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1 Introduction

Logic programming is a well-known declarative method of wiexige representation and programming
based on the idea that the language of first-order logic i$-suitied for both representing data and de-
scribing desired outputs [Kowalski 1974]. Logic programmivas developed in the early 1970’s based on
work in automated theorem proving [Green 1969, Kowalski &Kner 1971], in particular, on Robinson’s
resolution principlefRobinson 1965].

A pure logic program consists of a setrofes also called definite Horn clauses. Each such rule has the
form head<« body, whereheadis a logical atom andbodyis a conjunction of logical atoms. The logical
semantics of such a rule is given by the implicatbmdy=- head(for a more precise account, see Section 2).
Note that the semantics of a pure logic program is complébtelgpendent of the order in which its clauses
are given, and of the order of the single atoms in each rulg.bod

With the advent of the programming language Prolog [Colmerakanoui, Roussel & Passero 1973],
the paradigm of logic programming became soon ready fortigelause. Many applications in different
areas were and are successfully implemented in Prolog. tNatérolog is — in a sense — only an approx-
imation to fully declarative logic programming. In factetislause matching and backtracking algorithms at
the core of Prolog are sensitive to the ordering of the clausa program and of the atoms in a rule body.

While Prolog has become a popular programming languagéntangnany computer science curricula,
research focuses more on pure logic programming and on®gtenthereof. Even in some application areas
such aknowledge representatiqi@ subfield of artificial intelligence) arghtabaseshere is a predominant
need for full declarativeness, and hence for pure logic rogning. In knowledge representation, declar-
ative extensions of pure logic programming, such as negatioule bodies and disjunction in rule heads,
are used to formalize common sense reasoning. In the databasext, the query languagiatalog was
designed and intensively studied (see [Ullman 1988, Ullt@80, Ceri, Gottlob & Tanca 1990]).

There are many interesting complexity results on logic progning. These results are not limited to
“classical” complexity theory but also comprise expressiss results in the sensedescriptive complexity
theory. For example, it was shown that (a slight extension of) dgtabnnot just expres®me but actually
all polynomially computable queries on ordered databases rlydlmse. Thus datalog precisadypresses
or capturesthe complexity clas® on ordered databases. Similar results were obtained foy veaiants
and extensions of datalog. It turned out that all major vasiaf datalog can be characterized by suitable
complexity classes. As a consequence, complexity the@yphaome a very important tool for comparing
logic programming formalisms.

This paper surveys various complexity and expressiveresadts on different forms of (purely declar-
ative) logic programming. The aim of the paper is twofold.rsEia broad survey and many pointers to
the literature are given. Second, in order to give a flavorashplexity issues in logic programming, a few
fundamental topics are explained in greater detail, ingaetr, the basic results on plain logic programming
(Section 4) and some fundamental issues related to dagergumplexity (Section 7). These two sections
are written in a more tutorial style and contain several fgowhile the other sections are written in a rather
succinct survey style.

Note that the present paper does not consist of an encyétlihg of all published complexity results
on logic programming, but rather of a more or less subjeativaice of results. There are many interesting
results which we cannot mention for space reasons; sucltgesay be found in other surveys, such as,
e.g., [Cadoli & Schaerf 1993, Schlipf 1985 For example, results on abductive logic programmingdEit
Gottlob & Leone 1994, Inoue & Sakama 1993, Sakama & Inoue 189Mlarek, Nerode & Remmel 1996],
on intuitionistic logic programming [Bonner 1990, Bonn&98], and on Prolog [Dikovsky 1993].
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The paper is organized as follows. Section 2 defines syntd>samantics of logic programs, describe
datalog and introduce complexity measures. Computatiomeaels are complexity notation are discussed
in Section 3. Section 4 presents the main complexity resultglain logic programming and datalog. Sec-
tion 5 discusses various semantics for logic programmirth weégation and respective complexity results.
Section 6 deals with disjunctive logic programming. Setflostudies the expressive power of datalog and
logic programming with complex values. Section 8 charamtsrthe complexity of unification. Section 9
deals with logic programming extended by equality. FinaBgction 10 describes complexity results on
constraint logic programming.

This article is an extended version of [Dantsin, Eiter, Gt Voronkov 1997].

2 Preliminaries

In this section, we introduce some basic concepts of logigq@mming. Due to space reasons, the presenta-
tion is necessarily succinct; for a more detailed treatrnsse [Lloyd 1987, Apt 1990, Apt & Bol 1994, Baral
& Gelfond 1994].

We use letterp, g, . .. for predicate symbolsX, Y, Z, . .. for variables,f, g, h, . . . for function symbols,
anda, b, c, . . . for constants; a bold face version of a letter denotes aflisymbols of the respective type.
In logic programs, we sometimes denote predicate and famsiymbols by arbitrary strings.

2.1 Syntax of logic programs

Logic programs are formulated in a languageof predicatesand functionsof nonnegative arity; O-ary
functions areconstants A languagel is function-freeif it contains no functions of arity greater than O.

A termis inductively defined as follows: each variabteand each constamtis a term, and iff is an
n-ary function symbol and, . . . ¢,, are terms, therf (¢4, ..., t,,) is a term. A term igground if no variable
occurs in it. TheHerbrand universef £, denoted/,, is the set of all ground terms which can be formed
with the functions and constants 4h

An atomis a formulap(ty,. .., t,), wherep is apredicate symbol of arityn and each; is a term. An
atom isground if all ¢; are ground. Thélerbrand basef a languageC, denotedB/, is the set of all ground
atoms that can be formed with predicates frérand terms froni/.

A Horn clauseis a rule of the form

A0<_A17~"7Am (mZO)a

where eachy; is an atom. The parts on the left and on the rightef*are called theheadand thebody of
the rule, respectively. A rule of the form A, <, i.e., whose body is empty, is calledaxt, and if Ay is a
ground atom, then is called aground fact

A logic programis a finite set of Horn clauses. A clause or logic progrargrisund if it contains no
variables.

With each logic progran?, we associate the languagé P) that consists of the predicates, functions
and constants occurring iR. If no constant occurs i, we add some constant & P) for technical
reasons. Unless stated otherwigéP) is the underlying language, and we use simplified notatiprand
Bp for Uy py and B (py, respectively.

A Herbrand interpretatiorof a logic programP is any subsel C Bp of its Herbrand base. Intuitively,
the atoms in/ are true, while all others are false.Herbrand modebf P is a Herbrand interpretation @t
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such that for each ruld, < Ay,..., A, in P, this interpretation satisfies the logical formW&X ((A; A
- NAp) = Ap), whereX is a list of the variables in the rule.

Propositional logic programs are logic programs in whidrpegdicates have arity 0, i.e., all atoms are
propositional ones.

Example 2.1 Here is an example of a propositional logic program, whigbtaaes knowledge (in a simpli-
fied form) about a steam engine equipped with three signajegu

shutdown <« overheat
shutdown <« leak
leak <« valveclosed pressureloss
valveclosed «+ signall
pressureloss <« signal2
overheat « signal3
signall <«
signal2 <«

Informally, the rules of the program tell that the system tealse shut down if it is in a dangerous state.
Such states are connected to causes and signals by respedtis. The factsignal 1 andsignal 2 state
that signals #2 and #3, respectively, are being observed.

Note that if P is a propositional logic program thdsy is a set of propositional atoms. Any interpretation
of P is a subset oBp.

2.2 Semantics of logic programs

The notions of a Herbrand interpretation and model can bergéined for infinite sets of clauses in a natural
way. LetP be a set (finite or infinite) of ground clauses. Such a&defines an operatdip : 257 — 257,
where2B7 denotes the set of all Herbrand interpretationg’pby

Tp(I) ={Ap € Bp | Pcontains arulely «+ Aq,..., Ay,
such tha{ 44, ..., A, } C I holds}.

This operator is called thenmediate consequence operatamtuitively, it yields all atoms that can be
derived by a single application of some rulefigiven the atoms if.

SinceTp is monotone, by the Knaster-Tarski Theorem it has the legsbifit, denoted by's°; since,
moreover,Tp is also continuous, by Kleene’s Theordif° is the limit of the sequencg&? = 0, Tht' =
Tp(T}), i > 0.

A ground atomA is called aconsequencef a setP of clauses, ifA € T5° (we write P |= A). Also, by
definition, a negated ground atonA is a consequence @, denotedP = —A, if A ¢ T5°. Thesemantics
of a setP of ground clauses, denoted ( P), is defined as the following set consisting of atoms and eegat
atoms:

M(P) ={A| P A}U{-A| P | -A}
=T U{-A|Ae Bp\T}.
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Example 2.2 (See Example 2.1.) For the prografmabove, we have

T =10,

T} = {signal 1, signal 2},

T3 = T} U {valveclosed pressureloss},
T3¢ = T? U {leak},

TE =T = T3 U {shutdown.

Thus, the least fixpoint is reached in four steps; €29

= shutdowrand P = —overheat

For each sef’ of clausesT’>° coincides with the uniqukeast Herbrand model o, where a model
is smaller than a modeV, if M is a proper subset a¥ [van Emden & Kowalski 1976].

The semantics of nonpropositional logic programs is nowndefias follows. Let thgroundingof a
clauser in a language’, denotedgroundr, £), be the set of all clauses obtained frenby all possible
substitutions of elements éf; for the variables in. For any logic progran®, we define

ground P, £) = | J groundr, £),

reP

and we writeground P) for ground P, £(P)). The operatoflp : 287 — 287 associated withP is defined
by Tp = Tyround p)- Accordingly, M(P) = M(ground P)).

Example 2.3 Let P be the program

Then,Up = {a, f(a), f(f(a)),...} andground P) contains the clauses(a) <, p(f(a)) + p(a),
p(f(f(a))) < p(f(a)),.... The least fixpoint of » is

TE = Toounar) = (p(f"(@) [ n > 0},

Hence, e.g.P = p(f(f(a))).

In practice, generatinground P) is often cumbersome, since, even in case of function-freguages,
it is in general exponential in the size Bf Moreover, it is not always necessary to compdité ) in order
to determine whetheP = A for some particular atord. For these reasons, completely different strategies
of deriving atoms from a logic program have been developedesg& strategies are based on variants of
the famousResolution Principleof Robinson [1965]. The major variant is SLD-resolution j#aski &
Kuehner 1971, Apt & van Emden 1982].

Roughly, SLD-resolution can be described as followsgyoal is a conjunction of atoms, andsabstitu-
tion is a functiond that maps variables,, . .., v, to termstq, ..., t,. The result of simultaneous replace-
ment of variable®; by termst; in an expressior is denoted by+). For a given goal7 and a progran?,
SLD-resolution tries to find a substitutiohsuch that7+ logically follows from P. The initial goal is re-
peatedly transformed until the empty goal is obtained. Bemfsformation step is based on the application
of the resolution rule to aelected aton®; from the goalB;, ..., B,, and a clausel; + A4, ..., A, from
P. SLD-resolution tries tainify B; with the headA, i.e., to find a substitutio such thatdqy¥ = B;v.
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Such a substitution? is called aunifier of Ay and B;. If a unifier exists, a most general sudh(which is
essentially unique) is chosen and the goal is transfornted in

(Bi,...,Bi_1,A1,...,Ap, Bit1, ..., Bp)0.

For a more precise account, [see Apt 1990, Lloyd 1987]; feoltion on general clauses, see e.g., [Leitsch
1997]. The complexity of unification will be dealt with in Sem 8.

2.3 Datalog

The interest in using logic in databases gave rise to the dietibductive databases; see [Minker 1996] for
a comprehensive overview of the development of this arespgeared that logic programming is a suitable
formalism for querying relational databases. In this cehitde logic programming based query language
datalog and various extensions thereof have been defined.

In the context of logic programming, relational databasesdentified with sets of ground fagtgcy, . . . .
¢n). Intuitively, all ground facts with the same predicate syinbrepresent a data relation. The set of all
predicate symbols occurring in the database together witbsaibly infinitedomainfor the argument con-
stants is called thechemaof the database. With each databdsewe associate a finite univerég, of
constants which encompasses at least all constants appéarD, but possibly more. In the classical
database context/p is often identified with the set of all constants appearindin But in the datalog
context, a larger universép may be suitable in case one wants to derive assertions abms that do not
explicitly occur in the database.

To understand how datalog works, let us consider a claghgixample.

Example 2.4 Consider a databagde containing the ground facts

father(john, mary) «

father(joe, kurt) <«
mothefmary, joe) <«
mothe(tina, kurt) «+

The schema of this database is the set of relation sym{datber, mothef together with the domain
STRINGof all alphanumeric strings. With this database, we ass®dl# finite universé/p = { john,
mary, joe, tina, kurt, susan Note thatsusandoes not appear in the database but is included in the uaivers
Up.

The following datalog program (or query) computes all ancestor relationships relative to this degab

paren{X,Y) <« fatherX,Y)
paren{ X,Y mothef X, Y)
paren{ X,Y’)

ancesto(X,Y
person X

)
)

ancestofX,Y)
) paren{ X, Z),ancestofZ,Y)
)

<
<
<
<

In the programP, father and motherare theinput predicatesalso calleddatabase predicatesTheir
interpretation is fixed by the given input databd3e The predicateancestorandpersonareoutput predi-
cates and the predicatparentis anauxiliary predicate Intuitively, the output predicates are those which
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are computed as the visible result of the query, while théliaux predicates are introduced for representing
some intermediate results, which are not to be considergaptoe final result.

The datalog progran® on input databas® computes a result databaBewith the schemdancestor
persor} containing among others the following ground facts:

ancestofmary, joe),
ancestotjohn, joe),
persorijohn),
persor{susan.

The last fact is inR becausesusanis included as a constant lfp. However, the facpersoriharry) is not
in R, becauséarry is not a constant in the finite univergg, of the databas®.

Formally, adatabase schem® consists of a finite sékel§D) of relation names with associated arities
and a (possibly countable infinite) domddom(D). For each database schef@awe denote byHB(D)
the Herbrand base corresponding to the function-free laggwhose predicate symbols &elgD) and
whose constant symbols dbem(D).

A databasgalso,database instangeD over a schem@® is given by a finite subset of the Herbrand base
D C HB(D) together with an associated finite univefsg C Dom(D), containing all constants actually
appearing inD. By abuse of notation, we also wrife instead of D, Up). We denote byD|p the extension
of the relationp € RelgD) in D. Moreover,INST(D) denotes the set of all databases dver

A datalog queryor adatalog programis a function-free logic progran®? with three associated database
schemas: the input scherfg,, the output schem®,,,; and the complete scherfig such that the following
is satisfied:

Dom(D;,) = bom(D,,;) = Dom(D),
RelgD;,) C RelgD),

Rel§D,.:) C RelgD), and
Rel§D;,) NRel{D,,;) = 0.

Moreover, each predicate symbol appearin@iis contained irRelg§D) and no predicate symbol frof;,,
appears in a rule head &f (the latter means that the predicates of the input datalvaeseeser redefined by
a datalog program).

