches an9-state (respectively,8-state)s in a run, then
the input is accepted if the computation continued in some (respectively, all) of the possible successor
configurations is accepting. As in our simulations above, weassume thatT has a single tape.

The polynomial-time bounded ATMs which start in a8-states0 and have one alternation, i.e., pre-
cisely one transition from a8-state to an9-state in each run (and no reverse transition), solve precisely
the problems in�p2 [Chandra, Kozen & Stockmeyer 1981].

By adapting the construction in the proof of Theorem 5.10, weshow how any such machineT on
input I can be simulated by a disjunctive logic programP under GCWA. Without loss of generality,
we assume that each run ofT is polynomial-time bounded [Balcázar, Diaz & Gabarró 1990].

We start from the clauses constructed for the NTMT on inputI in the proof of Theorem 5.10, from
which we drop the clauseaccept :acceptand replace the clausesBs;�;i[� ]  :Bs;�;1[� ]; : : : ;:Bs;�;i�1[� ];:Bs;�;i+1[� ]; : : : ;:Bs;�;k[� ]:
for s and� by the logically equivalent disjunctive clauseBs;�;1[� ] _ � � � _Bs;�;k[� ] :
Intuitively, in a minimal model precisely one of the atomsBs;�;i[� ] will be present, which means that
one of the possible branchings is followed in a run. The current clauses constitute a propositional
program which derivesacceptunder GCWA if and only ifT would acceptI if all its states were
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universal. We need to respect the9-states, however. For each9-states and time point� > 0, we set
up the following clauses, wheres0 is any9-state,� � � 0 � N , 0 � � � N , and1 � i � k:

states0 [� 0]  naccept; states[� ]
symbol�[� 0; �]  naccept; states[� ]

cursor[� 0; �]  naccept; states[� ]Bs;�;i[� 0]  naccept; states[� ]:
Intuitively, these rules state that if a nonaccepting run enters an9-state, i.e.,nacceptis true, then all
relevant facts involving a time point� 0 � � are true. This way, nonaccepting runs are tilted. Finally,
we set up for each nonaccepting terminal9-states the clauses

naccept  states[� ]; 0 < � � N .

These clauses state thatnacceptis true if the run ends in a nonaccepting state. LetP+ be the resulting
program. The minimal modelsM of P+ which do not contain nacceptcorrespond to the accepting
runs ofT .

It can be seen that the minimal models ofP+ which containnacceptcorrespond to the partial runs ofT from the initial states0 to an9-states from which no completion of the run ending in an accepting
state is possible. This implies thatP+ has some minimal modelM containingnacceptprecisely ifT , by definition, does not accept inputI. Consequently,P+ j=GCWA :naccept, i.e., nacceptis in
no minimal model ofP+, if and only if T accepts inputI. It is clear that the programP+ can be
constructed in logarithmic space. Consequently, decidingP j=GCWA :A is �p2-hard. 2

Note that many problems in the field of nonmonotonic reasoning are�p2-complete, [e.g. Gottlob 1992,
Eiter & Gottlob 1992, Eiter & Gottlob 1995a].

Stable negation naturally extends to disjunctive logic programs, by adopting thatI is a (disjunctive)
stable modelof a disjunctive logic programP if and only if I 2 MM(P I) [Przymusinski 1991, Gelfond
& Lifschitz 1991]. The disjunctive stable model semantics subsumes the disjunctive stratified semantics
[Przymusinski 1988]. For well-founded semantics, no such natural extension is known; the semantics in
[Brass & Dix 1995, Przymusinski 1995] are the most appealingattempts in this direction.

Clearly,P I is easily computed, andP I = P if P is negation-free. Thus,

Theorem 6.4 ([Eiter & Gottlob 1995b, Eiter et al. 1994, Eiter, Gottlob & Mannila 1997]) Propositional
DLP under SMS is�p2 complete. Disjunctive datalog under SMS is data complete for �p2 and program
complete forco-NEXPTIMENP.

The latter result was derived by utilizing complexity upgrading techniques as described above in Sec-
tion 4.3. We remark that a sophisticated algorithm for computing stable models of propositional disjunctive
logic programs, which mirrors the complexity of the problemin its structure, is described in [Leone, Rullo
& Scarcello 1997].

For full DLP, we have:

Theorem 6.5 ([Chomicki & Subrahmanian 1990]) DLP under GCWA is�02-complete.

Theorem 6.6 ([Eiter & Gottlob 1995b]) Full DLP under SMS is�11-complete.
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Thus, disjunction adds complexity under GCWA and under SMS in finite Herbrand universes (unlessco-NP = �p2), but not in infinite ones. This is intuitively explained by the fact that DLP under SMS
corresponds to a weak fragment of�12 which can be recursively translated to�11.

Many other semantics for DLP have been analyzed. For some of them, the complexity is lower than for
SMS, for example for the coinciding possible worlds and possible model semantics [Chan 1993, Sakama
& Inoue 1994a], as well as for the causal model semantics [Dix, Gottlob & Marek 1996], which are allco-NP-complete. Others have higher complexity, for example the regular model semantics and the maximal
partial stable model semantics [Eiter, Leone & Saccà 1998]. However, typically they are�p2-complete in the
propositional case.

Extended disjunctive logic programs (EDLPs), which have default and classical negation, are defined
analogous as in the case of non-disjunctive logic programs [Gelfond & Lifschitz 1991]. The notion of
answer set is generalized in the same way as stable model froma non-disjunctive program to a disjunctive
one. There is no complexity increase over disjunctive stable models; in particular, extended disjunctive logic
programming is�p2-complete in the propositional case [Eiter & Gottlob 1995b].

Fragments of EDLPs that have lower complexity are known. Themost important such fragment are
headcycle-free programs. Informally, an EDLPP is headcycle-free, if there are no two distinct atomsA andB which mutually depend on each other through positive recursion (i.e., default negation is dis-
regarded), such thatA andB occur in the head of the same rule ofP . As shown in [Ben-Eliyahu &
Dechter 1994], extended disjunctive logic programming forheadcycle-free programs isco-NP-complete,
and thus polynomial-time transformable to (disjunction-free) normal logic programming under stable model
semantics.

