
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— Cellular Automata (CA) are a standard theoretical

model of uniform parallel computation on a grid of cells. They

can be looked upon as a discrete type of dynamic systems. As

such, they are important tools for modeling spatially distributed

processes of different kind – from ecology, through biology, and

artificial life, to economics. They are also a useful theoretical

model for studying classes of computational complexity. We are

interested in the ability of CA to converge to a fixed point with

interesting properties, which are quantized by an objective

function. In this way, CA qualify as a promising embryogenic

representation for Evolutionary Design. Moreover, by modifying

the original CA concept by allowing irregular mesh, we can

achieve a more flexible and compact representation resulting in

faster evolutionary progress.

Index Terms—cellular automata, evolutionary design,

evolutionary algorithms, irregular grid.

I. INTRODUCTION

ELLULAR Automata are a theoretical model

consisting of a set of cells, typically arranged in a form

of a grid, or array. Each cell has a set of possible states it can

enter, and each cell has a defined neighborhood – a set of

adjacent cells. The next state of a cell is determined by the

current state of the cell and states of the neighboring cells.

Rules that specify the state transitions are common to all cells

in the automaton. CA have been intensely studied by various

researchers. For instance, Stephen Wolfram in his book New

Kind of Science studied the evolution of one-dimensional CA

in time, and examined its regular, fractal and chaotic behavior

[1]. A famous example is the Game of Life of John H.

Conway, a two-dimensional CA, which was shown to be a

universal computer, capable of computing an arbitrary

algorithm [2]. Actual implementations of universal computers

using Life have been constructed more recently, see [13] for a

list. Other types of CA, including hexagonal and reversible CA

– i.e. those able to compute in reverse direction back to

recover their inputs – have also been shown to be universal

computers [14]. However, in most studies, the basic property

of CA has not been relaxed – namely that they are formed of

cells of equal sizes, arranged in regular grids or meshes, with

equal neighborhood structure (except of the border cells). We

believe that even though such CA might be more amenable to

 Manuscript received July 12, 2010.

 J. Baran and P. Petrovič are with the Faculty of Mathematics, Physics

and Informatics, Comenius University, Bratislava, Mlynská dolina, 842 48

Bratislava, Slovakia, janahlava@gmail.com, ppetrovic@acm.org.

 M. Schoenauer is with Laboratoire de Recherche en Informatique,

Université Paris Sud, 914505 Orsay Cedex, France, Marc.Schoenauer@lri.fr.

theoretical analysis, useful practical results may be obtained

with automata with varying cell size, irregular grid structure,

and varying neighborhood shape. Such CA may save large

resources by substituting large areas that are filled by many

regularly arranged cells by a single cell that is capable of

performing the same functionality. We demonstrate this idea

on a case study from Evolutionary Design, where the goal in

general is to design a target shape (2D or 3D) that satisfies

required criteria. We will show how irregular CA outperform

as a representation type the standard CA with regular grid. In

the following sections, we make a few notes about related

work with irregular CA, introduce Evolutionary Design, the

evolutionary algorithm we use, different representation types,

CA as embroygenic representation, our example task, our

proposed irregular CA, results we obtained, and finally add

concluding remarks and ideas for the future work.

II. RELATED WORK

The inspiration for somewhat more dynamic structure of

cells came from J. F. Miller who introduced Cartesian Genetic

Programming in the French flag problem [7]. He used cellular

representations and an updating engine. In his model, program

of each cell decides on the amount of produced chemical,

whether it will live, die, or change to a different cell type at the

next time step, and how it will grow. Growing into another cell

means overwriting its properties completely. Besides the three

color states, there is also another state – dead. When a cell

dies, it means that it does not act any more. Even though the

cells still live and grow on locations placed on a regular grid,

Miller‘s work has inspired us to do experiments with

a dynamic grid of cells.

H. de Garis used in his work [4] two dimensional shapes

formed by a colony of cells in reproductive CA as embryos.

The idea was to evolve reproduction rules for CA, such that

the final shape of a colony of cells would match a desired

shape as closely as possible. Each cell contains a differentiable

chromosome, which consists of four ‗operons‘. Each operon

contains a condition field and an action field. These operons

can switch on and off over time. The sequential operon

switching controls the growth of an embryo. If a cell matches

one of the conditions of an operon, then the corresponding

action is activated and its instructions executed. The matching

is computed from the state of the cell, which is computed from

the previous cell state and from states of the neighbors of the

cell. The state of a cell was defined in terms of the

configuration of its neighbor-less side(s) because only such

cells can reproduce (there are 14 different states). Both these

works showed some capability of a dynamic irregular cells

structure to learn a desired shape, i.e. optimize the target

pattern.