The formal semantics of a datalog progrdmover the input schem®;,,, output schemd,,,;, and
complete schema® is given by a partial mapping from instances ®f,, to instances ofD,,; over the
same universe. A result instance DBf,,; is regarded as the result of the query. More formally,p :
INST(D;,,) — INST(D,.;) is defined for all instance®;,, € INST(D;,,) such that all constants occurring
in P appear inUp, , and maps every sudh;, to the databas®,,;, = Mp(D;,) such thal/p,,, = Up
and, for every relatiop € RelgD, ),

out in

D,ulp ={a|p(a) € M(ground P U D;,, L(P, D;n)))},

where M andgroundare defined as in Section 2.2, addP, D,,) is the language oP extended by all
constants in the universép, . For all ground atomsi € HB(D,,;), we write P U D;,, = Aif A €
Mp(Dm) and writeP U Dy, |: —-Aif A §é MP(Dm)

The semantics of datalog is thimherited from the semantics of logic programming. In a similar way,
the semantics of various extensions of datalog is inhefitad the corresponding extensions of logic pro-
gramming.
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There are three main kinds of complexity connected to plaitaldg and its various extensions [Vardi
1982]:

e Thedata complexity is the complexity of checking whethér;,, U P = A when datalog programB8
arefixed while input databaseB;,, and ground atomg are aninput

e The program complexity (also calledexpression complexitys the complexity of checking whether
D;, UP |= Awhen input databasds,;, arefixed while datalog program®& and ground atomd are
aninput

e Thecombined complexity is the complexity of checking whethér;, U P = A when input databases
D,,, datalog program# and ground atomd are aninput

Note that for plain datalog, as well as for all other versiafiglatalog considered in this paper, the
combined complexity is equivalent to the program compyewiith respect to polynomial-time reductions.
This is due to the fact that with respect to the derivationroligd atoms, each paiD,,, P) can be easily
reduced to the paifDy, P*), whereDy is the empty database instance associated with a univetseof
constantg; andcs, andP* is obtained fromPU D;,, by straightforward encoding of the univerSg,  using
n-tuples ovefcy, ca}, wheren = [|Up,, |]. For this reason, we mostly disregard the combined comylexi
in the material concerning datalog. We remark, howevet, dha to a fixed universe, program complexity
may allow for slightly sharper upper bounds than the combic@mplexity (e.g.ETIME vs EXPTIME).

Another approach to measuring complexity of query langsagéeparametric complexitjPapadimi-
triou & Yannakakis 1997]. In this approach, the complexitgkpressed as a function of some “reasonable”
parameters An example of such a parameter is the number of variablesapm in the query (interest in
this parameter is motivated by [Vardi 1995], where it is shawat data and program complexity become
close when the number of query variables is bounded).

As for logic programming in general, a generalization of twenbined complexity may be regarded
as the main complexity measure. Below, when we speak abeutdmplexity of a fragment of logic
programming, we mean the following kind of complexity:

e The complexity of (some fragment of) logic programming is the complexitycbiecking whether
P [= A for variable both programs” and ground atom4.

3 Complexity classes

This section contains definitions for most of the complexitysses which are encountered in this survey
and provides other related definitions. A detailed expmsitif most complexity notions can be found e.g. in
[Papadimitriou 1994]. We follow the notation of [Johnsor®@ where definitions of all complexity classes
used in this article can be found.

3.1 Turing machines

Deterministic Turing machines. Informally, we think of a Turing machine as a device able @drérom
and write on a semi-infinitéeape whose contents may be locally accessed and changed in autaiiop.
Formally, adeterministic Turing machine (DTM§ defined as a quadruplé, X, 4, s¢), wheresS is a finite
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set ofstates X is a finite alphabet o§ymbols§ is atransition function ands, € S is theinitial state The
alphabet: contains a special symbglcalled theblank The transition function is a map

d: Sx3¥ — (Su{halt,yes,no}) xXx{-1, 0, +1},

wherehal t, yes, andno denote three additional states not occurringSinand- 1, 0, +1 denote
motion directions|t is assumed here, without loss of generality, that thehimecis well-behaved and never
moves off the tape, i.ed # - 1 whenever the cursor is on the leftmost cell; this can be eushy proper
design ofs.!

Let7T be a DTM(X, S, 4, sg). The tape ofl" is divided intocells containing symbols oE. There is a
cursor that may move along the tape. At the startjs in the initial statesy, and the cursor points to the
leftmost cell of the tape. Amput string is written on the tape as follows: the fildy cellscy, ..., ¢7—1
of the tape, wher¢/| denotes the length df, contains the symbols df, and all other cells contaip.

The machine takes successstepsof computation according td&. Namely, assume thdt is in a state
s € S and the cursor points to the symhok X on the tape. Let

§(s,0) = (s',0',d).

ThenT changes its current state £ overwriteso’ on o, and moves the cursor accordingdoNamely, if
d =-1ord = +1, then the cursor moves to the previous cell or the next ospectively; ifd = 0, then
the cursor remains in the same position.

When any of the statdsal t , yes or no is reached" halts. We say thdl’ acceptsthe input’ if T
halts inyes. Similarly, we say thaf” rejectsthe input in the case of halting mo. If hal t is reached, we
say that theoutputof 7" on I is computed. This output, denoted BYT7), is defined as the string contained
in the initial segment of the tape which ends before the fiestl

Nondeterministic Turing machines. Like a DTM, anondeterministic Turing machine, or NDTg,de-
fined as a quadruples, X, A, sq), whereS, X, s, are the same as before. Possible operations of the machine
are described byA, which is no longer a function. Instead, is a relation:

A C (SxY)x (Sufhalt,yes,no}) x¥ x{-1, 0, +1}.

A tuple whose first two members as@ndo respectively, specifies the action of the NDTM when its auirre
state iss and the symbol pointed at by its cursorsrislf the number of such tuples is greater than one, the
NDTM nondeterministically chooses any of them and operatesrdingly.

Unlike the case of a DTM, the definition of acceptance ancttigie by a NDTM is asymmetric. We
say that a NDTMacceptsan input if there is at least one sequence of choices leadititetstateyes. A
NDTM rejectsan input if no sequence of choices can leaglés.

Time and space bounds. Thetimeexpended by a DTM" on an input/ is defined as the number of steps
taken byT" on I from the start to halting. 17" does not halt ord, the time is considered to be infinite. For
aNDTM T, we define thegimeexpended by’ on T as 1, ifT' does not accept (respectively, computes no

output forI), and otherwise as the minimum over the number of steps iraeogpting (respectively, output

producing) computation df'".

1Some texts assume thathas a special symbol which marks the left end of the tape. Shiigol can be eliminated by a proper
redesign of the machine. For the purpose of this paper, thplsi model without a left end marker is convenient.
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Thespacerequired by a DTMI" on [ is the number of cells visited by the cursor during the corafoin
on I. In the case of a NDTM, thepaceis defined as 1, ifl" does not accepi (respectively, computes
no output for7), and otherwise as the minimum number of cells visited ont#pe over all accepting
(respectively, output producing) computations.

Let T be a DTM or a NDTM. Letf be a function from the positive integers to themselves. We sa
that 7" halts in timeO(f(n)), if there exist positive integersandn, such that the time expended tyon
any input of lengthn is not greater thanf (n) for all n > ny. Likewise, we say thal’ haltswithin space
O(f(n)) if the space required by on any input of lengtt is not greater thanf (n) for all n > ng, where
¢ andng are positive integers.

Assume that a DTM (NDTM)" halts in timeO(n?), whered is a positive integer. Then we cdll
a polynomial-time DTM (NDTMand we say thal” halts inpolynomial time Similarly, if 7' halts within
space)(n?), we callT apolynomial-space DTM (NDTM)

3.2 Notation for complexity classes

As above, let: be a finite alphabet containing Let>’ = >\ {_}, and letL. C ¥'* be alanguagein ',
i.e. a set of finite strings ovet’. LetT be a DTM or a NDTM such that) if 2 € L thenT accepts:, and
(7i) if x ¢ L thenT rejectsz. Then we say thal’ decidesL. In addition, if7" halts in timeO(f(n)), we
say thatl’ decidesL in time O(f(n)). Similarly, if T halts within space&(f(n)), we say thafl’ decidesL
within spaceO(f(n)).

Observe that iff (n) is a sublinear function, then a Turing machine which halthivispacef (n) can
not read the whole input string, nor produce a large outpotemedy this problem, a Turing machifies
equipped with a read-only input-tape and a write-only otitape besides the work tape, which contain the
input string and the output computed By respectively. The time and space requiremert’'a$ defined
as above, where only the space used on the work tape countaséfi’ halts within sublinear timg (n),
random access to the input symbols on the input-tape is geedviising a further tape which serves as an
index register. In the following, we assume that multi-tapgchines as described may be used for deciding
languages within sublinear bounds.

Let f be a function on positive integers. We define the following ¢ languages:

TIME(f(n)) = {L| L isdecided by some DTM intim@(f(n))},
NTIME(f(rn)) = {L | Lisdecided by some NDTM intim@(f(n))},
SPACE(f(n)) = {L| Lisdecided by some DTM within spac¥ f(n))},

NSPACE(f(n)) = {L|Lisdecided by some NDTM within spac# f(n))}.

All these sets are examples @aimplexity classe®ther examples will be given below. Note that some
functionsf can lead to complexity classes with unnatural properties [Bapadimitriou 1994] for details).
However, for “normal” functions such as polynomials, exeots or logarithms, the corresponding com-
plexity classes are “normal” too.

Complexity classes of most interest are not classes cameépg to particular functions but their unions
such as, for example, the uni¢f,. , TIME(n?) taken over all polynomials of the formr’. The following
abbreviations are used to denote main complexity classssabfa kind:
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P = U0 TIME(n?),
NP = Uz NTIME(n?),

EXPTIME = .., TIME@2™"),

NEXPTIME = [J,oo NTIME(2""),
PSPACE = J,.oSPACE(n?),

(
EXPSPACE = |J,-,SPACE(2""),
L = SPACE(logn),
NL = NSPACE(logn).

The list contains no abbreviations for the nondeterministunterparts oPSPACE and EXPSPACE be-
causelJ,. , NSPACE(n?) coincides with the clasBSPACE andJ,- NSPACE(2"") coincides with the
classEXPSPACE [Sawitch 1970].

Complementary classes. Any complexity clas<® has itscomplementary classenoted byo-C and de-
fined as follows. For every languadein 3, let L. denote itcomplementi.e. the set)” \ L. Thenco-C is
{L|Lec}.

The polynomial hierarchy. To define the polynomial hierarchy classes, we need to intedracle Tur-

ing machines. Letl be a language. Aaracle DTMT4, also called & TM with oracleA, can be thought of

as an ordinary DTM augmented by an additional write-ayery tapeand additional three statesiery,

€ and¢. WhenT“ is not in the statguer y, the computation proceeds as usual (in additibf,can write

on the query tape). Wheh“ is in quer y, 7# changes this state toor ¢ depending on whether the string
written on the query tape belongs toor not; furthermore, the query tape is instantaneouslyeerakike

the case of an ordinary DTM, the expended time is the numbstepk and the required space is the number
of cells used on the tape and the query tape.ofatle NDTMis defined as the same augmentation of a
NDTM.

LetC be a set of languages. We define complexity claBSeandNPC as follows. For a languagg, we
haveL € P€ (or L € NPY) if and only if there is some languagé € C and some polynomial-time oracle
DTM (or NDTM) T4 such thafl™* decidesL..

Thepolynomial hierarchyconsists of classeA?, ¥, andII! defined by the following equalities:

Al = ¥P =TI = P,

» _ px?
Az’+1 =P,
P
SP = NP>,
P o3P
iy =co-Xyy,

foralli > 0. The clasH is defined agJ;, >}’

Exponential time. BesideEXPTIME andNEXPTIME, we mention in this paper some other classes that
characterize computation in exponential time. The claB3dbE andNETIME are defined as
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|J TIME(2%") and ] NTIME(2")
d>0 d>0

respectively; they capture linear exponents instead ofrmwhial exponents. The clagXPTIME can be
viewed as IEXPTIME where 1 means the first level of exponentiation. Double egpts) triple exponents,
etc. are captured by the classeEXPTIME, 3-EXPTIME etc. defined as

nd nd
L TIME22"), | TIME(2® ). ...
d>0 d>0

Their nondeterministic counterparts are defined in the samebut with the replacement afiME(fn) by
NTIME(f(n)).

3.3 Reductions

Let I; and L, be languages. Assume that there is a DRMuch that

1. For all input stringse, we haver € L, if and only if R(z) € Ly, whereR(x) denotes the output of
R oninputz.

2. R halts within space& (logn).

ThenR is called dogarithmic-space reductiofrom ., to I, and we say thak is reducibleto Ls.

Let C be a set of languages. A languabés calledC-hard, if any languagd.’ in C is reducible toL. If
LisC-hard andL € C, thenL is calledC-completeor complete folC.

Besides the above notion of a reduction, complexity thetsy aonsiders many other kinds of reduc-
tions, for example, polynomial-time many-one reductionpaynomial-time Turing reductions (stronger
kinds of reductions)In this paper, unless otherwise stated, a reduction meawngarithmic-space reduc-
tion. We note that in several cases, results that we shall reviges Ib@en stated for polynomial-time many-
one reductions, but the proofs establish that they hold ulwdgrithmic-space reduction. Furthermore,
many results hold under yet weaker reductions such as fidstroeduction [see e.g. Immerman 1998].

In case of weak reductions, as well as in case of computatitinsublinear resource constraints, the
particular representation of the problem input as a stiingay be a matter of concern. For most of the
problems that we describe, and in particular those havimgpbexity at least, this is not an issue; any
“reasonable” representation is appropriate [see e.g.stwhh990]. In the other cases, the reader is requested
to the original sources for the details.

4 Complexity of plain logic programming

In this section, we survey some basic results on the comniplexiplain logic programming. This section
is written in a slightly more tutorial style than the follawg sections in order to help both readers not
familiar with logic programming and readers not too fanil@ith complexity theory to grasp some key
issues relating complexity theory and logic programming.
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4.1 Simulation of deterministic Turing machines by logic programs

Let T be a DTM. Consider the computation ©fon an input string/. The purpose of this section is to
describe a logic prograrh and a goalz such that. |= G if and only if 7" acceptd in at most\V steps.

The transition functiorv of a DTM with a single tape can be represented by a table whmss are
tuplest = (s,0,s', o', d). Such a tuple expresses the following if-then-rule:

if at some time instantthe DTM is in states, the cursor points to cell number and this cell contains
symbolo

then at instantr + 1 the DTM is in states’, cell numberr contains symbob’, and the cursor points
to cell numberr + d.

It is possible to describe the complete evolution of a DTNdn input string! from its initial configu-
ration at time instand to the configuration at instari¥' by a propositional logic program (7,1, N). To
achieve this, we define the following classes of proposifi@ioms:

symbol,[7, 7] for0 <7 < N,0 <7 < N anda € X. Intuitive meaning: at instant of the computation,
cell numberr contains symbod.

cursor[r, 7| for 0 < 7 < N and0 < m < N. Intuitive meaning: at instant the cursor points to cell
numberr.

state;[7] for0 < 7 < N ands € S. Intuitive meaning: at instantthe DTMT' is in states.

accept Intuitive meaningI’ has reached stayees.