A generalization of EDLPs by allowing default negation in the head has been studied in [Inoue &
Sakama 1998]. As the authors show, the complexity of both arbitrary and headcycle-free programs does
not increase. Other extensions of disjunctive logic programming and their complexities are studied in [e.g.
Marek, Truszczyński & Rajasekar 1995, Minker & Ruiz 1994, Buccafurri, Leone & Rullo 1997, Buc-
cafurri et al. 1998, Rosati 1997, Rosati 1998]. In particular, [Buccafurri, Leone & Rullo 1997] ana-
lyzes the effect of different kinds of constraints on stablemodels. Weak constraints may be violated at
a penalty, leading to a cost-based notion of stable models whose complexity is characterized as an optimiza-
tion problem. In [Buccafurri et al. 1998], disjunctive logic programs are extended by classical negation
and modularization with inheritance; as shown, these features do not increase the complexity. The papers
[Rosati 1997, Rosati 1998] address the complexity of using epistemic operators such as minimal knowledge
and belief in disjunctive logic programs.

7 Expressive power of logic programming

The expressive power of query languages such as datalog is a topic common to database theory [Abiteboul
et al. 1995] and finite model theory [Ebbinghaus & Flum 1995] that has attracted much attention by both
communities. By the expressive power of a (formal)query language, we understand the set of all queries
expressible in that language. Note that we will not only mention query languages used in database systems,
but also formalisms used in formal logic and finite model theory such as first and second-order logic over
finite structures or fixpoint logic (for precise definitions consult [Ebbinghaus & Flum 1995]).

In general, aqueryq defines a mappingMq that assigns to each suitable input databaseDin (over a fixed
input schema) a result databaseDout =Mq(Din) (over a fixed output schema); more logically speaking, a
query defines global relations [Gurevich 1988]. For reasonsof representation independence, a query should,
in addition, begeneric, i.e., invariant under isomorphisms. This means that if� is a permutation of the
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domainDom(D), thenM(�(Din )) = �(Dout ). Thus, when we speak about queries, we always mean
generic queries.

Formally, theexpressive powerof a query languageQ is the set of mappingsMq for all queriesq
expressible in the languageQ by somequery expression(program)E; this syntactic expression is commonly
identified with the semantic query it defines, and simple (in abuse of definition) called a query.

There are two important research tasks in this context. The first is comparing two query languagesQ1
andQ2 in their expressive power. One may prove, for instance, thatQ1 $ Q2, which means that the set of
all queries expressible inQ1 is a proper subset of the queries expressible inQ2, and hence,Q2 is strictly
more expressive thanQ1. Or one may show that two query languagesQ1 andQ2 have the same expressive
power, denoted byQ1 = Q2, and so on.

The second research task, more related to complexity theory, is determining the absolute expressive
power of a query language. This is mostly achieved by provingthat a given query languageQ is able to
express exactly all queries whose evaluation complexity isin a complexity classC. In this case, we say thatQ capturesC and write simplyQ = C. Theevaluation complexityof a query is the complexity of checking
whether a given atom belongs to the query result, or, in the case of Boolean queries, whether the query
evaluates totrue [Vardi 1982, Gurevich 1988].

Note that there is a substantial difference between showingthat the query evaluation problem for a
certain query languageQ is C-complete and showing thatQ capturesC. If the evaluation problem forQ
is C-complete, thenat least oneC-hard query is expressible inQ. If Q capturesC, thenQ expressesall
queries evaluable inC (including, of course, allC-hard queries). Thus, usually proving thatQ capturesC
is much more involved than proving that evaluatingQ-queries isC-hard. Note also that it is possible that
a query languageQ captures a complexity classC for which no complete problems exist or for which no
such problems are known. As an example, second-order logic over finite structures captures the polynomial
hierarchyPH, for which no complete problem is known. However, the existence of a complete problem ofPH would imply that it collapses at some finite level, which is widely believed to be false.

The subdiscipline of database theory and finite model theorydealing with the description of the expres-
sive power of query languages and related logical formalisms via complexity classes is calleddescriptive
complexity theory[Immerman 1987, Leivant 1989, Immerman 1998]. An early foundational result in this
field was Fagin’s [1974] theorem stating that existential second-order logic capturesNP. In the eighties
and nineties, descriptive complexity theory has become a flourishing discipline with many deep and useful
results.

To prove that a query languageQ captures a machine-based complexity classC, one usually shows that
eachC-machine with (encodings of) finite structures as inputs that computes a generic query can be repre-
sented by an expression in languageQ. There is, however, a slight mismatch between ordinary machines
and logical queries. A Turing machine works on a string encoding of the input databaseD. Such an encod-
ing provides an implicitlinear order onD, in particular, on all elements of the universeUD. The Turing
machine can take profit of this order and use this order in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the universeUD is a pure set and thus unordered. For “pow-
erful” query languages of inherent nondeterministic nature at the level ofNP this is not a problem, since an
ordering onUD can be nondeterministically guessed. However, for many query languages, in particular, for
those corresponding to complexity classes belowNP, generating a linear order is not feasible. Therefore,
one often assumes that a linear ordering of the universe elements is predefined, i.e., given explicitly in the
input database. More specifically, byordered databasesor ordered finite structures, we mean databases
whose schemas contain special relation symbolsSucc, First, andLast, that are always interpreted such that
Succ(x; y) is a successor relation of some linear order andFirst(x) determines the first element andLast(x)
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the last element in this order. The importance of predefined linear orderings becomes evident in the next
two theorems.

Before coming to the theorems, we must highlight another small mismatch between the Turing machine
and the datalog setting. A Turing machine can consider each input bit independently of its value. On the
other hand, a plain datalog program is not able to detect thatsome atom isnot a part of the input database.
This is due to the representational peculiarity that only positive information is present in a database, and that
the negative information is understood via the closed worldassumption. To compensate this deficiency, we
will slightly augment the syntax of datalog.Throughout this section, we will assume that input predicates
may appear negated in datalog rule bodies; the resulting language isdatalog+. This extremely limited
form of negation is much weaker than stratified negation, andcould be easily circumvented by adopting a
different representation for databases.

Theorem 7.1 (a fortiori from [Chandra & Harel 1982]) Datalog+ $ P.

