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$EVWUDFW� We have investigated the biologically motivated model of a neuron, the synaptic weights of which modify
according to the Bienenstock, Cooper and Munro (BCM) theory of synaptic plasticity. The crucial concept of the BCM
theory is the dynamic synaptic modification threshold which determines whether  a neuron’s activity at any given instant
will lead to strengthening or weakening of its synaptic weights. We design, perform and discuss several experiments
with complex two-symbol (‘0’ and ‘1’) time sequences in order to investigate computational properties of the BCM
neuron. We measure the statistical structure of sequences using the entropies and the thermodynamic entropy spectra.
We have found that for the two sequences with different entropies and the same number of symbols ‘1’, the asymptotic
value of the BCM neuron response differs, in the sense that it is dependent on the internal structure of the input
sequence. By comparing the properties of input symbolic sequences and symbolic sequences derived from the evolution
of the synaptic modification threshold, we conclude that both nonlinear and linear BCM neuron with the shortest
“internal memory”, i.e. τ  ≤ 2, are able to model the input sequences, whereas the BCM neurons with a longer internal
memory function as “low-pass filter”.

������,QWURGXFWLRQ
The BCM theory has been introduced in order to explain plasticity in the developing  visual cortex [3]. Later it has been
used for explanation of experience-dependent plasticity in the mature brain cortex [2]. Besides biological applications,
the BCM learning rule was applied in several different situations. It was shown, for example, that a modified version can
perform efficient projection pursuit, detect bimodality, statistical skewness and curtosis in the distribution of input data
[1, 4]. The original motivation for our experiments with time series was synaptic modification threshold θΜ of the BCM
neuron which is a nonlinear function of its past activity.  We believed that it should have an interesting impact on the
ability of the BCM neuron to process time sequences. We studied behavior of a single BCM neuron exposed to
symbolic time sequences built from 2 symbols, namely ‘0’ and ‘1’. Symbols from the input sequence were feeding the
weighted neuron’s input. The weight w and synaptic modification threshold θΜ were updated after each input symbol.
Fig. 1 shows a scheme of this circuit. The evolution of both, neuron's weight w and threshold θΜ, was observed.
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)LJ���� Scheme of a circuit for our experiments with symbolic time series and the BCM neuron (F�W� is the neuron's
response proportional to the input weight Z�W�).

We performed the experiments with the following variants of the BCM neuron: linear neuron, linear neuron with noise
added to the input, nonlinear neuron (with sigmoid activation function), and nonlinear neuron with noise added to the
input. In order to have a possibility to compare the behavior of the BCM neuron for sequences with different degrees of
determinism, we used three different kinds of sequences:

• deterministic (produced by a final-state automaton) (DET)
• sequence produced by a Hidden Markov Model (HMM) [8]
• random sequence (Bernoulli source) (RND)

We worked with 4 different sets of sequences S = A, B, C, and D. Each set contained one periodic deterministic
sequence (S1), one HMM sequence (S2) and one random sequence (S3). The difference between the sets of sequences
was primarily in the nature of HMM automaton for HMM sequences. Sequences within each set contained the same
number of symbols ‘1’, but differed more or less in the values of entropy. We can consider the values of the entropy as



an appropriate measure of the different degrees of determinism of sequences in one set [8]. Even more information can
be traced from entropy spectra. We describe these concepts in the next section.

Each experiment produced a sequence of cell responses F (which are proportional to the input weight in the case of one
input), and a sequence of values of θ0 . For the two sequences with different entropies and the same number of symbols
‘1’, we have found out that the asymptotic value of weight differs, i.e. it is dependent on the entropy of the input
sequence (or at least has a strong relation with it).

We were interested also in the nature of the dynamics of the threshold θ0. The role of the threshold θ0 is to compensate
for changes in input. Thus it was interesting to investigate the sequence of differences from θ0¶s average (expected
value). This sequence of positive and negative arithmetic differences from the θ0¶s  expected value can be transformed
into a symbolic time sequence of ‘1’s and ‘0’s. We have computed entropy spectra for these θ0  symbolic sequences and
compared them with the entropy spectra of the original input sequences. Further details can be found in the section with
results.