Let us denote by, the k-th symbol of the string = I --- I;;|_;. The initial configuration ofl" on
input I is reflected by the followingnitialization factsin L(T', 1, N):

symbo} [0, 7] <« for0 <= < |I|, wherel, = o
symbol [0, 7] for|I| <7 <N
cursorf0,0] <«
state,[0] <«

Each entry(s, o, s', o', d) of the transition table is translated into the following propositional Horn
clauses, which we call theansition rules The clauses are asserted for each value ahd« such that
0<7T<N,0<m< N,and0 < 7 +d.

symbo} [t + 1,7] <« state[r], symbo}[r, 7], cursorr, 7]
cursoffiT + 1,7 +d] <« state[r], symbol|r, r], cursorr, 7]
state/[7 + 1] <« statg[r], symbo}[r, 7], cursor|r, ]

These clauses almost perfectly describe what is happeniriggda state transition from an instanto
an instantr + 1. However, it should not be forgotten that those tape cellgkvare not changed during the
transition keep there old values at instant 1. This must be reflected by what we temertia rules These
rules are asserted for each time instaaind tape cells numbers 7/, where0 < 7 < N,0 <7 < 7' < N,
and have the following form:
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symbo}[r + 1, 7] <« symbo}|r, ], cursorr, 7]
symbo}[r + 1,7'] <« symbo}|[r, '], cursofr, 7]

Finally, a group of clauses termextcept rulesderives the propositional atomccepi whenever an
accepting configuration is reached.

accept « statges|7] for0 <7 < N.

Denote byL the logic programi(T', I, N). Note thatl? = () and thatl’} contains the initial configura-
tion of 7" at time instant 0. By construction, the least fixpdIiff of L is reached eﬂf“, and the ground
atoms added t#7,2 < 7 < N + 1, i.e., those irl7 \ 7} ', describe the configuration @f on the input
I at the time instant — 1. The fixpoint7° containsacceptif and only if an accepting configuration has
been reached by in at mostN computation steps. We thus have:

Lemma4.1 L(T,1,N) = acceptif and only if the DTMT accepts the input strinfwithin N steps.

A somewhat different simulation of deterministic multp& Turing machines by logic programs was
given by Itai & Makowsky [1987]. These authors also note #iatulating Turing machines by Horn clause
theories, and, more generally, by logical deduction hasg lastory:

“The idea of simulating Turing machines by logical deductioas back to Turing’s original paper [Tu-
ring 1936-1937]. Turing introduced his abstract machinecept at a time when computations were con-
sidered to be something mechanical, and felt it was necgs$sahow that logical deduction can be reduced
to such a mechanistic model of computation. However, thisaton uses full first-order logic. A reduction
using only universal Horn formulas (with function symbagppears buried in the exposition of Scholz &
Hasenjaeger [1961]. It also forms the basis of the theonoahfal systems, as presented by Smullyan in his
thesis [Smullyan 1961]. The idea of coding Turing machinetgic Horn formulas appears explicitly in
[Biichi 1962] and has been used since 1971 in a series of papekamgera, Brger, and Lewis [Aandera
& Borger 1979, Brger 1971, Brger 1974, Brger 1984, Lewis 1979] to obtain undecidability and com-
plexity results. Since then, various authors have redis@al/ that such a reduction is possible and have
used this observation to show that logic programming is agaionally complete. The earliest reference
we have found that states this result explicitly is [A&ldx & Nemeti 1978]; a slightly weaker result appears
in [Tarnlund 1977]!

Yet another translation and further references can be fannithe recent book [Borger, Gradel &
Gurevich 1997].

4.2 Propositional logic programming

The simulation of a DTM by a propositional logic program, ascribed in Section 4.1 is almost all we need
in order to determine the complexity of propositional logimgramming, i.e., the complexity of deciding
whetherP = A holds for a given logic progran®? and ground atori.

Theorem 4.2 (implicit in [Jones & Laaser 1977, Vardi 1982, Immerman 18€ropositional logic pro-
gramming isP-complete.
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Proof.

1. Membership It is obvious that the least fixpointy® of the operatorl’p, given program?, can be
computed in polynomial time: the number of iterations (iagplications of7'’p) is bounded by the
number of rules plus one. Each iteration step is clearlyilidad polynomial time.

2. Hardness Let A be a language if?. Thus A is decidable ing(n) steps by a DTMI" for some
polynomialq. Transform each instanceof A to the corresponding logic program(7', I,q(|1|))
as described in Section 4.1. By Lemma 417", I,q(|I|)) = acceptif and only if 7" has reached
an accepting state withig(n) steps. The translation frothto L(T\, I, ¢(|I])) is very simple and is
clearly feasible in logarithmic space, since all ruled¢f’, I, ¢(|1|)) can be generated independently
of each other and each has size logarithmi¢/in note that the numbers and = have O(log |1])
bits, while all other syntactic constituents of a rule hawastant size. We have thus shown that every
languageA in P is logspace reducible to propositional logic programmidgnce, propositional logic
programming iP-hard. O

Obviously, this theorem can be proved by simpler reductiftosy other P-complete problems, for
example from the monotone circuit value problem (see [Papatbu 1994]); however, our proof from
first principles unveils the computational nature of logiogramming and provides a basic framework form
which further results will be derived by slight adaptationshe sequel.

Notice that in a standard programming environment, prdfoel logic programming is feasible in
linear time by using appropriate data structures, as faléwm results about deciding Horn satisfiability
[Dowling & Gallier 1984, Itai & Makowsky 1987]. This does notean that all problems iR are solvable
in linear time; first, the model of computation used in [Dawgi& Gallier 1984] is the RAM machine, and
second logarithmic-space reductions may in general paotyaldy increase the input.

Theorem 4.2 holds under stronger reductions. In fact, idéeinder the requirement that the logspace
reduction is also @olylogtime reduction (PLTBriefly, a mapf : IT — IT' from a problemiI to a problem
IT" is a PLT-reduction, if there are polylogtime determinisfigring machinesV and M such that for all
w, N(w) = |f(w)| and for allw andn, M(w,n) = Bit(n, f(w)), i.e., then-th bit of f(w) (see e.g.
[Veith 1998] for details). (Recall tha¥ and M have separate input tapes whose cells can be accessed by
use of an index register tape.) Since the above encoding @M ibto logic programming is highly regular,
it is easily seen that it is a PLT reduction.

Syntactical restrictions on programs lead to completefasslasses insid®. Let LP(k) denote logic
programming where each clause has at @bms in the body. Then, by results in [Vardi 1982, Immerman
1987], one easily obtains:

Theorem 4.3 LP(1) is NL-complete.
Proof. (Sketch)

1. Membershiplhe membership part can be established by reducing thisgmmoto graph reachability,
i.e., given a directed grapf = (V, E) and verticess,t € V, decide whethet is reachable from
s. Since graph reachability is iNL andNL is closed under logarithmic-space reductions (i.e., re-
ducibility of a problemA to a problemB in NL implies thatA is in NL), it follows that LR1) is in
NL.

For a programP from LP(1), the question whethd? |= A is equivalent to the nodeue (representing
truth) is reachable from the nodé in the directed grapliz = (V, E) as follows. The vertex sat
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is the set of atoms i plustrue; the edge seE contains an edgeA, B) directed fromA to B for
every ruleA < B in P, and an edgéA, true) for every factA < in P. Clearly, the graplt is
constructible fromP in logarithmic space. Thus, the problem isNi.

2. HardnessConversely, graph reachability is easily transformed iRtg= A for a program in LR1).
Since graph reachability iSL-complete (thudlL-hard), the result is established. O

Observe that the above DTM encoding can be easily modifiedograms in LR2). Hence, LR2) is
P-complete.

Further syntactical restrictions on B yield problems complete fot (of course, under reductions
stronger than logspace reductions), which we omit here.

4.3 Complexity of datalog

Let us now turn to datalog, and let us first consider the datapbexity. GroundingP on an input database
D yields polynomially many clauses in the sizelof hence, the complexity of propositional logic program-
ming is an upper bound for the data complexity. The same Hotdke variants of datalog we shall consider
in the sequel. The complexity of propositional logic pragraing is also a lower bound. Thus,

Theorem 4.4 (implicit in [Vardi 1982, Immerman 1986]) Datalog is dataneplete forP.

In fact, this result follows from the proof of Theorem 7.2 el An alternative proof oP-hardness can
be given by writing a simple datalageta-interpreteffor propositional LR%), wherek is a constant.

Represent rulegly < Aq,..., A;, where0 < i < k, by tuples(4y, ..., A4;) inan(i + 1)-ary relation
R; on the propositional atoms. Then, a progréhin LP(%k) which is stored this way in a databas¥ P)
can be evaluated by a fixed datalog progrBm; (k) which contains for each relatioR;, 0 < i < k, arule

T(Xo) < T(X1),...,T(X;), Ri(Xo, ... X;).

HereT'(z) intuitively means that atom is true. ThenP = A just if Py;y U P(D) = T'(A). P-hardness of
the data complexity of datalog is then immediate from Thende2.
The program complexity is exponentially higher.

Theorem 4.5 (implicit in [Vardi 1982, Immerman 1986]) Datalog is prognacomplete folEXPTIME.
Proof. (Sketch)

1. Membership GroundingP on D leads to a propositional prograff whose size is exponential in the
size of the fixed input databage. Hence, by Theorem 4.2, the program complexity is¥PTIME.

2. Hardness In order to proveeEXP TIME-hardness, we show that if a DT®halts in less thaiv = on*
steps on a given input where|I| = n, thenT can be simulated by a datalog program over a fixed
input databas®. In fact, we use)y, i.e., the empty database with the univetse= {0,1}.

We employ the scheme of the DTM encoding into logic prograngnfrom above, but use the pred-
icatessymbo} (X,Y), cursor(X,Y) and state(X) instead of the propositional lettesymbo}[X, Y],
cursorf X, Y] andstate [ X ] respectively. The time pointsand tape positions from 0 to 2 — 1, m = n*,
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are represented hy:.-ary tuples ovel/, on which the functions + 1 and= + d are realized by means of

the successdBucé” from a linear ordeK™ on U™,
For an inductive definition, suppoSucé(X,Y), First'(X), andLast (X) tell the successor, the first,
and the last element from a linear ordeton U?, whereX andY have arityi. Then, use rules

Sucét(Z,X,7,Y) + Sucé(X,Y)

Sucétl(Z,X,7',Y) « Succ(Z, 7', Last(X),First/(Y)
Firstt1(Z,X) <« First}(Z), First’(X)
Last*1(Z,X) <« Last(z),Last(X)

HereSucé (X, Y), First!(X), andLast (X) onU! = U must be provided. For our reduction, we use the
usual ordering) <! 1 and provide those relations by the ground festec (0, 1), First!(0), andLast (1).
The initialization factsymbo),[0, 7] are readily translated into the datalog rules

symbo} (X, t) + First™ (X),

wheret represents the position, and similarly the factsursor{0, 0] andstate,, [0]. The remaining initial-
ization factssymbol [0, 7], where|I| < = < N, are translated to the rule

symbol (X,Y) <« First”(X), <™(t,Y)

; the order<™ is easily defined fronSucé” by two clauses

wheret represents the numbef|

<M(X,X) « X
<"™X,Y) « Suct(X,Z), <™ (Z,Y)

The transition and inertia rules are easily translated dati@log rules. For realizing+ 1 andw + d, use in
the body atomSucé’ (X, X'). For example, the clause

symbo}.[r + 1,7] <+« state[r], symbo}[r, ], cursorr, r]
is translated into
symbo} (X', Y) <« statg(X),symbo}(X,Y),cursor(X,Y), Sucé¢" (X, X’).

The translation of the accept rules is straightforward.

For the resulting datalog progra#, it holds thatP’ U Dy = acceptif and only if T accepts inpuf
in at mostN steps. It is easy to see th&t can be constructed froffi and ! in logarithmic space. Hence,
datalog ha&XPTIME-hard program complexity.

Note that straightforward simplifications in the constroictare possible, which we omit here, as part of

it will be reused below. O

Instead of using a generic reduction, the hardness partsoftthorem can also be obtained by applying
complexity upgrading techniques [Papadimitriou & Yanrkagd 985, Balcazar, Lozano & Toran 1992]. We
briefly outline this in the rest of this section.

This technigue utilizes a conversion lemma [Balcazar et1802] of the form “If T X-reduces to
IT', thens(IT) Y-reduces tos(IT')"; here s(II) is the succinct variant ofl, where the instances of II
are given by a Boolean circui’; which computes the bits af (see [Balcazar et al. 1992] for details).
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The strongest form of the conversion lemma appears in [\98], whereX is PLT andY is monotone
projection reducibility [Immerman 1987]. The conversi@mma gives rise to an upgrading theorem, which
has been subsequently sharpened [Balcazar et al. 1982, Gdttlob & Mannila 1994, Gottlob, Leone &
Veith 1995, Veith 1998] and is stated below in the strongesnfof [Veith 1998]. For a complexity class
C, denotelong(C) = {long(L) | L € C}, wherelong(L) = me(n)em{o, 1}™, i.e., contains all strings of
lengthn such that, in binary and with the leading 1 omitted, belongsto

Theorem 4.6 Let C; andC, be complexity classes such tHahg(C;) C Cs. If IT is hard forC, under
PLT-reduction, ther(II) is hard forC; under monotone projection reduction.

We remark that since monotone projection reduction is veggky a special encoding of succinct problems
is necessary. From the observations in Section 4.2, we th&inothats(LP(2)) is EXPTIME-hard under
monotone projection reductions, where each prograisistored in the databage( P), which is represented
by a binary string in the standard way.

s(LP(2)) can be reduced to evaluating a datalog progfahover a fixed database as follows. From a
succinct instance of L[2), i.e., a Boolean circui€’; for I = D(P), Boolean circuits”; for computingR;,

0 < < 2 can be constructed which use negation merely on input gates.

Each such circuit’;(X) can be simulated by straightforward datalog rules. For @tananA-gateg;
with input from gateg;; andg;, is described by a rulg;(X) « ¢,(X), gx (X), and anv-gatey; is described
by the rulesg;(X) < g¢;(X) andg;(X) < g¢x(X). Observe that Boolean circuits with arbitrary use of
negation can be easily simulated in stratified datalog [iiel& Papadimitriou 1991] or disjunctive datalog
[Eiter, Gottlob & Mannila 1997].

The desired progran®* comprises the rules for the Boolean circuits and the rules of the meta-
interpreterPys (k), which are adapted for a binary encoding of the doniainp, of the databas® () by
using binary tuples of aritylog |[Up(p)||. This construction is feasible in logarithmic space, frorici
EXPTIME-hard program complexity of datalog follows. We refer thader to [Eiter et al. 1994, Eiter,
Gottlob & Mannila 1997, Gottlob et al. 1995] for the techridatails.

4.4 Logic programming with functions

Let us see what happens if we allow function symbols in logagmms. In this case, entailment of an
atom is no longer decidable. To prove it, we can, for exampléuce Hilbert's Tenth Problem to the query
answering in full logic programming. Natural numbers canrégresented using the constanand the
successor function. Addition and multiplication are expressed by the follogsimple logic program:

X+0=X <+
X+s(Y)=s2) « X+Y =2
Xx0=0 <«
Xxs(Y)=7Z +« XxY=UU+X=1Z

Now, undecidability of full logic programming follows frorthe undecidability of diophantine equa-
tions [Matiyasevi¢ 1970]. More precisely, it shows thalt fagic programming can express r.e.-complete
languages. On the other hand, the least fixpdttof any logic programP is clearly ar.e. set. This shows
r.e.-completeness of logic programming.
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Theorem 4.7 ([Andréka & Németi 1978, Tarnlund 1977]) Logic prograrnmg is r.e.-completé.

Of course, this theorem may as well be proved by a simple eéngoaf Turing machines similar to the
encoding in the proof of Theorem 4.5 (use terfigc), n > 0, for representing cell positions and time
instants). It is interesting to note that Smullyan [195&exted —quite some time before the first proposals
to logic programming — a closely related result which edaintsays that, in our terms, the minimal model
semantics of logic programming over arithmetic yields tlee sets.