Proof. (Hint.) Show that there exists no datalog+ programP that can tell whether the universeU of the
input database has an even number of elements. 2

Clearly, plain datalog (without negation of the input predicates) can only definemonotonic queries, i.e.,
the output grows monotonically with the input, and thus datalog can not express all queries computable
in polynomial time. The natural question is thus to ask whether datalog expresses all monotone queries
computable in polynomial time. As shown in [Afrati, Cosmadakis & Yannakakis 1995], the answer is
negative. In particular, datalog6= can not express whether a given set of linear constraints of the formx+y+z = 1 orx = 0 is inconsistent, even on ordered databases [Afrati et al. 1995]. Furthermore, deciding
whether a directed graph has path with length aperfect squareis not expressible in datalog+;6= (i.e., datalog+
augmented with inequality). The language datalog6= was first studied by Shmueli [1987], who showed that is
more expressive than plain datalog. Properties and expressiveness aspects of this language have been further
studied e.g. in [Gaifman et al. 1987, Lakshmanan & Mendelzon1989, Ajtai & Gurevich 1994, Kolaitis &
Vardi 1995, Afrati 1997].

Theperfect squarequery is expressible in datalog+;6= on ordered databases, however. This is a corollary
to the next result.

Theorem 7.2 ([Papadimitriou 1985, Grädel 1992]; implicit in [Vardi 1982, Immerman 1986]) On ordered
databases, datalog+ capturesP.

Proof. (Sketch) By Theorem 5.3, query answering for a fixed datalog+ program is inP. It thus remains to
show that each polynomial-time DTMT on finite input databasesD 2 INST(Din) can be simulated by a
datalog+ program. To show this, we first make some simplifying assumptions.

1. The universeUD is an initial segment[0; n� 1] of the integers, andSucc, First, andLastare from the
natural linear ordering over this segment.

2. The input database schemaDin consists of a single binary relationG, plus the predefined predicates
Succ;First;Last. In other words,D is always (an ordered) graphhU;Gi.

3. T operates in< nk steps, wheren = jU j > 1.

4. T computes a Boolean (0-ary) predicate.
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The simulation is akin to the simulation used in the proofs ofTheorems 4.2 and 4.5.
Recall the framework of Section 4.1. In the spirit of this framework, it suffices to encodenk time-

points� and tape-cell numbers� within a fixed datalog program. This is achieved by considering k-tuplesX = hX1; : : : ;Xki of variablesXi ranging overU . Each suchk-tuple encodes the integerint(X) =Pki=1Xi � nk�i.
At time point0 the tape ofT contains an encoding of the input graph. Recall that in Section 4.1 this was

reflected by the following initialization facts

symbol�[0; �]  for 0 � � < jIj, whereI� = �:
Before translating these rules into appropriate datalog rules, we shall spend a word about how input graphs
are usually represented by a binary strings. A graphhU;Gi is encoded by binary stringenc(U;G) of lengthjU j2: if G(i; j) is true fori; j 2 U = [0; n � 1] then the bit numberi � n+ j of enc(U;G) is 1, otherwise
this bit is0. The bit positions ofenc(U;G) are exactly the integers from0 to n2 � 1. These integers are
represented by allk-tuplesh0k�2; a; bi such thata; b 2 U . Moreover, the bit-positionint(h0k�2;X; Y i) of
enc(U;G) is 1 if and only ifG(X;Y ) is true in the input database and0 otherwise.

The above initialization rules can therefore be translatedinto the datalog rules

symbol1[0k; 0k�2;X; Y ]  G(X;Y )
symbol0[0k; 0k�2;X; Y ]  :G(X;Y )

Intuitively, the first rule says that at time point0 = int(0k), bit numberint(h0k�2;X; Y i) on the tape is 1
if G(X;Y ) is true. The second rule states that the same bit is false ifG(X;Y ) is false. Note that the second
rule applies negation to an input predicate.Only this rule in the entire datalog+ program uses negation.
Clearly, these two rules simulate that at time point0, the cellsc0,. . . , cn2�1 contain precisely the string
enc(U;G).

The other initialization rules described in Section 4.1 arealso easily translated into appropriate datalog
rules. Let us now see how the other rules are translated into datalog.

From the linear order given bySucc(X;Y ), First(X), andLast(X), it is easy to define by datalog clauses
a linear order�k on k-tuplesSucck(X;Y), Firstk(X), Lastk(X) (see the proof of Theorem 4.5), by using
Succ1 = Succ, First1 = First andLast1 = Last. By usingSucck, transition rules, inertia rules and the accept
rules are easily translated into datalog as in the proof of Theorem 4.5.

The output schema of the resulting datalog programP+ is defined to beDout = facceptg. It is clear
that this program evaluates totrue on inputD = hU;Gi, i.e.,P+ [ D j= acceptif and only if T accepts
enc(U;G).

The generalization to a setting where the simplifying assumptions 1–3 are not made is rather straight-
forward and is omitted. Assumption 4 can also be easily lifted to the computation of output predicates. We
consider here the case where the output schemeDout contains a single binary relationR. Then, the output
databaseD0 computed byT , which is a graphhU;Ri, can be encoded similar as the input database as a
binary stringenc(U;R) of length jU j2. We may suppose that when the machine enters the halt state, this
string is contained in the firstjU j2 cells of the tape. To obtain the positive facts of the output relationR, we
add the following rule: R(X;Y )  symbol1[Y; 0k�2;X; Y ]); statehalt[Y] 2
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We remark that a result similar to Theorem 7.2 was independently obtained by Livchak [1983].
Let us now state somewhat more succinctly further interesting results on datalog. A prominent query

language isfixpoint logic (FPL), which is the extension of first-order logic by a least fixpoint operator
lfp(X; '; S), whereS is a jXj-ary predicate occurring positively in the formula' = '(X;S), andX is a
tuple of free variables in'; intuitively, it returns the least fixpoint of the operator� defined by�(S) = fa jD j= '(a;S)g. We refer to [Chandra & Harel 1982, Abiteboul et al. 1995, Ebbinghaus & Flum 1995] for
details. As shown in [Chandra & Harel 1982],FPL expresses a proper subset of the queries inP. Datalog+
relates toFPL as follows.