C

Cellular Automata with Irregular Structure:

a Compact Representation

Jana Baran, Pavel Petrovič, and Marc Schoenauer

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

III. EVOLUTIONARY DESIGN

Evolutionary design is one of the application domains of

evolutionary computation, it extends beyond Computer-Aided

Design (CAD), and it borrows ideas from natural evolution.

Evolutionary design has been applied in many different areas

over the last decades, in mechanical engineering to optimize

structures (flywheels, propellers, wind turbines, supersonic

aircrafts, etc.), in electrical engineering to optimize circuits, or

in computer engineering to optimize hard problems (for

example non-polynomial problems) [3, 4]. Even more,

evolutionary design was used as not only the optimizer but as a

creator, especially in different kinds of art, modern

architecture, or in computer science to evolve artificial life [3,

5]. In general, the types of evolutionary design can be divided

into four main categories: evolutionary design optimization,

creative evolutionary design, evolutionary art, and

evolutionary artificial life forms. For each Evolutionary

Design application, three most important implementation

challenges must be faced: first, the type of an evolutionary

algorithm, which is responsible for the organization of

initializing, selecting, recombining, and mutating the potential

solutions, second, the representation type, i.e. how to

uniformly encode all potential solutions, and finally, the

palette of the evolutionary operators – the ways how the

mutation and recombination change the selected individuals.

An additional aspect is setting of the parameters, which is

usually based on empirical and some theoretical assessment.

We describe the important choices in the following sections.

IV. EVOLUTIONARY ALGORITHM

For the evolutionary algorithm we chose the state of the art

method of Nikolaus Hansen, Covariance Matrix Adaptation

Evolution Strategy (CMA ES) [6]. Evolutionary strategies as

contrasted to Genetic Algorithms rely more on mutation than

random recombination of the crossover type. The populations

tend to be smaller, and they are not represented by a set of

individuals, rather, they are represented by a probabilistic

distribution of multivariate normal distribution. The

individuals are sampled from this distribution at the beginning

of each generation. At the end of each generation, the

individuals adjust the parameters of the distribution according

to their performance and then they die. This kind of algorithm

is typically very useful in searching for vectors of real-valued

parameters in a smooth fitness landscape. However, various

additional techniques, such as evolution path and step-size

control make this method a successful one, even in problems

with multi-modal, ill-conditioned, and non-separable fitness

landscapes. All details can be found in [6].

V. REPRESENTATION TYPES

A crucial step in the design of an evolutionary solver is the

selection of an effective representation for the current

problem. The very important consideration is that if two

individuals are closely related on the genotype level then they

should be closely related on the phenotype level as well.

Otherwise, two solutions are incomparable. In other words,

a minor change in the genotype should not cause a major

change in the phenotype, otherwise the fine tuning of the

system becomes difficult. Another important issue to consider

before choosing an appropriate representation/embryogeny is

the dimensionality of the search space and the level of

complexity. An efficient representation/embryogeny can

provide the following benefits: reduction of the search space,

complex phenotype solutions, constraint handling, adaptation

and repetition. The advantages and drawbacks will be further

discussed for each representation category. Representations

versus embryogenies:

• direct representations (no or external embryogeny)

• indirect or generative representations (explicit or implicit

embryogeny)

• cellular representations (implicit embryogeny)

Direct representations are the simplest type of

representations where the genotype directly encodes the

phenotype. The simplest direct representation is a binary

representation, so called bitarray [8], where each bit represents

a single unit of the design pattern, a pixel or voxel (Figure 1).

Examples of evolutionary operators in this case would be

random initialization, simple bit-mutation, and some kind of

geometric crossover: combining coherent components of two

parent solutions to obtain offspring.

Fig. 1. Example of a direct representation.

More complex and sophisticated representations are indirect

representations. In indirect representations, the phenotype is

determined by the genotype, but the genotype does not encode

the phenotype directly, but rather encodes instructions how to

construct the resulting phenotype. An example of generative

representations are L-systems, see for example [9], unordered

lists, program trees, or graphs. More specific examples include

Voronoi diagrams, dipoles representations, and Iterated

Function System (IFS) [10]. In this case, the evolutionary

operators are typically working on a genotype encoded for

instance by a set of vertices – seeds for Voronoi diagram

(Figure 2). Mutating thus moving the seeds leads to altering

the resulting shape correspondingly.

Fig. 2. Example of an indirect representation: Voronoi representation for the

2x1 cantilever test problem [15].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Cellular representations are a very promising representation

type used in evolutionary design. They combine the properties

of direct and indirect representations in the sense that the

cellular topology (for instance a grid) maps to the phenotype

topology directly. For instance, the cellular grid can map one

to one with the resulting picture, thus a cell can match a pixel.