Theorem 4.7 was generalized in [Voronkov 1995] for more egpive S-semantics and C-semantics
[Falaschi, Levi, Martelli & Palamidessi 1989]. On the otlirand, it was sharpened to syntactical classes
of logic programs. E.g., Tarnlund [1977] used binary Holause programs to simulate a universal Turing
machine. By a transformation from binary Horn clause progaSebek & Stépanek [1982] showed
that a class of logic programs called stratifiable (in a sefiferent from the one in Section 5.1) is r.e.-
complete. Furthermore, [Stépanek&épankova 1986] proved that (an inessential varianPBIMLOG
[see Markusz & Kaposi 1982] is r.e.-complete, which rewtriconsiderably the size of AND- and OR-
branching and allows to use recursion explicitly in only mgée clause of particular type. The proof shows
that all u-recursive functions can be expressed within this fragment

A natural decidable fragment of logic programming with ftians arenonrecursive programsn which
intuitively no predicate depends syntactically on itsetfg Section 5.1 for a definition). Their complexity is
characterized by the following theorem.

Theorem 4.8 ([Dantsin & Voronkov 199B]) Nonrecursive logic programming ISEXPTIME-complete.

The membership is established by applying SLD-resoluti@h eonstraints. The size of the derivation
turns out to be exponentiaNEXPTIME-hardness is proved by reduction from the tiling problem tfa
square2™ x 2,

Some other fragments of logic programming with function bgfs are known to be decidable too. For
example, the following result was established in [Shap884], by using a simulation of alternating Turing
machines by logic programs and vice versa.

Theorem 4.9 ([Shapiro 1984]) Logic programming with function symbotsPSPACE-complete, if each
rule is restricted as follows: the body contains only onematthe size of the head is greater than or equal
to that of the body, and the number of occurrences of any Marim the body is less than or equal to the
number of its occurrences in the head.

The simulation assumed that the input to an alternatingngumachine is written on the work-tape.
Extending the simulation by a distinguished input-tapegp@nek &Stépankova 1986] showed that the
class of logic programs having logarithmic (respectiv@lglynomial) goal-size complexity iB-complete
(respectively EXPTIME-complete). Here, the goal-size complexity is the maxinzd sf any subgoal (in
terms of symbols) occurring in the proof tree of a goal. Ralatiotions of complexity and normal forms of
programs, defined in terms of computation trees [Stépzmiéo Stépanek 1984], are studied in [Ochozka,
Stépanek &Stépankova 1988].

We refer to [Blair 1982, Fitting 198%, Fitting 198®] for further material on recursion-theoretic issues
related to logic programming.

2In the context of recursion theory, reducibility of a langedor problem)., to L, is understood in terms of a Turing reduction,
i.e., L1 can be decided by a DTM with oracle, rather than logarithmic-space reduction.
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4.5 Further issues

Besides data and combined complexity, many other complesipects of logic program have been inves-
tigated, in particular in the context of datalog. We dischese some of issues that have received broad
attention.

Sirups. A strongly restricted class of logic programs often consaden the literature is the class sihgle
rule programs(sirups) or programs consisting oherecursive rule and some nonrecursive (initialization)
rules or atoms.

For a long time, the decidability of the following problem svapen: Given an LR (with function
symbols) that consists of a unique recursive rule and a sgtaafnd atoms, and given a ground gaal
does it hold that?’ |= G? This problem is equivalent to titéorn clause implication problem.e., checking
whether the universal closure of a Horn cladselogically implies the universal closure of a Horn clause
Cs. The problem was shown to be undecidable in [Marcinkowski &Hlski 1992]. Some decidable
special cases of this problem were studied in [Gottlob 188itsch & Gottlob 1990, Leitsch 1990].

Several undecidability results of inference and satiditgbproblems for various restricted forms of
sirups with non-ground atoms or with nonrecursive rules banfound in [Devienne 1990, Devienne,
Lebégue & Routier 1993, Hanschke & Wiirtz 1993, Devienrehdgue, Parrain, Routier & Wurtz 1996].

Datalog sirups ar€XPTIME complete with respect fprogramandcombined complexitythis remains
true even for datalog sirups consisting of a unique rule anthats [Gottlob 1999]. It follows that deciding
whether (the universal closure of) a datalog clause lolyig@lplies (the universal closure of) another datalog
clause iEXPTIME complete, too. The problem of evaluatingi@nrecursiveHorn clause (with or without
function symbols) over a set of ground factsNiB-complete [Chandra & Merlin 1977] (even for a fixed
set of ground facts). (Here by “evaluation”, we mean deteingi whether a rule fires.) This problem is
computationally equivalent to the problem of evaluatingo@Banconjunctive querypver a database, i.e., a
datalog clause whose body contains only input predicatesakso to the well knowiNP-complete clause
subsumption problem [Garey & Johnson 1979] (see below). @drametric complexity of conjunctive
queries is studied on [Papadimitriou & Yannakakis 1997].

With respect tadata complexity datalog sirups are complete fBr and thus in general inherently se-
guential [cf. Kanellakis 1988]. There are, however, mangrigsting special cases in which sirup queries
can be evaluated in parallel.

Inside P and parallelization issues. In [Ullman & van Gelder 1988] th@olynomial fringe propertys
studied. Roughly, a datalog prografhhas the polynomial fringe property if it is guaranteed tlatdach
database) and goalG such thatP? U D |= G, there is a derivation tree who$enge (i.e., set of leaves)
is of polynomial size. The data complexity of datalog progsawith the polynomial fringe property is in
LOGCFL, which is the class of all languages (that is, problems) aéinatreducible in logarithmic space to
a context-free languaged. OGCFL is a subclass olC?, and thus contains highly parallelizable problems
[Johnson 1990]; furthermore, programs whose fringe is qaghgnomial (i.e.,()(21°gk ")) are inNC [Ullman

& van Gelder 1988, Kanellakis 1988]. HelNC? is the second level of thBC-hierarchy of complexity
classes\C'. These classes are defined by families of uniform Booleamiitir of depthO (log’ n) [Johnson
1990]. An example of programs with the polynomial fringe peaty are linearly recursive sirups; however,
there also exist nonlinear sirups that are not equivaleranip linear sirup and are still iNC [Afrati &
Cosmadakis 1989].
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In [Kanellakis 1988], thepolynomial (superpolynomial) tree-size property for Widtis considered.
Roughly, a datalog program has this property if every dbtivatom can be obtained by a widttderivation
tree of polynomial (superpolynomial) size. A widihderivation tree is a generalized derivation tree, where
each node may represent upktground atoms. For width = 1, the polynomial (resp., superpolynomial)
tree-size property coincides with the polynomial (resppespolynomial) fringe property; however, for
higher widths, the former properly generalizes the latikanellakis [1988] shows that the data complexity
of datalog programs having the polynomial (resp., supgrpohial) tree-size property for any fixed constant
width is in LOGCFL (resp., inNC).

Thehypergraph(V, E) associated with a Horn clause or conjunctive query has ds sétvertices the
set of variables occurring in the rule; its s8tof hyperedges contains for each atahin the rule body a
hyperedge consisting of the variables occurringlinif the hypergraph associated with a nonrecursive rule
is acyclic the evaluation problem is feasible in polynomial time [Makakis 1981] and is actually complete
for LOGCFL and thus highly parallelizable [Gottlob, Leone & Scarcel@98]. For generalizations of this
result to various types of nearly acyclic hypergraphs, &tjob, Leone & Scarcello 1999].

While determining whether a datalog program is parallélizai.e., has data complexity NC, is in
general undecidable [Ullman & van Gelder 1988, Gaifman,rbtai, Sagiv & Vardi 1987], the problem has
been completely resolved by [Afrati & Papadimitriou 1998t fin interesting and relevant class of sirups
calledsimple chain queriesThese are logic programs with a single recursive rule whigge hand side
consists of binary relations forming a chain. An exampleusfrsa rule, involving a database predicatés

S(X, Y) — (],(X, Zl), S(Zl, Zz), S(Zg, Z3), (],(Z3, Y)

Afrati & Papadimitriou [1993] show that (unle$s= NC) simple chain queries are either completeFaor
in NC. They give a precise characterization of theomplete andNC-computable simple chain queries.

Boundedness. Many papers have been devoted to the decidability obthenxdedness problefar datalog
programs. A datalog prograrf is bounded if there exists a constaiit such that for all database3, the
number of iteration steps needed in order to compute théfigad point M (ground(P U D, L(P, D))) is
bounded byt and is thus independent &f (it depends or? only). Boundedness is an interesting property,
because as shown in [Ajtai & Gurevich 1994], a datalog progistbounded if and only if it is equivalent
to a first-order query. For important related results on theivalence of recursive and nonrecursive dat-
alog queries, see [Chaudhuri & Vardi 1997]. The undecidtgbdf the boundedness for general datalog
programs was shown in [Gaifman et al. 1987], for linear reimar queries in [Vardi 1988], and for sirups
in [Abiteboul 1989]. There is a very large number of paperscdssing the decidability of boundedness
issues, both for syntactic restrictions of datalog programsirups and for variants of boundedness such as
uniform boundednes$so00d surveys of early work are given in [Kanellakis 1988] an[Kanellakis 1990].
The following is an incomplete list of papers where impottaasults and further relevant references on de-
cidability issues of boundedness or uniform boundednes®edound: [Hillebrand, Kanellakis, Mairson &
Vardi 1995, Marcinkowski 1996 Marcinkowski 199@]. Sufficient conditions for boundedness were given
in [Minker & Nicolas 1982, Sagiv 1985, loannidis 1986, Vai#i88, Naughton 1989, Cosmadakis 1989,
Naughton & Sagiv 1987, Naughton & Sagiv 1991].

Containment, equivalence, and subsumption. Issues that have been studied repeatedly in the context of
guery optimization are query equivalence and containm@utery containmenis the problem, given two
datalog program$’ and P, having the same input scherfig, and output schem®,,,;, whether for every
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input databas®;,, the output ofP; is contained in the output d®, i.e, M p, (D;y,)|p € Mp,(D;y,)|p holds,
for every relatiorp € D,,;:. As shown by Shmueli [1987], containment and equivaleneaiadecidable for
datalog programs; however, a stronger form of uniform comtent is decidable [Sagiv 1988].

In the case wheré” and P, contain only conjunctive queries, containment and eqeiveg are\P-
complete [Sagiv & Yannakakis 1981], and rem&iR-complete even i, and P, consist of single conjunc-
tive queries [Chandra & Merlin 1977]. If the domain has adinerder< and comparison literalg < s,
t1 < t9, andt; # to may be used in rule bodies, then the containment problemrfglesconjunctive queries
is IT5-complete [van der Meyden 1997]; this result generalizesets of conjunctive queries. As shown in
[van der Meyden 1997], conjunctive query containment 15 si-NP-complete if the database relations are
monadic, but polynomial if an additional sequentialitytrietions is imposed on order literals.

Containment of a nonrecursive datalog progrBnin a recursive datalog program is decidable, since
P, can be rewritten to a set of conjunctive queries, and degidinether a conjunctive query is contained in
an arbitrary (recursive) datalog progranEXPTIME-complete [Cosmadakis & Kanellakis 1986, Chandra,
Lewis & Makowsky 1981]. Chaudhuri & Vardi [1994] have invigstted the converse problem, i.e., con-
tainment of a recursive datalog prograPn in a nonrecursive datalog prograf. They showed that the
problem is 3EXPTIME-complete in general and2XPTIME-complete if P is a set of conjunctive queries.
Furthermore, they showed that deciding equivalence of arse® and a nonrecursive datalog program is
3-EXPTIME-complete.

We observe that the containment problem for conjunctiveigaés equivalent to the clause subsumption
problem. A clause&” subsumes clauseD, if there exists a substitutiofi such thatC# C D; subsumption
algorithms are discussed in [Gottlob & Leitsch 188&ottlob & Leitsch 1988, Bachmair, Chen, Ramakr-
ishnan & Ramakrishnan 1996]. This equivalence extendstsoaeconjunctive queries, i.e., in essence to
nonrecursive datalog programs [Sagiv & Yannakakis 1981r & discussion of subsumption-based and
other notions of equivalence for logic programs, see [Mdl988].

The clause subsumption problem plays a very important roltaé field ofinductive logic program-
ming (ILP) [Muggleton 1992]. For complexity results on ILP consult ¢ & Dzeroski 1994, Gottlob,
Leone & Scarcello 1997]. A problem related to clause subgiomps clause condensation.e., remov-
ing redundancy from a clause. Complexity results and algms for clause condensation can be found
in [Gottlob & Fermuller 1993]. The complexity of the clausealuation problem and of other related prob-
lems ongeneralized Herbrand interpretationg/hich may contain nonground atoms, is studied in [Gottlob
& Pichler 1998].

5 Complexity of logic programming with negation

5.1 Stratified negation

A literal L is either an atom (called apositive litera) or a negated atom A (called anegative litera).
Literals A and— A arecomplementaryfor any literal L., we denote by-.7 its complementary literal, and
for any setLit of literals, —.Lit = {—.L | L € Lit}.

A normal clauseés a rule of the form

A—1Li,....,Ln, (m>0) (1)

where A is an atom and each; is a literal. Anormal logic progranis a finite set of normal clauses.
The semantics of normal logic programs is not straightfedyand numerous proposals exist [cf. Bidoit
1991, Apt & Bol 1994]. However, there is general consensustiatified normal logic programs.
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A normal logic programP is stratified [see Apt, Blair & Walker 1988], if there is an assignment(-)
of integers 0,1,... to the predicatesn P, such that for each clausein P the following holds: Ifp is the
predicate in the head efandq the predicate in adl; from the body, thertr(p) > str(q) if L; is positive,
andstr(p) > str(q) if L; is negative.

Example 5.1 Reconsider the steam turbine scenario in Example 2.1, @ang ladd the following rules to
the program there:

checksensors «+ signalerror
signalerror «+ valveclosed—signal 1
signalerror <« pressureloss —signal 2
signalerror <« overheat—signal3

These rules express knowledge about potential signalsemgrich must handled by checking the sensors.
The augmented prograrR is stratified: E.g. for the assignmesir(A) = 1 for A € {checksensors
signalerror} andstr(B) = 0 for any other atonB occurring inP, the condition of stratification is satisfied.

The reductof a normal logic progranP by a Herbrand interpretatioh [Gelfond & Lifschitz 1988],
denotedP’, is the set of ground clauses obtained frgmund P) as follows: first remove every clause
r with a negative literalZ in the body such that.L € I, and then remove all negative literals from the
remaining rules. Notice tha®! is a set of groundHorn clauses.

The semantics of a stratified normal prograhis then defined as follows. Take an arbitrary stratification
str. Denote byP_;, the set of rules: such thatstr(p) = k, wherep is the head predicate of Define a
sequence of Herbrand interpretation®, = (), and M;. ., is the least Herbrand model @Iﬂfj U M, for
k > 0. Finally, let

M (P) = UM,; U{-A|A¢ UMi}'

The semantics\ i, does not depend on the stratificatiom [Apt et al. 1988]. Note that in the proposi-
tional caseM - (P) is polynomially computable.