Theorem 7.3 ([Chandra & Harel 1985]) Datalog+ = FPL+(9), i.e., Datalog+ coincides with the fragment
of FPL having negation restricted to database relations and only existential quantifiers.

As for expressibility in first-order logic, Ajtai & Gurevich[1994] have shown that a datalog query is
equivalent to a first-order formula if and only if it is bounded, and thus expressible in existential first-order
logic.

Adding stratified negation does not preserve the equivalence of datalog and fixpoint logic in Theo-
rem 7.3.

Theorem 7.4 ([Kolaitis 1991]; implicit in [Dahlhaus 1987]) Stratified datalog$ FPL.

This theorem is not obvious. In fact, for some time coincidence of the two languages was assumed,
based on a respective statement in [Chandra & Harel 1985].

The nonrecursive fragment of datalog coincides with well-known database query languages.

Theorem 7.5 ([cf. Abiteboul et al. 1995]) Nonrecursive range-restricted datalog with negation = rela-
tional algebra = relational calculus. Nonrecursive datalog with negation = first-order logic (without function
symbols).

The expressive power of relational algebra is equivalent tothat of a fragment of the database query
language SQL (essentially, SQL without grouping and aggregate functions). The expressive power of SQL
is discussed in [Libkin & Wong 1994, Dong, Libkin & Wong 1997,Libkin 1997].

Unstratified negation yields higher expressive power.

Theorem 7.6 (i) Datalog under WFS =FPL ([van Gelder 1989]).(ii) Datalog under INFS =FPL ([Abiteboul & Vianu 1991a], using [Gurevich & Shelah 1986]).

As recently shown, the first result holds also for total WFS (i.e., the well-founded model is always total)
[Flum, Kubierschky & Ludäscher 1997].

We remark that the variants of datalog mentioned above can only define queries which are expressible in
infinitary logic with finitely many variables (L!1!) [Kolaitis & Vardi 1995]. It is known thatL!1! has a 0-1
law, i.e., every query definable in this language is either almost surely true or almost surely false, if the size
of the universe grows to infinity [Kolaitis & Vardi 1992]. It is easy to see that the booleanEven-queryqE ,
which tells if the domain of a given input databaseDin (over a fixed schema) contains an even number of
elements, is not almost surely true or almost surely false. Thus,a fortiori, this query– which is computable
in polynomial time– is not expressible in the above variantsof datalog.

On ordered databases, Theorem 7.2 and the theorems in Section 5 imply
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Theorem 7.7 On ordered databases, the following query languages capture P: stratified datalog, datalog
under INFS, and datalog under WFS.

Syntactical restrictions allow us to capture classes withinP. Let datalog+(1) be the fragment of datalog+
where each rule has most one nondatabase predicate in the body, and let datalog+(1; d) be the fragment of
datalog+(1) where each predicate occurs in at most one rule head.

Theorem 7.8 ([Grädel 1992, Veith 1994]) On ordered databases, datalog+(1) capturesNL and its restriction
datalog+(1; d) capturesL.

Due to inherent nondeterminism, stable semantics is much more expressive.

Theorem 7.9 ([Schlipf 1995b]) Datalog under SMS capturesco-NP.

Note that for this result an order on the input database is notneeded. Informally, in each stable model
such an ordering can be guessed and checked by the program. ByFagin’s [1974] Theorem, this implies that
datalog under SMS is equivalent to the existential fragmentof second-order logic over finite structures.

Theorem 7.10 ([Abiteboul & Vianu 1991a]) On ordered databases, datalog under NINFS capturesPSPACE.

Here ordering is needed. An interesting result in this context, formulated in terms of datalog, is the
following [Abiteboul & Vianu 1991a]: datalog under INFS = datalog under NINFSon arbitrary finite
databasesif and only if P = PSPACE. While the “only if” direction is obvious, the proof of the “if”
direction is involved. It is one of the rare examples that translates open relationships between deterministic
complexity classes into corresponding relationships between query languages.

We next briefly address the expressive power of disjunctive logic programs.

Theorem 7.11 ([Eiter et al. 1994, Eiter, Gottlob & Mannila 1997]) Disjunctive datalog under SMS captures�p2.
It appeared that fragment of disjunctive datalog have interesting properties. While disjunctive datalog+;6=

expresses only a subset of the queries inco-NP (e.g., it can not express the Even-query), it expresses all of�p2 under the credulous notion of consequence, i.e.,P j=c A if A is true in some stable model. Further-
more, under credulous consequence every query in nondisjunctive datalog+;6= is expressible in disjunctive
datalog+, even though the inequality predicate can not be recognized.

Finally, we consider full logic programs. In this case, the input databases are arbitrary (not necessarily
recursive) relations on the genuine (infinite) Herbrand universe of the program.

Theorem 7.12 [Schlipf 1995b, Eiter & Gottlob 1997] Each of logic programming under WFS, logic pro-
gramming under SMS, and DLP under SMS captures�11.

Thus, different from the function-free case, adding disjunction does not increase the expressive power of
normal logic programs. The reason is that disjunctive logicprograms can be expressed in a weak fragment
of the class�12 of second-order logic, which in the case of an infinite Herbrand universe can be coded to the�11 fragment.

For further expressiveness results on logic programs see e.g. [Schlipf 1995b, Saccá 1995, Saccá 1997,
Greco & Saccà 1997, Greco & Saccà 1996, Eiter, Leone & Sacc`a 1998, Cadoli & Palopoli 1998]. In
particular, co-NP can be captured by a variant of circumscribed datalog [Cadoli & Palopoli 1998], and
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further classes of the polynomial hierarchy can be capturedby variants of stable models [Saccá 1995, Saccá
1997, Eiter, Leone & Saccà 1998, Buccafurri, Greco & Saccá1997] as well as through modular logic
programming [Eiter, Gottlob & Veith 1997, Buccafurri et al.1998]. Results on the expressiveness of the
stable model semantics over disjunctive databases, which are given by sets of ground clauses rather than
facts, can be found in [Bonatti & Eiter 1996].

We conclude this subsection with a brief look on expressiveness results for nondeterministic queries.
A nondeterministic querymaps an input database to one from a set of possible output databases; it can be
viewed as a multi-valued function. For example, a query which returns as output a Hamiltonian cycle of
given input graph is a nondeterministic query. The (deterministic) queries that we have considered above
are a special case of nondeterministic queries.