On the other hand, the color or other properties of the cells are

gained implicitly thus indirectly (Figure 3).

Fig. 3. An illustration of a cellular representation, the resulting shape is the

outcome after several iterations of the CA.

In reference to the natural inspiration to Evolutionary

Algorithms, generative representations are often extended by

an embryogenesis – a natural process of development from

embryo to fetus, or simply a process of growth that defines

how a genotype is mapped onto a phenotype. In the terms of

CA, the transition function of a single CA cell is a genotype,

and the constructed CA is an embryo that develops to a final

target shape – a phenotype through a series of iterations.

VI. EXAMPLE TASK

For the purpose of this work, we consider a task of

constructing a 2D shape with an exact prescribed pattern. As

such, this task is not really a practical application of

Evolutionary Design, but rather a testing of the representation.

We would like to see our algorithm constructing novel and

unanticipated shapes that would, however, show the expected

qualities and properties. Obviously, that is the ultimate goal of

the engineers, but we, trying to stand on the science side, are

more interested in studying the properties – namely the

evolvability and performance of the different representations.

Therefore, the exact purpose of the objective function is

secondary to our interest, and comparing to a specific output

pattern serves well to see how flexible a proposed

representation could be.

Our starting point was a dissertation of Alexandre Devert

[11], who successfully evolved CA iterating to a stable fix-

point – a target shape in form of a 2D pattern – simply called a

―flag‖ (Figure 4). In particular, by means of the CMA-ES

evolutionary algorithm, Devert optimized weights of a feed-

forward neural network (NN) that controlled the state

transition function of the cells. Inspired by the Turing's

diffusion-reaction system, Devert's CA also uses diffusion of

chemicals, i.e. smoothing the spreading of states through the

automaton using the application of Gaussian blur operator.

Note that CA usually contain cells that take upon a discrete set

of states, while in this case, a cell state is a vector of arbitrary

real values. This makes the states less crisp, more continuous

and thus more amenable for evolution and smooth behavior of

artificial NN. Using a vector of numbers allows storing

independent values, for instance corresponding to distances

from left and top borders. However their actual meaning

hidden from us, it is discovered by the evolutionary algorithm.

Figure 5 shows a diagram explaining the states of a cell. The

states are of two types: internal states and external chemicals.

The transition function is a standard multi-layer perceptron

(MLP) with a fixed number of hidden nodes. Thus the

genotype in this case consists of a vector of input weights for

all hidden and output neurons, which are directly connected to

the new cell states and chemicals. In more detail: the input for

the MLP is the chemical vector consisting of the chemicals of

the current cell with chemicals of its neighbors, and the state

vector consisting of the states of the current cell. The output of

the MLP are the new values for states, chemicals, and

optionally the cell merge/split control signal or the cell color

signal – determining the resulting pattern. The inputs to the

hidden layer are the states, and neighbor chemicals but not the

chemicals of the current updating cell. All input values are

connected to all hidden neurons. Similarly, all hidden neurons

are connected to all output values. Output values consist of

new states and chemicals of the cell. Furthermore, the layer of

neurons computing the output chemical values has another

input also - the chemicals of the current updating cell that were

omitted for the hidden layer (Figure 5). The output value for

each of the hidden neurons and perceptron final outputs are

computed by applying the activation function - hyperbolic

tangent of the sum of all its weighted inputs together with the

previous neuron value. The colors of all the cells are computed

as:

 (1)

where i is the i-th cell, ci is its chemical vector, si is its state

vector, w refer to weights.

Fig. 4. Examples of target patterns (flags) used in our experiments.

The objective function simply compares the specified and

resulting patterns, for both regular and irregular CA:

 (2)

where cells is a number of cells in the embryo, colorCelli is a

color value of the cell, colorPixeli is a random point in the

picture covered by the cell, sizemax is the maximum size of a

cell in the embryo.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig. 5. Cell state transition is guided by a neural network. States are of two

types: internal states and external chemicals that diffuse and interact with

neighboring cells [5].

In our previous work [12], we have successfully repeated

Devert's experiments (Figure 6) and modified the algorithm in

such a way, that the same CA was able to converge to two

different flags (fix-points) depending on the environmental

conditions – i.e. fixed inputs provided to the cells on the

border of the CA. Automaton was always initialized with zeros

as initial states in all cells, but the cells on the border were

connected to ―constant‖ cells that were either 0 or 1 –

depending whether the automaton was to produce the first or

the second required pattern.