Example 5.2 We consider the prograr®? in Example 5.1. For the stratificatiostr(-) of P given there,
P_, contains the clauses listed in Example 2.1, &g the clauses introduced in Example 5.1. Then,

My=0 PN =R,
My =Tg PMr — {checksensors— signalerror, signalerror « overhea}
My =T

whereTp’ = {signall, signal2, valveclosed pressureloss leak shutdowny. Thus, M, (P) = T¢
uU{-signal 3, —overheat —signalerror, ~checksensor$.

Theorem 5.3 (implicit in [Apt et al. 1988]) Stratified propositional lagprogramming with negation is
P-complete. Stratified datalog with negation is data conepietP and program complete f&¥XPTIME.

For full logic programming, stratified negation yields thréranetical hierarchy.

Theorem 5.4 ([Apt & Blair 1988]) Logic programming withn levels of stratified negation X% 41-
complete.
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signature (>2,0,0) | (,1,0) | (,>2,0) | (,_,>1)

not range-restricted

no negation | PSPACE PSPACE | NEXPTIME NEXPTIME

with negation| PSPACE | PSPACE | TA(29(®/1e") (O(n/logn)) | NONELEMENTARY (n)
range-restricted
no negation | PSPACE PSPACE | PSPACE NEXPTIME

with negation| PSPACE | PSPACE | PSPACE TA(27/ 1087 1 /1ogn)

Table 1: Summary of results.

Recall here thaE? , ; denotes the relations over the natural numbers that areatigiin arithmetic by
means of a first-order formula(Y) = IX VX - - - QX1 (Xo, - - ., X, Y) with free variablesy', where
the quantifiers alternate angis quantifier-free; in particula{ contains the r.e. sets. Further complexity
results on stratification can be found in [Blair & Cholak 1924lopoli 1992].

A particular case of stratified negation are nonrecursiggclprograms. A program isonrecursiveif
and only if it has a stratification such that each predigatecurs in its defining straturft_ ., only in the
heads of rules.

Theorem 5.5 (implicit in [Immerman 1987, Vardi 1982]) Nonrecursive pasitional logic programming
with negation i?-complete. Nonrecursive datalog with negation is programlete forPSPACE, and its
data complexity is in the clasgsC”, which contains the languages recognized by unboundeih feineuits
of polynomial size and constant depth [Johnson 1990].

Vorobyov & Voronkov [1998] classified the complexity of n@wursive logic programming depending
on the signature, presence of negation and range-restricéi clauseP is calledrange-restrictedf every
variable occurring in this clause also occurs in a posiiiegd! in the body. A progran® is range-restricted
if so is every clause iP. Range-restricted clauses have a number of good propédtiesxampledomain-
independenceBefore presenting the results of Vorobyov & Voronkov [1398e explain the notation for
signatures used in their paper. The tufllel/, m) denotes the signature withconstants] unary function
symbols andn function symbols of arity> 2. The complexity of nonrecursive logic programming is
summarized in Table 1.

In this tableTA(f(n), g(n)) means the class of functions computable on alternatinghgumachines
[Chandra, Kozen & Stockmeyer 1981] usig@) (n)) alternations with timg (O(n)) on every branch. Such
classes are closed undmolylin (andloglin) reductions, i.e., those running in polynomial time (regjely,
logarithmic space), with output linearly bounded by theuingBSuch complexity classes arise in connection
with the complexity characterization of logical theori®&efman 1977, Berman 1980].

In order to definélONELEMENTARY (n), define functiong, (n) = n, ex11(n) = 2% andeq, (n) =
e, (0). Recall that a problem is calleelementary recursivef it can be decided within time bounded by
er(n) for some fixed natural numbér. ThenNONELEMENTARY (f(n)) is the class of problems with
lower and upper time bounds of the forn, (f(cn)) andes (f (dn)) for somee, d > 0. In all cases in the
table we have completeness in the corresponding completeisg, except foNONELEMENTARY (n) (in
this case both lower and upper bounds are linearly growingts of 2’s).

Thus, there is a huge difference between nonrecursiveadataith negation and nonrecursive logic
programming with negation in their program complexity, reyfPSPACE vs. NONELEMENTARY (n).

At the same time, as [Vardi 1982] and the following resultwghiooth the languages have polynomial data



24 INFSYS RR 1843-99-05

complexity.

Theorem 5.6 ([Dantsin & Voronkov 1998]) Nonrecursive logic programmiwith negation has polyno-
mial data complexity.

5.2 Well-founded negation

Roughly speaking, thevell-founded semantics (WF8)an Gelder, Ross & Schlipf 1991] assigns value
“unknown” to an atomA, if it is defined by unstratified negation. Briefly, WFS can lediged as follows
[Baral & Subrahmanian 1993]. Letp (/) be the operatoFp(/) = Tp7. SinceFp (/) is anti-monotone,
F2(I) is monotone, and thus has a least and a greatest fixpointedebpF21°° and F2,>°, respectively.
Then, the meaning of a programunder WFS M ¢, (P), is

Mups(P) = FE1© U {-A| A ¢ F3™}.
Note that on stratified programs, WFS and stratified semsantacide.

Theorem 5.7 (implicit in [van Gelder 1989, van Gelder et al. 1991]) Prsjtional logic programming
with negation under WFS iB-complete. Datalog with negation under WFS is data comgtate> and
program complete fOEXPTIME.

The question whetheP =, A can be decided in linear time is open [Berman, Schlipf & Feanc
1995]. A fragment of datalog with well-founded negationtthas linear data complexity and, under certain
restrictions, also linear combined complexity, was relgeigientified in [Gottlob, Gradel & Veith 1998].
This fragment, calledlatalog LITE is well-suited for expressing temporal properties of adistate system
represented as a Kripke structure. It is more expressive @EL and some other well-known temporal
logics used in automatic verification.

For full logic programming, the following is known.

Theorem 5.8 ([Schlipf 199%)]) Logic programming with negation under WFSIig-complete.

The clasdI} belongs to thanalytical hierarchy(in a relational form) and contains those relations which
are definable by a second-order form@éX) = VP¢(P; X), whereP is a tuple of predicate variables and
¢ is a first-order formula with free variabléX. For more details about this class in the context of logic
programming, see e.g. [Schlipf 199%iter & Gottlob 1997].

5.3 Stable model semantics

An interpretation/ of a normal logic progranP is a stable modebf P [Gelfond & Lifschitz 1988], if

I =Tz, i.e., I is the least Herbrand model & .

In general, a normal logic prografm may have zero, one, or multiple stable models.
Example 5.9 Let P be the following program:

sleep «+ -—work
work «+ —sleep

ThenM; = {sleeg and M, = {work} are the stable models &f.
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Denote by SMP) the set of stable models d?. The meaningM,; of P under thestable model
semantics (SMSis

Ma(P)= () (MU-.(Bp\M)).
MEeSM(P)

Note that every stratified® has a unique stable model, and its stratified and stable siemaoincide.
Unstratified rules increase complexity.

Theorem 5.10 (Marek & Truszczyhski [1991], Bidoit & Froidevaux [1991]piven a propositional normal
logic programP, deciding whether SKP) = () is NP-complete.

Proof.

1. Membership Clearly, P’ is polynomial time computable fror® andI. Hence, a stable moda¥ of
P can be guessed and checked in polynomial time.

2. Hardness Modify the DTM encoding in Section 4 for a nondeterministigring machinel” as fol-
lows. For each state and symbob, introduce atoms3; ,1[7],...,Bs ,x[7] forall1 <7 < N and
transitions(s, o, s;, o}, d;), wherel < i < k. Add B, ;[7] in the bodies of the transition rules for
(s,0,si,0%,d;) and the rule

BS,U,?',[T] — _'Bs,o,l[TL ey _'BS,U,ifl[T]v
ﬁstgvﬂ,l[T], ey ﬁBs,rr,k [7‘}

Intuitively, these rules nondeterministically selectgisely one of the possible transitions foando
at time instantr, whose transition rules are enabled ¥da,, ;[7]. Finally, add a rule

accept« —accept

It ensures thaacceptis true in every stable model. The stable modefsof the resulting program
correspond to the accepting runsiof 0

As an easy consequence, we obtain

Theorem 5.11 ([Marek & Truszczyhski 1991, Schlipf 198§ cf. also [Kolaitis & Papadimitriou 1991])
Logic programming with negation under SMSds-NP-complete. Datalog with negation under SMS is
data complete foco-NP and program complete fao-NEXPTIME.

For full logic programming, SMS has the same complexity asSVF

Theorem 5.12 ([Schlipf 199%, Marek, Nerode & Remmel 1994]) Logic programming with négaunder
SMS isII}-complete.

Further results on stable models of recursive (rather thdp finite) logic programs can be found in
[Marek, Nerode & Remmel 1992].

Beyond inference, further complexity aspects of stable eteotave been analyzed, including compact
representations of stable models and the well-founded miraaof nonground logic programs [Gottlob,
Marcus, Nerode, Salzer & Subrahmanian 1996, Eiter, Lu & Shitranian 1998], and optimization issues
such as determining symmetries across stable models,[Eit¢tlob & Leone 1990].
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5.4 Inflationary and noninflationary semantics

Theinflationary semantics (INF$Mbiteboul & Vianu 1994, Abiteboul, Hull & Vianu 1995] is inspired by
inflationary fixpoint logic [Gurevich & Shelah 1986]. In plof72°, it uses the limitI'’s° of the sequence

TS = 0,
TE = Tp(T}), ifi>0,

whereTp is theinflationary operatorf([) =TUTp:i(I). Clearly,ﬁ%O is computable in polynomial time
for a propositional progran. Moreover,75° coincides withT'z° for Horn clause programg. Therefore,
by the above results,

Theorem 5.13 ([Abiteboul & Vianu 1994]; implicit in [Gurevich & Shelah 1986]) Logic programming
with negation under INFS i®-complete. Datalog with negation under INFS is data coreplet P and
program complete fOEXPTIME.

Thenoninflationary semantics (NINF@biteboul & Vianu 199, in the version of Abiteboul & Vianu
[1995, page 373], uses in placeDf° the limit 7'5° of the sequence

TS = 0,
TS = Tp(Th), if i >0,

whereTp(I) = Tpi(I), if it exists; otherwise's° is undefined. Similar equivalent algebraic query lan-
guages have been earlier described in [Chandra & Harel 1&2lj 1982]. In particular, datalog under
NINFS is equivalent to partial fixpoint logic [Abiteboul & ®nu 1994, Abiteboul et al. 1995].

As easily seen7’s° is for a propositional progran® computable in polynomial space; this bound is
tight.

Theorem 5.14 ([Abiteboul & Vianu 199%, Abiteboul et al. 1995]) Logic programming with negation
under NINFS iPSPACE-complete. Datalog with negation under NINFS is data cotegdter PSPACE and
program complete foEXPSPACE.

5.5 Further semantics of negation

A number of interesting further semantics for logic prograimg with negation have been defined, among
them partial stable models, maximal partial stable modetgjlar models, perfect models, fixpoint models,
the 2- and 3-valued completion semantics, and the tie-brgaemantics; see e.g. [Schlipf 1995/ou

& Yuan 1995, Kolaitis & Papadimitriou 1991, PapadimitriouMannakakis 1997]. These semantics must
remain undiscussed here; see e.g. [Schlipf b98acca 1995, Kolaitis & Papadimitriou 1991, Papadimitrio
& Yannakakis 1997] for more details and complexity results.

Extensions of logic programming with negation have beemp@sed which handle different kinds of
negation, namely strong and default negation [see e.gofikl Lifschitz 1991, Pearce & Wagner 1991].
The semantics we have considered above use default negatiba single kind of negation. Different kinds
of negation increase the suitability of logic programmirsgaaknowledge representation formalism [Baral
& Gelfond 1994].

In the approach of Gelfond & Lifschitz [1991], strong negatis interpreted as classical negation. E.g.,
the rule

flies(X) <+ ~ —fliegX),bird(X)
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naturally expresses that a bird flies by default; here, is default negation and-" is classical negation.
The language oéxtended logic programiseats literals with classical negation as atoms, on wheafault
negation may be applied. The notionasfswer sefor such a program is defined by a natural generalization
of the concept of stable model [see Gelfond & Lifschitz 1991]

As for the complexity, there is no increase for extendeddqgograms over normal logic programs
under SMS.

Theorem 5.15 (Ben-Eliyahu & Dechter [1994]) Given a propositional exded logic progran, deciding
whetherP has an answer setdP-complete, and extended logic programmingds\NP-complete.

Complexity results on extended logic programs with rulegties can be found in [Brewka & Eiter
1998], and for an extension of logic programming using higral modules in [Buccafurri, Leone &
Rullo 1993].

6 Disjunctive logic programming

Informally, disjunctive logic programming (DLR9xtends logic programming by adding disjunction in the
rule heads, in order to allow more suitable knowledge reprgion and to increase expressiveness. For
example,

male(X) V female(X) < person(X)

naturally represents that any person is either male or f'emal
A disjunctive logic progranis a set of clauses

AV VAL, Lq...., Ly (k217m20)7 (2)

where each; is an atom and each; is a literal. For a background, see [Lobo, Minker & Rajaseka®2]
and the more recent [Minker 1994].

The semantics of negation-free disjunctive logic prograrmsed ominimal Herbrand models, as the
least (unigue minimal) model does not exist in general.

Example 6.1 Let P consist of the single claugev g < . Then,P has the two minimal models/; = {p}
andMs = {q}.

Denote by MM P) the set of minimal Herbrand models 8f The Generalized Closed World Assump-
tion (GCWA)[Minker 1982] for negation-fred”> amounts to the meaningt ccwa(P) = {L | MM(P) =
L}.

Example 6.2 Consider the following propositional prograii, describing the behavior of a reviewer while
reviewing a paper:

goodVv bad <« paper
happy «+ good
angry <« bad
smoke < happy
smoke « angry
paper «+
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The following models of”’ are minimal:

M; = {paper,good happy smoke} and
M, = {paper, bad angry, smoke.

Under GCWA, we have® =g cw 4 smokewhile P ~gow 4 goodand P ~geow 4 —good

Theorem 6.3 ([Eiter & Gottlob 1993, Eiter et al. 1994]) Ld? be a propositional negation-free disjunctive
logic program and4 be a propositional atoni:) Deciding whethe” =gcwa A is co-NP-complete.(i7)
Deciding whethe® =gow 4 —A is T15-complete.

Proof. Itis not hard to argue that for an atom we haveP |=ccwa A if and only if P |=pc A, where
E=pc is the classical logical consequence relation. In addifitis not hard to argue that any set of clauses
can be represented by a suitable disjunctive logic progidemce, by the well-knowhlP-completeness of
SAT, part(i) is obvious.

Let us thus consider pafti).

1. MembershipWe haveP [~qcw 4 —A if and only if there exists a/ € MM (P) such thatVf = —A,
i.e., A € M. Clearly, a guess foM can be verified with an oracle f&P in polynomial time; from
this, membership of the problem Ii, follows.

2. Hardness We showlI5-hardness by an encoding of alternating Turing machinesAlChandra,
Kozen & Stockmeyer 1981]. Recall that an ATMhas its set of states partitioned into existential
(3) and universalY) states. If the machine reaches-#state (respectivelyy-state)s in a run, then
the input is accepted if the computation continued in somep@ctively, all) of the possible successor
configurations is accepting. As in our simulations aboveassime thal’ has a single tape.

The polynomial-time bounded ATMs which start irvestates, and have one alternation, i.e., pre-
cisely one transition from g-state to ari-state in each run (and no reverse transition), solve @cis
the problems if1} [Chandra, Kozen & Stockmeyer 1981].