It has been shown that the class NDB-P of nondeterministic queries which are computable in polynomial
time can be captured by suitable nondeterministic variantsof datalog, e.g., by a procedure-style variants
[Abiteboul & Vianu 1991a], by datalog6= (datalog with inequality) extended with a choice operator,or by
datalog with stable models [Corciulo, Giannotti & Pedreschi 1997, Giannotti & Pedreschi 1998]. Also
NDB-PSPACE, the class of nondeterministic queries computable in polynomial space, is captured by a
nondeterministic variant of datalog [Abiteboul & Vianu 1991a]. For a tutorial survey of such and related
deterministic languages, we recommend [Vianu 1997]. For further issues on nondeterministic queries, we
refer to [Giannotti, Greco, Saccà & Zaniolo 1997, Grumbach& Lacroix 1997, Leone, Palopoli & Saccà
1998].

7.1 The order mismatch and relational machines

Many results on capturing the complexity classes by logicallanguages suffer from theorder mismatch. For
example, the results by Immerman and Vardi (Theorems 7.7 and7.10) show thatP = PSPACE if and only if
Datalog under INFS and Datalog under NINFS coincide onordered databases. The order appears when we
code the input for a standard computational device, like a Turing machine, while the semantics of Datalog
and logic is defined directly in terms of logical structures,where no order on elements is given.

To overcome this mismatch, [Abiteboul & Vianu 1991b, Abiteboul & Vianu 1995] introducedrelational
complexity theory, where computations on unordered structures are modeled byrelational machines. In
[Abiteboul & Vianu 1991b, Abiteboul & Vianu 1995, Abiteboul, Vardi & Vianu 1997] several relational
complexity classes are introduced, such asPr (relational polynomial time),NPr (relational nondeterministic
polynomial time), PSPACEr (relational polynomial space) andEXPTIMEr (relational exponential time). It
follows that all separation results among the standard complexity classes translate into separation results
among relational complexity classes. For example,P = NP if and only ifPr = NPr.

It happens that Datalog under various semantics captures the relational complexity classes on unordered
databases. For example (cf. Theorems 7.7 and 7.10), we have

Theorem 7.13 Datalog under INFS capturesPr. Datalog under NINFS capturesPSPACEr.
Note that together with the correspondence of the separation results between the standard complexity

classes and the relational complexity classes, this theorem implies that Datalog under INFS coincides with
Datalog under NINFS if and only ifP = PSPACE. Therefore, the results of [Abiteboul & Vianu 1991b,
Abiteboul & Vianu 1995, Abiteboul et al. 1997] provide an order-free correspondence between questions
in computational and descriptive complexity.
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7.2 Expressive power of logic programming with complex values

The expressive power of datalog queries is defined in terms ofinput and output databases, i.e., finite sets of
tuples. In order to extend the notion of expressive power to logic programming with complex values, we
need to define what we mean by an input. For example, in the caseof plain logic programming, an input
may be a finite set of ground terms, i.e. a finite set of trees. Inthe case of logic programming with sets, an
input may be a set whose elements may be sets too and so on.

Various models and languages for dealing with complex values in databases have been proposed [e.g.
Abiteboul & Kanellakis 1989, Abiteboul & Grumbach 1988, Kifer & Wu 1993, Kifer, Lausen & Wu 1995,
Abiteboul & Beeri 1995, Buneman, Naqvi, Tannen & Wong 1995, Suciu 1997, Greco, Palopoli & Spadafora
1995, Libkin, Machlin & Wong 1996, Abiteboul et al. 1995]. The functional approach to such languages
dominates the logic programming one. To extend variants of nested relational algebra as in [Buneman
et al. 1995] to datalog, bounded fixpoint constructs have been proposed [Suciu 1997], as well as deflationary
fixpoint constructs [Colby & Libkin 1997].

The comparative expressive power of languages for complex values is studied in [e.g. Abiteboul &
Grumbach 1988, Vadaparty 1991, Suciu 1997, Abiteboul & Beeri 1995, Dantsin & Voronkov 1998]. For ex-
ample, Abiteboul & Beeri [1995] introduce a model for restricted combinations of tuples and sets and several
corresponding query languages, including the algebraic and logic programming ones. It is proved that all
these languages define the same class of queries. Dantsin & Voronkov [1998] show that nonrecursive logic
programming with negation has the same expressive power as nonrecursive datalog with negation (under a
natural representation of inputs). Thus, the use of recursive data structures, namely trees, in nonrecursive dat-
alog gives no gain in the expressiveness. It follows from this result and [Immerman 1987] that nonrecursive
logic programming with negation is inAC0. The absolute expressive power of languages for complex values
is also studied in [Sazonov 1993, Suciu 1997, Lisitsa & Sazonov 1995, Grumbach & Vianu 1995, Gyssens,
van Gucht & Suciu 1995, Lisitsa & Sazonov 1997]; further issues, such as expressibility of particular
queries or faithful extension of datalog, are studied in [Libkin & Wong 1989, Wong 1996, Paredaens &
van Gucht 1992].

Results on the expressive power of different forms of logic programming with constraints can be found
e.g. in [Cosmadakis & Kuper 1994, Kanellakis, Kuper & Revesz1995, Benedikt, Dong, Libkin & Wong
1996, Vandeurzen, Gyssens & van Gucht 1996].

Unlike research on the expressive power of datalog, there isno mainstream in research on the expressive
power of logic programming with complex values. Extension of declarative query languages by complex
values is more actively studied in database theory.

8 Unification and its complexity

What is the complexity of query answering for very simple logic programs consisting of one fact? This prob-
lem leads us to the problem of solving equations over terms, known as theunification problem. Unification
lies in the very heart of implementations of logic programming and automated reasoning systems.

Atoms or termss andt are calledunifiable if there exists a substitution# that makes them equal, i.e.,
the termss# andt# coincide; such a substitution# is called aunifier of s andt. The unification problem is
the following decision problem: given termss andt, are they unifiable?