Fig. 6. Examples of resulting patterns of CA controlled by an evolved

transition function [5]. A reconstructed experiment of Devert [11].

Fig. 7. Example of two flag patterns represented by the same CA: on the left,

two bands 90 and two bands 90 inverted, on the right, two bands 90 and two

bands 45. All possible outcomes – no fix-points, one fix-point and two fix-

points are shown.

Figure 6 contains example outcomes of a single fix-point

CA. Figure 7 shows two evolved shapes that are represented

by a single CA able to reach two fix-points (attractors). Our

attempts to evolve more than two fix-points by varying the

content of the constant border cells did not find a solution.

However, we would like to try different methods, for instance

providing a different constant input to all the cells in the CA.

Fig. 8. Plot of three different evolutionary runs showing the fitness of both

shapes (and their average) against the number of evaluations. The first case

was unsuccessful, second case evolved only one fix-point, while the third case

evolved both fix-points.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

In this work, returning back to our discussion in the

introduction, we are looking at the possibility to deal with CA

that do not have a regular grid structure.

VII. IRREGULAR CA STRUCTURE

A newer version of our CA consists of irregular rectangular

grid of cells that can be of different sizes. The color of a

specific cell is a part of the target pattern in the same way,

regardless its size. Our goal is to let the CA decide the

structure of the cells on its own, based on the pattern. Thus the

cell states determine not only the resulting color but also

whether the cell wants to merge with neighboring cells or split.

If the signal is positive (negative) and above (below) some

threshold, it will try to merge (split), and there is a neutral

interval around zero when the cell remains in the same size.

Cells are allowed to merge only in a square manner – i.e. when

any four cells that form a square together like to merge, they

are all replaced by a single cell. The resulting cell states are

determined as an average of the merged cells. A cell willing to

split is allowed to do so at any time, and the four newly born

cells are arranged in a square, receiving copies of all the parent

cell states.

At the same time, we would like to find a suitable transition

function (i.e. MLP in our case), which we could install in all

the cells, again, regardless of their size, to obtain a resulting

pattern with the required properties. Experiments persuaded us

that trying to do these two things simultaneously (optimize

structure and color) given our representation is not necessarily

a good idea, and thus we tried the incremental approach: first

find a suitable structure and only then find a good transition

function once the structure is fixed, although irregular. We can

hypothesize that simultaneous evolution is difficult, because

changing the topology, while the transition is being searched

for is too destructive. Finding transition is challenging already

when the topology is static, but making it dynamic complicates

the matters strongly.

Optimizing the structure of a picture means adaptation of

cell sizes and positions to the pattern of the picture. The

pattern of the picture consists of contours in the picture, the

borders of monochromatic regions in the picture. In the

optimal case, the cells would adapt to the various color regions

of the picture, and each cell would match a different region at

the end. However, our grid is not so flexible as it is allowed to

consist of square cells only. The shape of color regions is

simply approximated using the squares with sides of length 2
k
.

At the beginning, each cell corresponds to one pixel of a target

picture. The cells are allowed to do one of the three actions:

merge together, split, or do nothing. The desired growing

action of a cell is determined by merge/split signal computed

by the MLP controller. The objective function in this case

penalizes all cells that cover more than one color region. In

particular, the numbers of pixels in all color regions, except

the largest one that the cell covers, are summed together for all

the cells in the automaton. Secondly, the objective function

penalizes the number of cells used, i.e. the algorithm will try to

minimize the number of cells. The balance between the two

criteria is determined by the size of the grid, but there is a

space for improvement. Alternately, an approach using a

multi-objective evolutionary algorithm could be used to get a

balance between the two criteria. The objective function we

used is as follows:

 (3)

where width, height are dimensions of the embryo, blacki,

whitei is the number of black/white pixels respectively per

each cell, black, white is the total number of black/white pixels

respectively in the embryo.

Once the topology was optimized, i.e. the best fitness in the

population stopped to improve, the second stage of color

optimization automatically followed. It used the same

objective function as in the regular CA, (2).

VIII. RESULTS

We performed the first experiments with only the first stage

of the evolution – to see if we can optimize the structure of the

grid at all. They showed the capability of the CA to adapt its

structure to the structure of the target pattern. Some examples

of resulting optimized structures of the 33x33 pixels pictures

are shown in Figure 9, the shading shows the underlying color

pattern.

Fig. 9. Examples of resulting optimized patterns (structure).