By adapting the construction in the proof of Theorem 5.10,slwew how any such machirié on
input 7 can be simulated by a disjunctive logic prograhunder GCWA. Without loss of generality,
we assume that each run’Bfis polynomial-time bounded [Balcazar, Diaz & Gabarr6 QP9

We start from the clauses constructed for the NT\on input? in the proof of Theorem 5.10, from
which we drop the clausaccept«+ —acceptand replace the clauses

B""ﬂ”ﬂi’[’r] — ﬂBsyﬂ'yl[TL ce _'BS,O',ifl[T]a
ﬁBs,U,i+1[T]7 ey ﬁBs,rr,k, [7’]

for s ando by the logically equivalent disjunctive clause
B a[T]V -V Bg g1 [T]

Intuitively, in a minimal model precisely one of the atofis, ;[7] will be present, which means that
one of the possible branchings is followed in a run. The curodauses constitute a propositional
program which deriveacceptunder GCWA if and only ifT" would acceptl if all its states were
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universal. We need to respect thestates, however. For eaéhstates and time pointr > 0, we set
up the following clauses, wheréis any3-state,r < 7/ < N,0 <7 < N,andl <i < k:

state/[7'] <+ nacceptstate[r

symbo}[r', 7] <+ nacceptstate

cursofir’, 7] <+ nacceptstate
]

Bs»i[T'] <+ nacceptstate,

T
T

————

T

Intuitively, these rules state that if a nonaccepting ruteenani-state, i.e.nacceptis true, then all
relevant facts involving a time point > 7 are true. This way, nonaccepting runs are tilted. Finally,
we set up for each nonaccepting termifatates the clauses

naccept + state[r], 0 <7 < N.

These clauses state thmgtccepts true if the run ends in a nonaccepting state. Pétbe the resulting
program. The minimal modeld/ of P* which do not contain nacceptorrespond to the accepting
runs of 7.

It can be seen that the minimal modelsfof which containnacceptcorrespond to the partial runs of
T from the initial statesy to an3-states from which no completion of the run ending in an accepting
state is possible. This implies th&" has some minimal modél/ containingnacceptprecisely if

T, by definition, does not accept inplit Consequently”* =ccwa —naccept i.e., nacceptis in

no minimal model of P, if and only if T accepts inpuf. It is clear that the progran®™ can be
constructed in logarithmic space. Consequently, decidirngccw a —A is I15-hard. O

Note that many problems in the field of nonmonotonic reagpaieIl-complete, [e.g. Gottlob 1992,
Eiter & Gottlob 1992, Eiter & Gottlob 1994.

Stable negation naturally extends to disjunctive logicgpams, by adopting that is a (disjunctive)
stable modebf a disjunctive logic progran® if and only if I € MM (P!) [Przymusinski 1991, Gelfond
& Lifschitz 1991]. The disjunctive stable model semantiobsumes the disjunctive stratified semantics
[Przymusinski 1988]. For well-founded semantics, no suatural extension is known; the semantics in
[Brass & Dix 1995, Przymusinski 1995] are the most appeadittgmpts in this direction.

Clearly, P! is easily computed, ant#t! = P if P is negation-free. Thus,

Theorem 6.4 ([Eiter & Gottlob 199%, Eiter et al. 1994, Eiter, Gottlob & Mannila 1997]) Propasiial
DLP under SMS id15 complete. Disjunctive datalog under SMS is data completd#pand program
complete forco-NEXPTIMENP.

The latter result was derived by utilizing complexity updjreg techniques as described above in Sec-
tion 4.3. We remark that a sophisticated algorithm for cotimgustable models of propositional disjunctive
logic programs, which mirrors the complexity of the problémits structure, is described in [Leone, Rullo
& Scarcello 1997].

For full DLP, we have:

Theorem 6.5 ([Chomicki & Subrahmanian 1990]) DLP under GCWAIi§-complete.

Theorem 6.6 ([Eiter & Gottlob 199%]) Full DLP under SMS id1}-complete.
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Thus, disjunction adds complexity under GCWA and under SM8nite Herbrand universes (unless
co-NP = TII%), but not in infinite ones. This is intuitively explained blyet fact that DLP under SMS
corresponds to a weak fragmentldf which can be recursively translatedTtq.

Many other semantics for DLP have been analyzed. For sonteof,tthe complexity is lower than for
SMS, for example for the coinciding possible worlds and gasanodel semantics [Chan 1993, Sakama
& Inoue 1994, as well as for the causal model semantics [Dix, Gottlob &dkal996], which are all
co-NP-complete. Others have higher complexity, for example égeilar model semantics and the maximal
partial stable model semantics [Eiter, Leone & Sacca 1998jvever, typically they arélb-complete in the
propositional case.

Extended disjunctive logic programs (EDLPs), which haviaulé and classical negation, are defined
analogous as in the case of non-disjunctive logic progra@edfpnd & Lifschitz 1991]. The notion of
answer set is generalized in the same way as stable modekfroon-disjunctive program to a disjunctive
one. There is no complexity increase over disjunctive staidels; in particular, extended disjunctive logic
programming ig15-complete in the propositional case [Eiter & Gottlob 1Bp5

Fragments of EDLPs that have lower complexity are known. Most important such fragment are
headcycle-free programsinformally, an EDLPP is headcycle-free, if there are no two distinct atoms
A and B which mutually depend on each other through positive réonré.e., default negation is dis-
regarded), such that and B occur in the head of the same rule Bf As shown in [Ben-Eliyahu &
Dechter 1994], extended disjunctive logic programmingHeadcycle-free programs ée-NP-complete,
and thus polynomial-time transformable to (disjunctioge) normal logic programming under stable model
semantics.

A generalization of EDLPs by allowing default negation ire thead has been studied in [Inoue &
Sakama 1998]. As the authors show, the complexity of botitrarp and headcycle-free programs does
not increase. Other extensions of disjunctive logic prograng and their complexities are studied in [e.g.
Marek, Truszczyhski & Rajasekar 1995, Minker & Ruiz 1994jcBafurri, Leone & Rullo 1997, Buc-
cafurri et al. 1998, Rosati 1997, Rosati 1998]. In particu[8uccafurri, Leone & Rullo 1997] ana-
lyzes the effect of different kinds of constraints on stafledels. Weak constraints may be violated at
a penalty, leading to a cost-based notion of stable modedsevbomplexity is characterized as an optimiza-
tion problem. In [Buccafurri et al. 1998], disjunctive lagprograms are extended by classical negation
and modularization with inheritance; as shown, these featdo not increase the complexity. The papers
[Rosati 1997, Rosati 1998] address the complexity of uspigtemic operators such as minimal knowledge
and belief in disjunctive logic programs.

7 Expressive power of logic programming

The expressive power of query languages such as datalogjscacommon to database theory [Abiteboul
et al. 1995] and finite model theory [Ebbinghaus & Flum 199&itthas attracted much attention by both
communities. By the expressive power of a (form@liery languagewe understand the set of all queries
expressible in that language. Note that we will not only rieenguery languages used in database systems,
but also formalisms used in formal logic and finite model tigezuch as first and second-order logic over
finite structures or fixpoint logic (for precise definitionsrsult [Ebbinghaus & Flum 1995]).

In general, @ueryq defines a mapping/, that assigns to each suitable input database(over a fixed
input schema) a result databag,; = M, (D) (over a fixed output schema); more logically speaking, a
guery defines global relations [Gurevich 1988]. For reasmepresentation independence, a query should,
in addition, begenerig i.e., invariant under isomorphisms. This means that i a permutation of the
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domainDom(D), then M(7(D;,)) = 7(D,ut). Thus, when we speak about queries, we always mean
generic queries.

Formally, theexpressive poweof a query languagé) is the set of mappingg1, for all queriesq
expressible in the languaggby someguery expressiofprogram)F; this syntactic expression is commonly
identified with the semantic query it defines, and simple finse of definition) called a query.

There are two important research tasks in this context. Thei$§i comparing two query languagés
and (@ in their expressive power. One may prove, for instance,(mag ()2, which means that the set of
all queries expressible i@, is a proper subset of the queries expressibl€in and hence()- is strictly
more expressive thaf};. Or one may show that two query languag@gsand(- have the same expressive
power, denoted b¥); = ()2, and so on.

The second research task, more related to complexity theéoetermining the absolute expressive
power of a query language. This is mostly achieved by protivag a given query language is able to
express exactly all queries whose evaluation complexiity &complexity clasg. In this case, we say that
() capturesC and write simplyQ = C. Theevaluation complexitef a query is the complexity of checking
whether a given atom belongs to the query result, or, in tise od Boolean queries, whether the query
evaluates tarue [Vardi 1982, Gurevich 1988].

Note that there is a substantial difference between showiagthe query evaluation problem for a
certain query languag@ is C-complete and showing th& capturesC. If the evaluation problem fo€)
is C-complete, therat least oneC-hard query is expressible iQ. If ) capture<, then(@Q expressesll
gueries evaluable id (including, of course, alC-hard queries). Thus, usually proving th@tcapturesC
is much more involved than proving that evaluatiQequeries isC-hard. Note also that it is possible that
a query languagé) captures a complexity clagsfor which no complete problems exist or for which no
such problems are known. As an example, second-order logicfimite structures captures the polynomial
hierarchyPH, for which no complete problem is known. However, the exiseeof a complete problem of
PH would imply that it collapses at some finite level, which iglelly believed to be false.

The subdiscipline of database theory and finite model thdeajing with the description of the expres-
sive power of query languages and related logical formalisita complexity classes is calle@tscriptive
complexity theorjlmmerman 1987, Leivant 1989, Immerman 1998]. An early fiational result in this
field was Fagin’'s [1974] theorem stating that existentiaosel-order logic captureNP. In the eighties
and nineties, descriptive complexity theory has becomeuisloing discipline with many deep and useful
results.

To prove that a query languagg captures a machine-based complexity ctassne usually shows that
eachC-machine with (encodings of) finite structures as inputs$ teanputes a generic query can be repre-
sented by an expression in langua@e There is, however, a slight mismatch between ordinary inash
and logical queries. A Turing machine works on a string enmggdf the input databasP. Such an encod-
ing provides an implicilinear orderon D, in particular, on all elements of the univer&g,. The Turing
machine can take profit of this order and use this order indtsfutations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the univigfsés a pure set and thus unordered. For “pow-
erful” query languages of inherent nondeterministic natatrthe level oNP this is not a problem, since an
ordering onUp can be nondeterministically guessed. However, for manyygaeguages, in particular, for
those corresponding to complexity classes beliy generating a linear order is not feasible. Therefore,
one often assumes that a linear ordering of the universeeglenis predefined, i.e., given explicitly in the
input database. More specifically, loydered databasesr ordered finite structureswe mean databases
whose schemas contain special relation symBaoisg First, andLast that are always interpreted such that
Sucgz, y) is a successor relation of some linear order Binsit(x) determines the first element ahdst )
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the last element in this order. The importance of predefireght orderings becomes evident in the next
two theorems.

Before coming to the theorems, we must highlight anotheidlsmamatch between the Turing machine
and the datalog setting. A Turing machine can consider egulit bit independently of its value. On the
other hand, a plain datalog program is not able to detecisthvae atom iiot a part of the input database.
This is due to the representational peculiarity that onlsitdce information is present in a database, and that
the negative information is understood via the closed waslslimption. To compensate this deficiency, we
will slightly augment the syntax of datalog.hroughout this section, we will assume that input predisat
may appear negated in datalog rule bodies; the resultingylemge isdatalog™. This extremely limited
form of negation is much weaker than stratified negation, @andd be easily circumvented by adopting a
different representation for databases.

Theorem 7.1 (a fortiori from [Chandra & Harel 1982]) Dataldg; P.

Proof. (Hint.) Show that there exists no datafogrogram P that can tell whether the universé of the
input database has an even number of elements. O

Clearly, plain datalog (without negation of the input peades) can only definmonotonic queries.e.,
the output grows monotonically with the input, and thus l&tacan not express all queries computable
in polynomial time. The natural question is thus to ask weetthatalog expresses all monotone queries
computable in polynomial time. As shown in [Afrati, Cosmkida& Yannakakis 1995], the answer is
negative. In particular, dataldgcan not express whether a given set of linear constraintheffdrm
x+y+2z = 1orz = 0isinconsistent, even on ordered databases [Afrati et 86[L%urthermore, deciding
whether a directed graph has path with lengfiegect squarés not expressible in datalog” (i.e., datalog
augmented with inequality). The language datalegs first studied by Shmueli [1987], who showed that is
more expressive than plain datalog. Properties and expeesss aspects of this language have been further
studied e.g. in [Gaifman et al. 1987, Lakshmanan & MendelZ@80, Ajtai & Gurevich 1994, Kolaitis &
Vardi 1995, Afrati 1997].

Theperfect squarguery is expressible in datalbg” on ordered databases, however. This is a corollary
to the next result.

Theorem 7.2 ([Papadimitriou 1985, Gradel 1992]; implicit in [Vardi 82, Immerman 1986]) On ordered
databases, datalbgapturesP.

Proof. (Sketch) By Theorem 5.3, query answering for a fixed datalpgogram is inP. It thus remains to
show that each polynomial-time DTM on finite input database® € INST(D;,,) can be simulated by a
datalog” program. To show this, we first make some simplifying assimnpt

1. The universé/p is an initial segmeni), » — 1] of the integers, an8ucg First, andLastare from the
natural linear ordering over this segment.

2. The input database schermg, consists of a single binary relatid#, plus the predefined predicates
SuccFirst, Last In other words,D is always (an ordered) gragh’, ).

3. T operates ir< n* steps, where, = |U| > 1.

4. T computes a Boolean (0-ary) predicate.
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The simulation is akin to the simulation used in the proof§leéorems 4.2 and 4.5.

Recall the framework of Section 4.1. In the spirit of thisnfirework, it suffices to encode® time-
pointsT and tape-cell numbers within a fixed datalog program. This is achieved by considgfi-tuples
X = (Xy,...,Xy) of variablesX; ranging overU. Each suchi-tuple encodes the integent(X) =
iy Xi-nf

At time point0 the tape ofl" contains an encoding of the input graph. Recall that in 8eetil this was
reflected by the following initialization facts

symbo} [0, 7] for0 <= < |I|, wherel, = o.

Before translating these rules into appropriate datalégsrwe shall spend a word about how input graphs
are usually represented by a binary strings. A grdph) is encoded by binary stringnq U, G) of length
|U%:if G(i, ) is true fori, j € U = [0,n — 1] then the bit numbei x n + j of endU, G) is 1, otherwise
this bit is0. The bit positions oenqU, G) are exactly the integers fromto n? — 1. These integers are
represented by all-tuples(0*~2, a, b) such thai, b € U. Moreover, the bit-positiornt((0*~2, X,Y)) of
enqU, G)is 1ifand only if G(X,Y) is true in the input database afatherwise.

The above initialization rules can therefore be translatéathe datalog rules

symbo][0*, 02, X, Y] « G(X,Y)
symboj[0¥, 082, X, Y] « -G(X,Y)

Intuitively, the first rule says that at time poifit= int(0*), bit numberint((0*=2, X, Y')) on the tape is 1

if G(X.,Y) is true. The second rule states that the same bit is falS€Xf, V) is false. Note that the second
rule applies negation to an input predicat@nly this rule in the entire datalog program uses negation

Clearly, these two rules simulate that at time pdinthe cellscy,. .., ¢,2_; contain precisely the string
endU, G).