Robinson [1965] described an algorithm that solves this problem and, if the answer is positive, computes
a most general unifier of given two terms. His algorithm had exponential time and space complexity mainly
because of the representation of terms by strings of symbols. Using better representations (for example,



38 INFSYS RR 1843-99-05

by directed acyclic graphs), Robinson’s algorithm was improved to linear time algorithms, e.g. [Martelli &
Montanari 1976, Paterson & Wegman 1978].

Theorem 8.1 ([Dwork, Kanellakis & Mitchell 1984, Yasuura 1984, Dwork, Kanellakis & Stockmeyer
1988]) The unification problem isP-complete.P-hardness of the unification problem was proved by reductions from some versions of the circuit value
problem in [Dwork et al. 1984, Yasuura 1984, Dwork et al. 1988]. (Note that [Lewis & Statman 1982]
states that unifiability is complete forco-NL; however, [Dwork et al. 1984] gives a counterexample to the
proof in [Lewis & Statman 1982].)

Also, many quadratic time and almost linear time unificationalgorithms have been proposed because
these algorithms are often more suitable for applications and generalizations (see a survey of the main
unification algorithms in [Baader & Siekmann 1994]). Here wemention only Martelli & Montanari’s [1982]
algorithm based on ideas going back to Herbrand’s [1972] famous work. Modifications of this algorithm are
widely used for unification in equational theories and rewriting systems. The time complexity of Martelli
and Montanari’s algorithm isO(nA�1(n)) whereA�1 is a function inverse to Ackermann’s function and
thusA�1 grows very slowly.

9 Logic programming with equality

The relational model of data deals with simple values, namely tuples consisting of atomic components.
Various generalizations and formalisms have been proposedto handle more complex values like nested
tuples, tuples of sets, etc; see Section 7.2 and [Abiteboul &Beeri 1995]. Most of these formalisms can
be expressed in terms of logic programming with equality [Gallier & Raatz 1986, Gallier & Raatz 1989,
Hölldobler 1989, Hanus 1994, Degtyarev & Voronkov 1996] and constraint logic programming considered
in Section 10.

9.1 Equational theories

Let L be a language containing the equality predicate=. By anequationoverL we mean an atoms = t
wheres andt are terms inL. An equational theoryE overL is a set of equations closed under the logical
consequence relation, i.e., a set satisfying the followingconditions: (i)E contains the equationx = x; (ii)
if E containss = t thenE containst = s; (iii) if E containsr = s ands = t thenE containsr = t; (iv)
if E containss1 = t1; : : : ; sn = tn thenE containsf(s1; : : : ; sn) = f(t1; : : : ; tn) for eachn-ary function
symbolf 2 L; and (v) ifE containss = t thenE containss# = t# for all substitutions#.

The syntax oflogic programs over an equational theoryE coincides with that of ordinary logic pro-
grams. Their semantics is defined as a generalization of the semantics of logic programming so that terms
are identified if they are equal inE.

Example 9.1 We demonstrate logic programs with equality by a logic program processing finite sets. Finite
sets are a typical example of complex values handled in databases. We represent finite sets by ground terms
as follows: (i) the constantfg denotes the empty set, (ii) ifs represents a set andt is a ground term thenft j sg represents the setftg [ s (whereftg ands are not necessarily disjoint). However the equality on
sets is defined not as identity of terms but as equality in the equational theory in which terms are considered
to be equal if and only if they represent equal sets (we omit the axiomatization of this theory).
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Consider a very simple program that checks whether two givensets have a nonempty intersection. This
program consists of one fact

non emptyintersection(fX j Y1g; fX j Y2g)  :
For example, to check that the setsf1; 3; 5g and f4; 1; 7g have a common member, we ask the query

non emptyintersection(f1; 3; 5g; f4; 1; 7g). The answer will be positive. Indeed, the following system of
equations has solutions in the equational theory of sets:fX j Y1g = f1; 3; 5g; fX j Y2g = f4; 1; 7g:
For example, setX = 1, Y1 = f3; 5g, Y2 = f7; 4; 1g.

Note that if we represent sets by lists in plain logic programming without equality, any encoding of
non emptyintersectionwill require recursion.

The complexity of logic programs overE depends on the complexity of solving systems of term equa-
tions inE. The problem of whether a system of term equations is solvable in an equational theoryE is
known as the problem ofsimultaneousE-unification.

A substitution# is called anE-unifier of termss andt if the equations# = t# is a logical consequence
of the theoryE. By theE-unification problemwe mean the problem of whether there exists anE-unifier
of two given terms. Ordinary unification can be viewed asE-unification whereE contains only trivial
equationst = t. It is natural to think of anE-unifier of s andt as asolution to the equations = t in the
theoryE.

9.2 Complexity ofE-unification

Solving equations is a traditional subject of all mathematics. Since any result on solving equation systems
can be viewed as a result onE-unification, it is thus practically impossible to overviewall results on the
complexity ofE-unification. Therefore, we restrict this survey to only fewcases closely connected with
logic programming. The general theory ofE-unification may be found e.g. in [Baader & Siekmann 1994].

LetE be an equational theory overL and� be a binary function symbol inL (written in the infix form).
We call � an associativesymbol ifE contains the equationx � (y � z) = (x � y) � z, wherex; y andz are
variables. Similarly,� is called anAC-symbol(an abbreviation for an associative-commutative symbol) if �
is associative and, in addition,E containsx � y = y � x. If � is an AC-symbol andE containsx � x = x, we
call � anACI-symbol(I stands for idempotence). Also,� is called anAC1-symbol(or anACI1-symbol) if �
is an AC-symbol (an ACI-symbol respectively) andE contains the equationx � 1 = x where 1 is a constant
belonging toL.

Theorem 9.2 ([Makanin 1977, Baader & Schulz 1992, Benanav, Kapur & Narendran 1987, Kościelski &
Pacholski 1996]) LetE be an equational theory defining a function symbol� in L as an associative symbol
(E contains all logical consequences ofx � (y � z) = (x � y) � z and no other equations). The following upper
and lower bounds on the complexity of theE-unification problem hold: (i) this problem is in 3-NEXPTIME,
(ii) this problem isNP-hard.

Basically, all algorithms for unification under associativity are based on Makanin’s [1977] algorithm for
word equations. The 3-NEXPTIME upper bound is obtained in [Kościelski & Pacholski 1996].