������7KHRUHWLFDO�%DFNJURXQG
In this section, we will give the theoretical description of the BCM neuron as well as the measures used for reasoning
about the results. Let G is the input to neuron, Z is the weight of input connection, θ0 is the threshold for weight
modification and φ is the polynomial function used in the BCM weight modification rule. The neuron's response F at
time W is then given by:

F�W�� �Z�W��G�W� (1)
for a linear neuron and

F�W�� �σ�Z�W��G�W�� (2)

for a nonlinear neuron, where σ(F) =  1/(1+ exp(−F)). The BCM weight modification rule is expressed by

∆Z�W��  η  φ���F�W���θ0�W�����G�W� (3)
for a linear neuron and

∆Z�W��  η  φ���F�W���θ0��W����σ′��F���G�W� (4)

for a nonlinear neuron, where according to [5]
φ�F��θ0��� �F��F�−�θ0�� (5)

In cases with additive noise, we used G�W��QRLVH�W� instead of G�W�, where QRLVH�W� is a Bernoulli source, uniformly
distributed in the interval [−α,α]. The modificationn threshold θ0 � is defined by equation (6). In addition, a scaling
parameter F� allows scaling of this time average of the squared cell response, such that
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Here, the parameter τ determines the length of the recent past over which the squared neuron's response is averaged. We
call it the "internal memory" of a neuron for its past activity. The smaller τ, the shorter memory of the neuron to its past
activity.

For determining the entropy of symbolic sequences, we have used the calculation of entropies for increasing length of
window [6, 8]. If the probability of some event is 3L, its information content is given by the formula:

(7)

Based on this, Shannon introduced the entropy of the data as the sum of products of probabilities and information
contents of all possible events:

(8)

For a window of length Q there exist �Q different words (having only two symbols ‘0’ and ‘1’). Let the probability of
word ZL of length Q is 3Q�ZL�� Entropy of the sequence for window of length Q is thus:

(9)
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Entropy can be understood as a measure of uncertainty. The uncertainty is high for large +Q, i.e. all possible words are
almost equally likely to occur in the sequence. For small values of +Q, the uncertainty is smaller, i.e. the sequence is
more deterministic.

However, we are interested in some measure normalized for one symbol. For this purpose we use the entropy per 1
symbol:

 (10)

The desired entropy of the symbolic sequence is then:

(11)

To gain a better picture of the internal structure of the sequence, we employed entropy spectra. They consist of entropies
of sequence computed for different temperatures 7� ��β��Instead of 3Q�Z�, we will use

(12)

This transformed probability enables to reveal words which are more likely to take over the less frequent words when
the temperature is  positive and larger than 1 (i.e. β < �). Opposite effect happens for negative temperatures (β ���),
when the least frequent words are dominant. Therefore entropies computed for different temperatures uncover more
information about the histogram of the sequences. (A special case when 7→�∞, i.e. β→� is called a topological case. In
this case, all words, which are present in the input sequence, are represented in the histogram by 1, and all words, which
are not present in the input sequence, by 0).

������5HVXOWV
The experiments with the linear neuron showed that the neuron is not very sensitive to differences in entropy of the input
sequences (see Fig. 2). Tuning the parameters did not make the difference. Therefore, we switched to a nonlinear neuron
with sigmoid transition function (equation 2), which improved the situation. In most cases, the neuron did recognize the
differences in the input sequences and the resulting weight (after the convergent process) discriminated sequences with
different entropies for τ  ≤ 10 (see Fig. 3).

)LJ���. Evolution of the weight for linear neuron We can see that the weight doesn’t clearly disciriminate the sequences.
We used the following parameters: learning speed η=0.001, c0=0.85, length of sequence: 200 000 symbols. The entropy
of det. sequence ����HQWURS\�RI�KPP�VHTXHQFH�ZDV�DSSUR[������DQG�WKH�HQWURS\�RI�rnd. sequence ���
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To test the model robustness, we have introduced a noise parameter. A randomly distributed additive noise (not
Gaussian) on the input did have only a quantitative, not the qualitative impact on the model. The sequence
discrimination was not as clear as in the case without the noise, which can be explained by changing the properties of the
input sequence. HMM generated sequence is already "quite" random and adding noise results in a sequence, which
cannot be represented by the original HMM automaton and therefore has different properties. Because the noise didn’t
influence the quality of the model, we removed it from further experiments.

The shape of  sigmoid function drives the degree of nonlinearity and has a major influence on the final point of weight
convergence. For a nonlinear neuron, we used the sigmoid with the asymptotic values of –2 and 2. Also the θ0 scaling
constant F�  is used to drive the process of weight evolution. It is usually smaller than 2 (we used F� = 0.85). Increasing
F� makes the φ  parabola steeper and the input weight less stable. Stability of the asymptotic input weight is guaranted by
using very small learning speed η. A reasonable stability is achieved for value 0.001, which we used in the experiments.