The other initialization rules described in Section 4.1as® easily translated into appropriate datalog
rules. Let us now see how the other rules are translated attiady.

From the linear order given lyuc¢ X, V'), First(X ), andLast X ), it is easy to define by datalog clauses
a linear order<* on k-tuplesSucé (X, Y), First”(X), Last'(X) (see the proof of Theorem 4.5), by using
Sucé = Sucg First' = First andLast' = Last By usingSucé, transition rules, inertia rules and the accept
rules are easily translated into datalog as in the proof @orém 4.5.

The output schema of the resulting datalog progi@amis defined to beD,,; = {accept. It is clear
that this program evaluates tae on inputD = (U, G), i.e., PT U D = acceptif and only if 7" accepts
endU, G).

The generalization to a setting where the simplifying agsions 1-3 are not made is rather straight-
forward and is omitted. Assumption 4 can also be easilydiftethe computation of output predicates. We
consider here the case where the output schBge contains a single binary relatiaR. Then, the output
database)’ computed byT’, which is a graph U, R), can be encoded similar as the input database as a
binary stringenqU, R) of length|U|?. We may suppose that when the machine enters the halt stiste, t
string is contained in the first/|? cells of the tape. To obtain the positive facts of the outplétion R, we
add the following rule:

R(X,Y) <+« symbol[Y,0F2 X,Y]), stat@a [Y]



34 INFSYS RR 1843-99-05

We remark that a result similar to Theorem 7.2 was indepdhdebtained by Livchak [1983].

Let us now state somewhat more succinctly further intargstésults on datalog. A prominent query
language idixpoint logic (FPL), which is the extension of first-order logic by a least fixgodperator
Ifp(X, ¢, S), whereS is a|X|-ary predicate occurring positively in the formula= ¢(X; S), andX is a
tuple of free variables irp; intuitively, it returns the least fixpoint of the operafddefined byl'(S) = {a |
D = p(a; S)}. We refer to [Chandra & Harel 1982, Abiteboul et al. 1995, iBghaus & Flum 1995] for
details. As shown in [Chandra & Harel 198HPL expresses a proper subset of the querie. iDatalog
relates toFPL as follows.

Theorem 7.3 ([Chandra & Harel 1985]) Datalog= FPL"(3), i.e., Datalog coincides with the fragment
of FPL having negation restricted to database relations and omgyeatial quantifiers.

As for expressibility in first-order logic, Ajtai & Gurevicfil994] have shown that a datalog query is
equivalent to a first-order formula if and only if it is bourtjeand thus expressible in existential first-order
logic.

Adding stratified negation does not preserve the equival@icdatalog and fixpoint logic in Theo-
rem7.3.

Theorem 7.4 ([Kolaitis 1991]; implicit in [Dahlhaus 1987]) Stratifiechdhlog; FPL.

This theorem is not obvious. In fact, for some time coincienf the two languages was assumed,
based on a respective statement in [Chandra & Harel 1985].
The nonrecursive fragment of datalog coincides with walbkn database query languages.

Theorem 7.5 ([cf. Abiteboul et al. 1995]) Nonrecursive range-reskittdatalog with negation = rela-
tional algebra = relational calculus. Nonrecursive dajalith negation = first-order logic (without function
symbols).

The expressive power of relational algebra is equivalerth& of a fragment of the database query
language SQL (essentially, SQL without grouping and agggeefunctions). The expressive power of SQL
is discussed in [Libkin & Wong 1994, Dong, Libkin & Wong 1997bkin 1997].

Unstratified negation yields higher expressive power.

Theorem 7.6 (i) Datalog under WFS =PL ([van Gelder 1989]).
(i7) Datalog under INFS =FPL ([Abiteboul & Vianu 199H], using [Gurevich & Shelah 1986]).

As recently shown, the first result holds also for total WES. (ithe well-founded model is always total)
[Flum, Kubierschky & Ludascher 1997].

We remark that the variants of datalog mentioned above cigrdefine queries which are expressible in
infinitary logic with finitely many variables/{, ) [Kolaitis & Vardi 1995]. It is known that.¥_ , has a 0-1
law, i.e., every query definable in this language is eitherast surely true or almost surely false, if the size
of the universe grows to infinity [Kolaitis & Vardi 1992]. Isieasy to see that the booleawen-queryy g,
which tells if the domain of a given input databaBg, (over a fixed schema) contains an even number of
elements, is not almost surely true or almost surely fal$ris]a fortiori, this query— which is computable
in polynomial time— is not expressible in the above variaftdatalog.

On ordered databases, Theorem 7.2 and the theorems inrg&atigply
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Theorem 7.7 On ordered databases, the following query languages @ptustratified datalog, datalog
under INFS, and datalog under WFS.

Syntactical restrictions allow us to capture classes withiLet datalod (1) be the fragment of dataldg
where each rule has most one nondatabase predicate in thednadet datalog(1, d) be the fragment of
datalog (1) where each predicate occurs in at most one rule head.

Theorem 7.8 ([Gradel 1992, Veith 1994]) On ordered databases, datdlogcaptures\L and its restriction
datalog (1, d) captured..

Due to inherent nondeterminism, stable semantics is muak m@ressive.

Theorem 7.9 ([Schlipf 199%]) Datalog under SMS captures-NP.

Note that for this result an order on the input database isxa@etled. Informally, in each stable model
such an ordering can be guessed and checked by the prografagBys [1974] Theorem, this implies that
datalog under SMS is equivalent to the existential fragneésecond-order logic over finite structures.

Theorem 7.10 ([Abiteboul & Vianu 1994]) On ordered databases, datalog under NINFS capR&E4.CE.

Here ordering is needed. An interesting result in this cant®rmulated in terms of datalog, is the
following [Abiteboul & Vianu 199%]: datalog under INFS = datalog under NINFE® arbitrary finite
databasedf and only if P = PSPACE. While the “only if” direction is obvious, the proof of thef*i
direction is involved. It is one of the rare examples thatstates open relationships between deterministic
complexity classes into corresponding relationships betwquery languages.

We next briefly address the expressive power of disjunctigéclprograms.

Theorem 7.11 ([Eiter et al. 1994, Eiter, Gottlob & Mannila 1997]) Disjuie datalog under SMS captures
I1L.

It appeared that fragment of disjunctive datalog have @stiamg properties. While disjunctive datafog
expresses only a subset of the queriesoiNP (e.g., it can not express the Even-query), it expressed all o
¥2 under the credulous notion of consequence, es=. A if A is true in some stable model. Further-
more, under credulous consequence every query in nondigjardatalog-# is expressible in disjunctive
datalog, even though the inequality predicate can not be recognized

Finally, we consider full logic programs. In this case, thput databases are arbitrary (not necessarily
recursive) relations on the genuine (infinite) Herbrand/erse of the program.

Theorem 7.12 [Schlipf 199%, Eiter & Gottlob 1997] Each of logic programming under WF&git pro-
gramming under SMS, and DLP under SMS captuiés

Thus, different from the function-free case, adding disfion does not increase the expressive power of
normal logic programs. The reason is that disjunctive Iggagrams can be expressed in a weak fragment
of the clasd13 of second-order logic, which in the case of an infinite Hemdraniverse can be coded to the
11} fragment.

For further expressiveness results on logic programs sp¢Sxhlipf 199%, Sacca 1995, Sacca 1997,
Greco & Sacca 1997, Greco & Sacca 1996, Eiter, Leone & £48@98, Cadoli & Palopoli 1998]. In
particular, co-NP can be captured by a variant of circumscribed datalog [Gatldtalopoli 1998], and
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further classes of the polynomial hierarchy can be capthyedariants of stable models [Sacca 1995, Sacca
1997, Eiter, Leone & Sacca 1998, Buccafurri, Greco & Sat@a7] as well as through modular logic
programming [Eiter, Gottlob & Veith 1997, Buccafurri et 4998]. Results on the expressiveness of the
stable model semantics over disjunctive databases, whichigen by sets of ground clauses rather than
facts, can be found in [Bonatti & Eiter 1996].

We conclude this subsection with a brief look on express&gerresults for nondeterministic queries.
A nondeterministic querynaps an input database to one from a set of possible outmhatas; it can be
viewed as a multi-valued function. For example, a query Whiturns as output a Hamiltonian cycle of
given input graph is a nondeterministic query. The (deteristic) queries that we have considered above
are a special case of nondeterministic queries.

It has been shown that the class NIPEBY nondeterministic queries which are computable in pofgizd
time can be captured by suitable nondeterministic variahdatalog, e.g., by a procedure-style variants
[Abiteboul & Vianu 199H], by datalog™ (datalog with inequality) extended with a choice operaborhy
datalog with stable models [Corciulo, Giannotti & Pedrest®97, Giannotti & Pedreschi 1998]. Also
NDB-PSPACE, the class of nondeterministic queries computable in pmiyial space, is captured by a
nondeterministic variant of datalog [Abiteboul & Vianu 112§. For a tutorial survey of such and related
deterministic languages, we recommend [Vianu 1997]. Fahéw issues on nondeterministic queries, we
refer to [Giannotti, Greco, Sacca & Zaniolo 1997, Grumb&chacroix 1997, Leone, Palopoli & Sacca
1998].

7.1 The order mismatch and relational machines

Many results on capturing the complexity classes by lodaaduages suffer from therder mismatchFor
example, the results by Immerman and Vardi (Theorems 7.7 &) show thaP = PSPACE if and only if
Datalog under INFS and Datalog under NINFS coincideatered databaseslhe order appears when we
code the input for a standard computational device, like @ngumnachine, while the semantics of Datalog
and logic is defined directly in terms of logical structurediere no order on elements is given.

To overcome this mismatch, [Abiteboul & Vianu 199Rbiteboul & Vianu 1995] introducedklational
complexity theorywhere computations on unordered structures are modeladlaéyonal machines In
[Abiteboul & Vianu 199D, Abiteboul & Vianu 1995, Abiteboul, Vardi & Vianu 1997] sewat relational
complexity classes are introduced, sucl?agrelational polynomial timg NP,. (relational nondeterministic
polynomial tim¢, PSPACE,. (relational polynomial spageandEXPTIME,. (relational exponential time It
follows that all separation results among the standard ¢exitp classes translate into separation results
among relational complexity classes. For example; NP if and only if P, = NP,..

It happens that Datalog under various semantics captueaglditional complexity classes on unordered
databases. For example (cf. Theorems 7.7 and 7.10), we have

Theorem 7.13 Datalog under INFS capturés.. Datalog under NINFS captur@SPACE,..

Note that together with the correspondence of the separatisults between the standard complexity
classes and the relational complexity classes, this thearlies that Datalog under INFS coincides with
Datalog under NINFS if and only i® = PSPACE. Therefore, the results of [Abiteboul & Vianu 1991
Abiteboul & Vianu 1995, Abiteboul et al. 1997] provide an erdree correspondence between questions
in computational and descriptive complexity.
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7.2 Expressive power of logic programming with complex values

The expressive power of datalog queries is defined in ternmgot and output databases, i.e., finite sets of
tuples. In order to extend the notion of expressive powebgyicl programming with complex values, we
need to define what we mean by an input. For example, in theafgsain logic programming, an input
may be a finite set of ground terms, i.e. a finite set of treeshdrcase of logic programming with sets, an
input may be a set whose elements may be sets too and so on.

Various models and languages for dealing with complex wlnelatabases have been proposed [e.g.
Abiteboul & Kanellakis 1989, Abiteboul & Grumbach 1988, &if& Wu 1993, Kifer, Lausen & Wu 1995,
Abiteboul & Beeri 1995, Buneman, Nagvi, Tannen & Wong 199%i8 1997, Greco, Palopoli & Spadafora
1995, Libkin, Machlin & Wong 1996, Abiteboul et al. 1995]. &ffunctional approach to such languages
dominates the logic programming one. To extend variantsestad relational algebra as in [Buneman
et al. 1995] to datalog, bounded fixpoint constructs have peaposed [Suciu 1997], as well as deflationary
fixpoint constructs [Colby & Libkin 1997].

The comparative expressive power of languages for compdéxes is studied in [e.g. Abiteboul &
Grumbach 1988, Vadaparty 1991, Suciu 1997, Abiteboul & BE295, Dantsin & Voronkov 1998]. For ex-
ample, Abiteboul & Beeri [1995] introduce a model for restied combinations of tuples and sets and several
corresponding query languages, including the algebraiclagic programming ones. It is proved that all
these languages define the same class of queries. Dantsinofkéay [1998] show that nonrecursive logic
programming with negation has the same expressive powesrascursive datalog with negation (under a
natural representation of inputs). Thus, the use of reeeidkta structures, namely trees, in nonrecursive dat-
alog gives no gain in the expressiveness. It follows frora thsult and [Immerman 1987] that nonrecursive
logic programming with negation is ikC’. The absolute expressive power of languages for compleesal
is also studied in [Sazonov 1993, Suciu 1997, Lisitsa & Sazd®95, Grumbach & Vianu 1995, Gyssens,
van Gucht & Suciu 1995, Lisitsa & Sazonov 1997]; further asusuch as expressibility of particular
queries or faithful extension of datalog, are studied irbKin & Wong 1989, Wong 1996, Paredaens &
van Gucht 1992].

Results on the expressive power of different forms of log@gpamming with constraints can be found
e.g. in [Cosmadakis & Kuper 1994, Kanellakis, Kuper & Rev&895, Benedikt, Dong, Libkin & Wong
1996, Vandeurzen, Gyssens & van Gucht 1996].

Unlike research on the expressive power of datalog, thare imainstream in research on the expressive
power of logic programming with complex values. Extensidrdeclarative query languages by complex
values is more actively studied in database theory.

8 Unification and its complexity

What is the complexity of query answering for very simpleitggrograms consisting of one fact? This prob-
lem leads us to the problem of solving equations over termawk as theunification problem Unification
lies in the very heart of implementations of logic programgiand automated reasoning systems.

Atoms or termss and¢ are calledunifiableif there exists a substitutioi that makes them equal, i.e.,
the termssy and¢v coincide; such a substitutiahis called aunifier of s and¢. The unification problem is
the following decision problem: given termsand¢, are they unifiable?

Robinson [1965] described an algorithm that solves thiblera and, if the answer is positive, computes
a most general unifier of given two terms. His algorithm haplomential time and space complexity mainly
because of the representation of terms by strings of symidésng better representations (for example,
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by directed acyclic graphs), Robinson’s algorithm was iowpd to linear time algorithms, e.g. [Martelli &
Montanari 1976, Paterson & Wegman 1978].

Theorem 8.1 ([Dwork, Kanellakis & Mitchell 1984, Yasuura 1984, Dwork,aKellakis & Stockmeyer
1988]) The unification problem B-complete.

P-hardness of the unification problem was proved by redustiomm some versions of the circuit value
problem in [Dwork et al. 1984, Yasuura 1984, Dwork et al. 1J98®ote that [Lewis & Statman 1982]
states that unifiability is complete fan-NL; however, [Dwork et al. 1984] gives a counterexample to the
proof in [Lewis & Statman 1982].)