The success in structure optimization was a necessary

condition for the optimization of both the structure and the

color. Evaluations of average best fitness values of

experiments performed to optimize the structure and then the

color of the targets are shown in Figure 10. Examples of the

resulting optimized structures with colors of the 33x33 pixels

pictures are shown in Figure 11. The total number of

evaluations was shorter in case of the staged evolution with

evolving the structure first than in case of regular grid CA,

although the color mapping was not so good. Further

experiments might be needed to investigate the potential.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Fig. 10. The average best fitness values achieved by optimization of the

structure (top) and then color (bottom of two patterns (two bands 45 –

converges more slowly, and two bands 90 – converges faster).

Fig. 11. Examples of resulting optimized patterns (structure and color).

IX. CONCLUSIONS AND FUTURE WORK

In this case study of Evolutionary Design, we investigate

Cellular Automata as embryogenic representation type. We

build upon a successful work [11] that used regular-grid CA as

a representation to construct a specified 2D color pattern. The

work was later extended to find CA that can represent two

different flags. Our interest is in modifying the regular grid

structure of the automaton in order to provide a more flexible

representation that distributes the resources based on the local

complexity in different parts of the pattern. We show that

using CA with irregular grids and cells of different sizes

produces reasonable patterns, with more compact

representation of the resulting shape. We also achieved this

faster than using a regular-grid CA. In the future work, we

would like to study the CA with irregular mesh in more details.

In our work, we tried only one specific type of cell

merging/splitting, while various different types are possible.

For instance, one could replace the first stage of the evolution

with a deterministic method – for instance rendering an

optimal quad-tree that fills the color regions without conflicts,

or allowing cells of non-square shapes. It remains yet to try, if

irregular automata can also evolve multi-fixed-point CA as we

showed for the regular ones. We are also interested to learn

about other work that relates to CA with irregular grid, in

order to improve our knowledge on developmental

evolutionary representations. A very interesting topic is a

synthesis of CA by theoretical means, as contrasted to

stochastic-search optimization. There are known methods for

constructing finite-state automata as well as some theoretical

work on 2D CA. This may also lead to modifying the

transition function (the controller) – and using a different type

of controller instead of MLP. We are also running more

experiments to asses how much the representation suitability

could scale up for more complex patterns.

ACKNOWLEDGMENT

Authors are thankful to Alexandre Devert for providing us

with the source code for experiments from his dissertation, as

well as for being always available to explain his approach. Part

of this work was done with the support of Erasmus Exchange

Programme.

REFERENCES

[1] S. Wolfram, ―A New Kind of Science‖, Wolfram Media Inc., 2001. G.

[2] E. Berlekamp, J. Conway, R. K. Guy, ―Winning Ways for Your

Mathematical Plays‖, Academic Press, 1982.

[3] M.Whitelaw, ―Breeding Aesthetic Objects: Art and Artificial

Evolution‖, in Creative evolutionary systems, edited by P. J. Bentley

and D. W. Corne, Academic Press, pp. 129 -145, 2002.

[4] H. de Garis, Artificial Embryology and Cellular Differentiation, in P. J.

Bentley (ed.) Evolutionary design by computers, Morgan Kaufman, pp.

281-295, 1999.

[5] J. Romero, P. Muchado, The Art of Artificial Evolution, 2008.

[6] N. Hansen, The CMA Evolution Strategy: A Tutorial, 2008.

[7] J. F. Miller, Evolving a self-repairing, self-regulating, French flag

organism, In GECCO, Springer Verlag, pp. 129—139, 2004.

[8] C. Kane and M. Schoenauer, Topological Optimum Design using

Genetic Algorithms, Control and Cybernetics, 1996.

[9] G. S. Hornby, Generative representations for evolutionary design

automation, Brandeis University, Waltham, MA, 2003, Ph.D.

Dissertation.

[10] H. Hamda, F. Jouve, E. Lutton, M. Schoenauer and M. Sebag, Compact

unstructured representations for evolutionary topological optimum

design, Applied Intelligence, Volume 16, 2002

[11] A. Devert, Building processes optimization : Toward an artificial

ontogeny based approach,Université Paris-Sud, France, 2009, Ph. D.

Dissertation.

[12] J. Hlavačiková (Baran), ―Cellular Embryogenic Representations in

Evolutionary Design‖, Master thesis, Comenius University, 2010.

[13] Universal Computer, LifeWiki, on-line at:

 http://conwaylife.com/wiki/index.php?title=Universal_computer

 accessed: July 12th 2010.

[14] K. Morita, M. Morgenstern, K. Imai, Universality of Reversible

Hexagonal Cellular Automata, Theoret. Informatics Appl. 33, pp. 535-

550, 1999.

[15] H. Hamda et al. Compact Unstructured Representations for

Evolutionary Topological Optimum Design, Applied Intelligence 16,

139–155, 2002.