)LJ���. Evolution of the weight for nonlinear neuron. All other parameters in this experiment were the same as for the
linear case in Fig. 2. Assymptotic values for the sigmoid were –2 and 2.

Dynamic changes in the input are compensated for by the dynamic threshold θ0. Increased potentiation in the weight
results in increasing the average response and in increasing of θ0� The long row of symbols ‘0’ (‘1’) in input results in
decreasing (increasing) the average neuron response and also in decreasing (increasing) the threshold θ0. In this way,
the dynamic threshold θ0 adapts to the input. We should also note that although the probability of ‘1’ is the important
factor for the resulting converged weight, it is not the only one. All sequences in one set contained the same number of
symbols ‘1’, but the resulting weights are different for a nonlinear neuron. To find another properties of the input time
sequences, which might be significant, we have employed entropy spectra.

It holds that the sequences with more complicated internal structures have higher entropy. The transformed entropies for
high temperatures show the structure with respect to very likely words. Entropies for low temperatures show the
structure with respect to very unlikely words. A special case for T→ ∞ is called topological entropy and determines how
many different words are in the sequence. Deterministic sequences have constant and low entropies for all temperatures,
because they consist of a periodical subsequence repeated many times. On the other hand, random sequences contain all
possible words for a given window length, although not periodically but randomly distributed. Therefore the entropy is
high. We computed the entropy spectra up to the length of window = 12, due to the computational complexity and huge
amount of data. It can be also observed for completely random sequences (Bernoulli source) that the entropy decreases
for high temperatures and this is caused only by the bounded length of the sequence (the number of words for large
window is high) – we worked with sequences comprised of 200,000 symbols.



)LJ���. Entropic spectra distances for hmm sequence, sums of differences for temperatures 1,2,3,5,10,20,50,100.

)LJ���. Entropic spectra distances for rnd sequence, sums of differences for temperatures 1,2,3,5,10,20,50,100.
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Our results reveal that the symbolic sequence derived from the θ0  differences from expected value is most similar to the
original sequence when τ ≤�2  (Fig. 4). This supports the previous findings that the weight of the input connection
discriminates the sequences best in the case of τ� ��

Second part of the results discusses the entropy spectra of sequences created by comparing the actual value of the
threshold θ0  with its long-term average. We computed entropy spectra for fixed length of the windows and for different
values of τ . Our goal was to find some kind of correlation between the structure of the sequence, length of the window
used for computing the entropy, and the τ parameter (see Fig. 4). When exploring Fig. 4, the original sequence should be
observed first. We present the differences of the entropy values in entropy spectra for diffrent lengths of the window for
the sequences C2 and C3. The characteristic property of the 4-state C2 HMM automaton is that when the state 2 is
achieved, the automaton always generates sequence ‘110’. Therefore the frequency of words containing the sequence
‘110’ is relatively high.

������&RQFOXVLRQV
We have investigated the BCM learning rule in experiments with time sequences for both linear and nonlinear transition
functions. We have shown that the asymptotic BCM neuron's response depends on the internal structure of the input
sequence. All sequences, i.e. deterministic, HMM and random in one set contained the same number of symols ‘1’, but
they differed in the complexity of the internal structure. Our measure of this complexity was the value of  entropy. We
have found that for two sequences with different entropies and the same number of symbols ‘1’, the resulting weight of
the BCM neuron differs, i.e. it is dependent on the internal structure of the input sequence. We have supported this
statement by exploring the properties of both input symbolic sequences and symbolic sequences derived by comparing
the dynamic threshold θ0  to its long-term average. We computed the entropy spectra for the input sequences and for the
θ0  sequences. Here, we have found that the both nonlinear and linear BCM neuron with the shortest “internal memory”,
i.e. τ ≤ �, is able to model the input sequence most closely. We discussed the role of the parameters of the model and
demonstrated that and how the nonlinearity can improve the characteristics of the development of converged input
weight. Thanks to the entropy spectra, a better view of the internal structure of sequences can be obtained.

The usual tool for modeling symbolic time sequences are recurrent neural networks. The difficulty lies in building the
BCM learning rule for the recurrent connections. The BCM rule has been successfully modified for several complicated
architectures, some containing also recurrent connection [1]. The challenge to develop and study recurrent BCM
architectures remains for the future work.
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