Also, many quadratic time and almost linear time unificatddgorithms have been proposed because
these algorithms are often more suitable for applicatiomd generalizations (see a survey of the main
unification algorithms in [Baader & Siekmann 1994]). Heremention only Martelli & Montanari’s [1982]
algorithm based on ideas going back to Herbrand’s [1972bfswork. Modifications of this algorithm are
widely used for unification in equational theories and réwg systems. The time complexity of Martelli
and Montanari’'s algorithm i§)(nA 1 (n)) where A1 is a function inverse to Ackermann’s function and
thusA~! grows very slowly.

9 Logic programming with equality

The relational model of data deals with simple values, ngmghles consisting of atomic components.
Various generalizations and formalisms have been proptsdtndle more complex values like nested
tuples, tuples of sets, etc; see Section 7.2 and [AbiteboBle&ri 1995]. Most of these formalisms can
be expressed in terms of logic programming with equalityl&a& Raatz 1986, Gallier & Raatz 1989,
Holldobler 1989, Hanus 1994, Degtyarev & Voronkov 19964 aonstraint logic programming considered
in Section 10.

9.1 Equational theories

Let £ be a language containing the equality predicateBy anequationover £ we mean an atom = ¢
wheres andt are terms inC. An equational theoryF over L is a set of equations closed under the logical
consequence relation, i.e., a set satisfying the follovaimigditions: (i) F contains the equation = z; (ii)
if £/ containss = ¢ then E containst = s; (iii) if E containsr = s ands = ¢ then E containsr = ¢; (iv)
if £ containss; = t,...,s, = t, thenE containsf (s1,...,s,) = f(t1,...,t,) for eachn-ary function
symbolf € £; and (v) if E containss = ¢ then E containss = ¢4 for all substitutionsy.

The syntax oflogic programs over an equational theofy coincides with that of ordinary logic pro-
grams. Their semantics is defined as a generalization ofetmastics of logic programming so that terms
are identified if they are equal iA.

Example 9.1 We demonstrate logic programs with equality by a logic paogprocessing finite sets. Finite
sets are a typical example of complex values handled in daggh We represent finite sets by ground terms
as follows: (i) the constant} denotes the empty set, (i) if represents a set artds a ground term then

{t | s} represents the sét} U s (where{t} ands are not necessarily disjoint). However the equality on
sets is defined not as identity of terms but as equality in thtonal theory in which terms are considered
to be equal if and only if they represent equal sets (we oraietiomatization of this theory).
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Consider a very simple program that checks whether two giets have a nhonempty intersection. This
program consists of one fact

nonemptyintersectiof{ X | Y1}, {X | Ya}) <«

For example, to check that the stk 3,5} and {4, 1,7} have a common member, we ask the query
nonemptyintersectior{{1, 3,5}, {4,1,7}). The answer will be positive. Indeed, the following systein o
equations has solutions in the equational theory of sets:

{X | Yl} = {173a5}7 {X | YQ} = {4a 177}'

For example, sek = 1,Y; = {3,5}, Yo = {7,4,1}.
Note that if we represent sets by lists in plain logic progmsng without equality, any encoding of
non.emptyintersectionwill require recursion.

The complexity of logic programs ove? depends on the complexity of solving systems of term equa-
tions in E. The problem of whether a system of term equations is savabhn equational theory is
known as the problem a&imultaneous-unification

A substitutiond is called anE-unifier of termss andt if the equationsy = ¢ is a logical consequence
of the theoryE. By the E-unification problemwe mean the problem of whether there existsFannifier
of two given terms. Ordinary unification can be viewed Fasinification whereF contains only trivial
equations = ¢. Itis natural to think of anF-unifier of s andt as asolutionto the equatiors = ¢ in the
theory E.

9.2 Complexity of E-unification

Solving equations is a traditional subject of all mathenwatiSince any result on solving equation systems
can be viewed as a result ditunification, it is thus practically impossible to overviedl results on the
complexity of E-unification. Therefore, we restrict this survey to only feases closely connected with
logic programming. The general theory Bfunification may be found e.g. in [Baader & Siekmann 1994].
Let £ be an equational theory ovérand- be a binary function symbol id (written in the infix form).
We call - anassociativesymbol if £ contains the equation - (y - z) = (z - y) - z, wherex,y andz are
variables. Similarly; is called anAC-symbolan abbreviation for an associative-commutative symbol) i
is associative and, in additiof; containsz - y = y - z. If - is an AC-symbol andv containsz - = = z, we
call - anACI-symbol(7 stands for idempotence). Alsois called anAC1-symbolor anACI1-symbdlif -
is an AC-symbol (an ACI-symbol respectively) afdcontains the equation- 1 = 2 where 1 is a constant
belonging toL.

Theorem 9.2 ([Makanin 1977, Baader & Schulz 1992, Benanav, Kapur & Ndran 1987, Koscielski &
Pacholski 1996]) LeFE be an equational theory defining a function symhial £ as an associative symbol
(E contains all logical consequencesiof(y - z) = (z - y) - z and no other equations). The following upper
and lower bounds on the complexity of theunification problem hold: (i) this problem is in[SEXPTIME,

(ii) this problem isNP-hard.

Basically, all algorithms for unification under associdyivare based on Makanin’s [1977] algorithm for
word equations. The BEEXPTIME upper bound is obtained in [Ko&cielski & Pacholski 1996].
The following theorem characterizes other popular kindemfational theories.



40 INFSYS RR 1843-99-05

Theorem 9.3 ([Kapur & Narendran 1986, Kapur & Narendran 1992, Baader &ubr1996]) LetE be an
equational theory defining some symbols as one of the faligiAC-symbols, ACI-symbols, AC1-symbol,
or ACI1-symbols (there can be one or more of these kinds obsys). Suppose the theo#y contains no
other equations. Then thé-unification problem idNP-complete.

9.3 Complexity of nonrecursive logic programming with equality

In the case of ordinary unification, there is a simple way thuce solvability of finite systems of equations to
solvability of single equations. However, these two kintisalvability are not equivalent for some theories:
there exists an equational theafysuch that the solvability problem for one equation is deaielawhile
solvability for (finite) systems of equations is undecigaflarendran & Otto 1990].
Simultaneous?-unification determines decidability of nonrecursive lbgrogramming over.

Theorem 9.4 (implicit in [Dantsin & Voronkov 199B]) Let E be an equational theory. Nonrecursive logic
programming ovel is decidable if and only if the problem of simultaneatisunification is decidable.

An equational theon is calledNP-solvableif the problem of solvability of equation systems i
is in NP. For example, the equational theory of finite sets menticai®ale, the equational theory of bags
(i.e. finite multisets) and the equational theory of treemtaining only equations = ¢) are NP-solvable
[Dantsin & Voronkov 1999].

Theorem 9.5 ([Dantsin & Voronkov 199@, Dantsin & Voronkov 199M, Dantsin & Voronkov 1999]) Non-
recursive logic programming over &tP-solvable equational theo®y is in NEXPTIME. Moreover, ifE is

a theory of trees, or bags, or finite sets, or any combinatfdheam, then nonrecursive logic programming
over E is alsoNEXPTIME-complete.

10 Constraint logic programming
Informally, constraint logic programming (CLRIxtends logic programming by involving additional condi-

tions on terms. These conditions are expressechbigtraints i.e., equations, disequations, inequations etc.
over terms. The semantics of such constraints is predefimgd@es not depend on logic programs.

Example 10.1 We illustrate CLP by the standard example. Suppose that wédMi&e to solve the follow-
ing puzzle:

. S E N D
M O R E
M O N E Y

All these letters are variables ranging over decimal digits,...,9. As usual, different letters denote
different digits andS, M # 0. This puzzle can be solved by a constraint logic program thedomain of
integers(Z, =, #, <,+, x,0,1,...). Informally, this program can be written as follows.
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find(S, E, N, D, M.O,R,E, M,O,N,E,Y) +
1<8<9,...,0<Y <9,
S4E, ..., R+Y,
1000 - S +100- E+10- N + D+
1000- M +100- O +10- R+ E =
10000 - M +1000-O +100- N +10- E+Y

The quenyfind(S, E, N, D, M,O,R,E, M,O,N,E.,Y) will be answered by the only solution

L 9 5 6 7
10 8 5
1 0 6 5 2

A structureis defined by an interpretatioh of a languageC in a nonempty seD. For example, we
shall consider the structure defined by the standard irg&fon of the language consisting of the constant
0, the successor function symholand the equality predicate on the setN of natural numbers. This
structure is denoted b§N, =, s, 0). Other examples of structures are obtained by replahiry the sets
Z (the integers)Q (the rational numbersR (the reals) orC (the complex numbers). Below we denote
structures in a similar way, keeping in mind the standardrpetation of arithmetic function symbols in
number sets. The symbolsand/ stand for multiplication and division respectively. We user to denote
unary functions of multiplication by particular numbers {foe corresponding domain)?* is used similarly.
All structures under consideration are assumed to conti@eduality symbol.

Let S be a structure. An atom(ty,...,%;) wherety, ..., t; are terms in the language 6fis called a
constraint By aconstraint logic program ovef we mean a finite set of rules

p(X) &~ (... 7Cm7q1(X1)7 e 7Qn(Xn)

wherecy, . .., ¢, are constraintsp, q1, . . ., g, are predicate symbols not occurring in the languagé,of
andX, Xy,..., X, are lists of variables. The semantics of CLP is defined as walagjeneralization of
semantics of logic programming [e.g. Jaffar & Maher 1994]S lcontains function symbols interpreted as
tree constructors (i.e. equality of corresponding ternisterpreted as ordinary unification) then CLP over
S is an extension of logic programming. Otherwise, CLP dvean be regarded as an extension of Datalog
by constraints.

10.1 Complexity of constraint logic programming

There are two sources of complexity in CLP: complexity ofvéwd systems of constraints and complex-
ity coming from the logic programming scheme. However, riaté&ion of these two components can lead
to complexity much higher than merely the sum of their comigiles. For example, Datalog (which is
EXPTIME-complete) with linear arithmetic constraints (whose S&tbility problem is inNP for integers
and inP for rational numbers and reals) is undecidable.

Theorem 10.2 ([Cox, McAloon & Tretkoff 1990]) CLP ovefN, =, s, 0) is r.e.-complete. The same holds
for each ofZ, Q, R, andC instead of\.
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The proof uses the fact that CLP ou#¥, =, s, 0, 1) allows one to define addition and multiplication in
terms of successor. Thus, diophantine equations can bessqat in this fragment of CLP.

On the other hand, simpler constraints, namely constraivis ordered infinite domains (of some par-
ticular kind), do not increase the complexity of Datalog.

Theorem 10.3 ([Cox & McAloon 1993]) CLP over(Z, =, <,0,+1,+2,...) is EXPTIME-complete. The
same holds fof or R instead ofZ.

Decidable fragments of CLP over more complex structuresbtained by restrictions imposed on con-
straint logic programs. For example, we consideoaservative CLIn which rules satisfy the restriction:
all variables occurring in the body occur in the head.

Theorem 10.4 ([Cox et al. 1990]) Conservative CLP BXPTIME-complete over each of the following
structures:

(Q,=,<,<,+,—,k-2,0,1,...), i.e. linear inequations over the rational numbers;
(R,=,<,<,+,—,k-2,0,1,...), i.e. linear inequations over the reals;
(R,=,<,<, 4, —, x,/,2¥,0,1,...), i.e. polynomial inequations over the reals;

(C,=,+.,—, %, /,2%,0,1,...), i.e. polynomial equations over the complex numbers.

The proof is based on the known results on the complexitygirithms for the corresponding algebraic
structures [Canny 1988, Renegar 1988, Grigoryev & Voroldjpg8, lerardi 1989]. If we allow nonground
gueries EXPTIME-completeness has to be replaced\®BXPTIME-completeness.

A very general formalism for logic programming with congtita is theconstraint database modigitro-
duced by Kanellakis, Kuper & Revesz [1990]. They defigemstraint databasas a quantifier-free formula
over a given mathematical structure (e.g. the field of themembers). In the simplest case, this could be
a finite relational database, but in general, a constraitsibdee finitely represents an infinite number of tu-
ples. They investigate the data complexity of first-ordgiddFO) and datalog over constraint databases and
prove that for the case of the real field, FO queries over caimstdatabases are in the parallel complexity
classNC, while datalog queries are id. For finite databases, Benedikt & Libkin [1996] improved thé
upper bound to the parallel cla$€”, which contains the languages recognized by constant deetshold
circuits [Johnson 1990].

10.2 Expressiveness of Constraints

There are various different settings in which expressigerissues of logic programming formalisms with
constraints have been studied. Expressiveness of first-tngic and of datalog with constraints is currently
an intensive research area of Database Theory. Many imigutgers on this subject can be found in the
proceedings of recent PODS, ICDT or LICS conferentes.detailed and uniform treatment is beyond
the scope of this paper. In this section, we limit ourselieea brief description of a number of relevant
references, most closely related to the setting of [Kakisllat al. 1990].

3PODS=ACM SIGACT-SIGMOD-SIGART Symposium on Principlesiztabase Systems; ICDT = International Conference
on Database Theory; LICS = IEEE Symposium on Logic in CompBitéence.
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A main research issue was the question whether propertidsasparity that cannot be expressed in FO
or stratified datalog (without order) could be expressetiérespective formalisms extended by constraints.
This question has two different interpretations, depegdin how we interpret the variables in a query. The
active interpretatiorrestricts the domain of possible values for a variable tes¢healues that effectively
appear in the database (i.e., to Hwive domailp Thenatural interpretationdoes not make this restriction
and allows a variable to be interpreted by any value of thedyitig domain (e.g. the reals). Note that these
two interpretations coincide for classical relationalocdlis [Hull & Su 1994, Benedikt & Libkin 1997].

For the active interpretation of first-order constraint e, the above question was solved indepen-
dently by Benedikt et al. [1996] and by Otto & van den Bussc#9p]. It was shown that the generic
queries expressible by FO with constraints are containgtidee expressible by FO plus linear order. In
particular, it follows that parity is not expressible in tbenstraint setting. The expressiveness problem for
datalog with constraints was resolved in [Benedikt & LibRif97] by using Ramsey Theory. In analogy
to the results for first-order logic, it was shown that dagaleith constraints is not more expressive than
datalog plus linear order.

For the natural interpretation, it was shown in [Grumbach & 1995] that every recursive query is
definable by FO with polynomial constraints over tietural numbersAs shown in [Kanellakis & Goldin
1994, Grumbach, Su & Tollu 1994], and [Benedikt et al. 1986hilar results do not hold for theeals In
particular, in [Benedikt et al. 1996] it was shown that ovee field of reals, every generic query of first-
order logic with constraints can be rewritten as an equitatpiery that uses only the natural ordetr™
From this result, together with results in [Paredaens, vem Bussche & van Gucht 1998], it follows that
every generic query of first-order logic with constraintslanthe natural interpretation can be expressed as
an equivalent query under the active interpretation. Tioegethe same expressivity bound as for the active
interpretation holds (see the previous paragraph); iriquaatr, parity cannot be expressed.

In [Benedikt & Libkin 1996] and [Benedikt & Libkin 1997] it washown that for polynomial constraints
over the reals, the active and the natural semantics agtt@ithcide. This result can be generalized — with
some care —to fixpoint logic and datalog [Benedikt & Libkir®X If function symbols are allowed to occur
in the bodies of datalog rules, then every recursive queexsessible. However, if a hybrid approach is
taken, where the fixpoint computation is restricted to thi&vadomain of a database, while quantification
refers to the natural domain, then a similar collapse as @also happens for fixpoint logic and datalog.
These results for the reals generalize to a large class ef sthuctures with quantifier elimination.
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