The following theorem characterizes other popular kinds ofequational theories.
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Theorem 9.3 ([Kapur & Narendran 1986, Kapur & Narendran 1992, Baader & Schulz 1996]) LetE be an
equational theory defining some symbols as one of the following: AC-symbols, ACI-symbols, AC1-symbol,
or ACI1-symbols (there can be one or more of these kinds of symbols). Suppose the theoryE contains no
other equations. Then theE-unification problem isNP-complete.

9.3 Complexity of nonrecursive logic programming with equality

In the case of ordinary unification, there is a simple way to reduce solvability of finite systems of equations to
solvability of single equations. However, these two kinds of solvability are not equivalent for some theories:
there exists an equational theoryE such that the solvability problem for one equation is decidable, while
solvability for (finite) systems of equations is undecidable [Narendran & Otto 1990].

SimultaneousE-unification determines decidability of nonrecursive logic programming overE.

Theorem 9.4 (implicit in [Dantsin & Voronkov 1997b]) Let E be an equational theory. Nonrecursive logic
programming overE is decidable if and only if the problem of simultaneousE-unification is decidable.

An equational theoryE is calledNP-solvableif the problem of solvability of equation systems inE
is in NP. For example, the equational theory of finite sets mentionedabove, the equational theory of bags
(i.e. finite multisets) and the equational theory of trees (containing only equationst = t) areNP-solvable
[Dantsin & Voronkov 1999].

Theorem 9.5 ([Dantsin & Voronkov 1997a, Dantsin & Voronkov 1997b, Dantsin & Voronkov 1999]) Non-
recursive logic programming over anNP-solvable equational theoryE is inNEXPTIME. Moreover, ifE is
a theory of trees, or bags, or finite sets, or any combination of them, then nonrecursive logic programming
overE is alsoNEXPTIME-complete.

10 Constraint logic programming

Informally, constraint logic programming (CLP)extends logic programming by involving additional condi-
tions on terms. These conditions are expressed byconstraints, i.e., equations, disequations, inequations etc.
over terms. The semantics of such constraints is predefined and does not depend on logic programs.

Example 10.1 We illustrate CLP by the standard example. Suppose that we would like to solve the follow-
ing puzzle: + S E N DM O R EM O N E Y
All these letters are variables ranging over decimal digits0; 1; : : : ; 9. As usual, different letters denote
different digits andS;M 6= 0. This puzzle can be solved by a constraint logic program overthe domain of
integers(Z;=; 6=;�;+;�; 0; 1; : : :). Informally, this program can be written as follows.
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find(S;E;N;D; M;O;R;E; M;O;N;E; Y ) 1 � S � 9; : : : ; 0 � Y � 9;S 6= E; : : : ; R 6= Y;1000 � S + 100 � E + 10 �N +D+1000 �M + 100 �O + 10 � R+E =10000 �M + 1000 � O + 100 �N + 10 �E + Y
The queryfind(S;E;N;D; M;O;R;E; M;O;N;E; Y ) will be answered by the only solution+ 9 5 6 71 0 8 51 0 6 5 2

A structure is defined by an interpretationI of a languageL in a nonempty setD. For example, we
shall consider the structure defined by the standard interpretation of the language consisting of the constant
0, the successor function symbols and the equality predicate= on the setN of natural numbers. This
structure is denoted by(N;=; s; 0). Other examples of structures are obtained by replacingN by the setsZ (the integers),Q (the rational numbers),R (the reals) orC (the complex numbers). Below we denote
structures in a similar way, keeping in mind the standard interpretation of arithmetic function symbols in
number sets. The symbols� and= stand for multiplication and division respectively. We usek � x to denote
unary functions of multiplication by particular numbers (of the corresponding domain);xk is used similarly.
All structures under consideration are assumed to contain the equality symbol.

Let S be a structure. An atomc(t1; : : : ; tk) wheret1; : : : ; tk are terms in the language ofS is called a
constraint. By aconstraint logic program overS we mean a finite set of rulesp(X)  c1; : : : ; cm; q1(X1); : : : ; qn(Xn)
wherec1; : : : ; cm are constraints,p; q1; : : : ; qn are predicate symbols not occurring in the language ofS,

andX;X1; : : : ;Xn are lists of variables. The semantics of CLP is defined as a natural generalization of
semantics of logic programming [e.g. Jaffar & Maher 1994]. If S contains function symbols interpreted as
tree constructors (i.e. equality of corresponding terms isinterpreted as ordinary unification) then CLP overS is an extension of logic programming. Otherwise, CLP overS can be regarded as an extension of Datalog
by constraints.

10.1 Complexity of constraint logic programming

There are two sources of complexity in CLP: complexity of solving systems of constraints and complex-
ity coming from the logic programming scheme. However, interaction of these two components can lead
to complexity much higher than merely the sum of their complexities. For example, Datalog (which isEXPTIME-complete) with linear arithmetic constraints (whose satisfiability problem is inNP for integers
and inP for rational numbers and reals) is undecidable.

Theorem 10.2 ([Cox, McAloon & Tretkoff 1990]) CLP over(N;=; s; 0) is r.e.-complete. The same holds
for each ofZ,Q, R, andC instead ofN.
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The proof uses the fact that CLP over(N;=; s; 0; 1) allows one to define addition and multiplication in
terms of successor. Thus, diophantine equations can be expressed in this fragment of CLP.

On the other hand, simpler constraints, namely constraintsover ordered infinite domains (of some par-
ticular kind), do not increase the complexity of Datalog.

Theorem 10.3 ([Cox & McAloon 1993]) CLP over(Z;=; <; 0;�1;�2; : : :) is EXPTIME-complete. The
same holds forQ orR instead ofZ.

Decidable fragments of CLP over more complex structures areobtained by restrictions imposed on con-
straint logic programs. For example, we consider aconservative CLPin which rules satisfy the restriction:
all variables occurring in the body occur in the head.

Theorem 10.4 ([Cox et al. 1990]) Conservative CLP isEXPTIME-complete over each of the following
structures:(Q;=;�; <;+;�; k � x; 0; 1; : : :), i.e. linear inequations over the rational numbers;(R;=;�; <;+;�; k � x; 0; 1; : : :), i.e. linear inequations over the reals;(R;=;�; <;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial inequations over the reals;(C;=;+;�;�; =; xk; 0; 1; : : :), i.e. polynomial equations over the complex numbers.

The proof is based on the known results on the complexity of algorithms for the corresponding algebraic
structures [Canny 1988, Renegar 1988, Grigoryev & Vorobjov1988, Ierardi 1989]. If we allow nonground
queries,EXPTIME-completeness has to be replaced byNEXPTIME-completeness.

A very general formalism for logic programming with constraints is theconstraint database modelintro-
duced by Kanellakis, Kuper & Revesz [1990]. They define aconstraint databaseas a quantifier-free formula
over a given mathematical structure (e.g. the field of the real numbers). In the simplest case, this could be
a finite relational database, but in general, a constraint database finitely represents an infinite number of tu-
ples. They investigate the data complexity of first-order logic (FO) and datalog over constraint databases and
prove that for the case of the real field, FO queries over constraint databases are in the parallel complexity
classNC, while datalog queries are inP. For finite databases, Benedikt & Libkin [1996] improved theNC
upper bound to the parallel classTC0, which contains the languages recognized by constant depththreshold
circuits [Johnson 1990].

10.2 Expressiveness of Constraints

There are various different settings in which expressiveness issues of logic programming formalisms with
constraints have been studied. Expressiveness of first-order logic and of datalog with constraints is currently
an intensive research area of Database Theory. Many important papers on this subject can be found in the
proceedings of recent PODS, ICDT or LICS conferences.3 A detailed and uniform treatment is beyond
the scope of this paper. In this section, we limit ourselves to a brief description of a number of relevant
references, most closely related to the setting of [Kanellakis et al. 1990].

3PODS=ACM SIGACT-SIGMOD-SIGART Symposium on Principles ofDatabase Systems; ICDT = International Conference
on Database Theory; LICS = IEEE Symposium on Logic in Computer Science.
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A main research issue was the question whether properties such asparity that cannot be expressed in FO
or stratified datalog (without order) could be expressed in the respective formalisms extended by constraints.
This question has two different interpretations, depending on how we interpret the variables in a query. The
active interpretationrestricts the domain of possible values for a variable to those values that effectively
appear in the database (i.e., to theactive domain). Thenatural interpretationdoes not make this restriction
and allows a variable to be interpreted by any value of the underlying domain (e.g. the reals). Note that these
two interpretations coincide for classical relational calculus [Hull & Su 1994, Benedikt & Libkin 1997].

For the active interpretation of first-order constraint queries, the above question was solved indepen-
dently by Benedikt et al. [1996] and by Otto & van den Bussche [1996]. It was shown that the generic
queries expressible by FO with constraints are contained inthose expressible by FO plus linear order. In
particular, it follows that parity is not expressible in theconstraint setting. The expressiveness problem for
datalog with constraints was resolved in [Benedikt & Libkin1997] by using Ramsey Theory. In analogy
to the results for first-order logic, it was shown that datalog with constraints is not more expressive than
datalog plus linear order.

For the natural interpretation, it was shown in [Grumbach & Su 1995] that every recursive query is
definable by FO with polynomial constraints over thenatural numbers. As shown in [Kanellakis & Goldin
1994, Grumbach, Su & Tollu 1994], and [Benedikt et al. 1996],similar results do not hold for thereals. In
particular, in [Benedikt et al. 1996] it was shown that over the field of reals, every generic query of first-
order logic with constraints can be rewritten as an equivalent query that uses only the natural order “<”.
From this result, together with results in [Paredaens, van den Bussche & van Gucht 1998], it follows that
every generic query of first-order logic with constraints under the natural interpretation can be expressed as
an equivalent query under the active interpretation. Therefore, the same expressivity bound as for the active
interpretation holds (see the previous paragraph); in particular, parity cannot be expressed.

In [Benedikt & Libkin 1996] and [Benedikt & Libkin 1997] it was shown that for polynomial constraints
over the reals, the active and the natural semantics actually coincide. This result can be generalized – with
some care – to fixpoint logic and datalog [Benedikt & Libkin 1997]. If function symbols are allowed to occur
in the bodies of datalog rules, then every recursive query isexpressible. However, if a hybrid approach is
taken, where the fixpoint computation is restricted to the active domain of a database, while quantification
refers to the natural domain, then a similar collapse as for FO also happens for fixpoint logic and datalog.
These results for the reals generalize to a large class of other structures with quantifier elimination.

Acknowledgments

We would like to thank Jan van den Bussche, Michael Gelfond, Leonid Libkin, Domenico Saccá, Moshe
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Börger, E., Grädel, E. & Gurevich, Y. [1997],The Classical Decision Problem, Perspectives in Mathematical Logic,
Springer-Verlag, Berlin.

Brass, S. & Dix, J. [1995], Disjunctive semantics based upon partial andbottom-up evaluation,in L. Sterling, ed.,
‘Proceedings of the 12th Int. Conf. on Logic Programming, Tokyo’, MIT Press, pp. 199–213.

Brewka, G. & Eiter, T. [1998], Preferred answer sets for extended logic programs,in A. Cohn, L. Schubert &
S. Shapiro, eds, ‘Proceedings Sixth International Conference on Principlesof Knowledge Representation and
Reasoning (KR-98)’, pp. 86–97. Full paper to appear inArtificial Intelligence.
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Gottlob, G., Grädel, E. & Veith, H. [1998], Datalog LITE: Deductiveversus temporal reasoning in automatic verifica-
tion. Manuscript, submitted for publication.



50 INFSYS RR 1843-99-05

Gottlob, G. & Leitsch, A. [1985a], Fast subsumption algorithms,in B. F. Caviness, ed., ‘Proceedings of the European
Conference on Computer Algebra (EUROCAL ’85): volume 2: research contributions’, Vol. 204 ofLecture
Notes in Computer Science, Springer Verlag, Linz, Austria, pp. 64–77.

Gottlob, G. & Leitsch, A. [1985b], ‘On the efficiency of subsumtion algorithms’,Journal of the Association for
Computing Machinery32(2), 280–295.

Gottlob, G., Leone, N. & Scarcello, F. [1997], On the complexity of some inductive logic programming problems,in
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