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 

Abstract— Cellular Automata (CA) are a standard theoretical 

model of uniform parallel computation on a grid of cells. They 

can be looked upon as a discrete type of dynamic systems. As 

such, they are important tools for modeling spatially distributed 

processes of different kind – from ecology, through biology, and 

artificial life, to economics. They are also a useful theoretical 

model for studying classes of computational complexity. We are 

interested in the ability of CA to converge to a fixed point with 

interesting properties, which are quantized by an objective 

function. In this way, CA qualify as a promising embryogenic 

representation for Evolutionary Design. Moreover, by modifying 

the original CA concept by allowing irregular mesh, we can 

achieve a more flexible and compact representation resulting in 

faster evolutionary progress. 

 
Index Terms—cellular automata, evolutionary design, 

evolutionary algorithms,  irregular grid. 

 

I. INTRODUCTION 

ELLULAR Automata are a theoretical model 

consisting of a set of cells, typically arranged in a form 

of a grid, or array. Each cell has a set of possible states it can 

enter, and each cell has a defined neighborhood – a set of 

adjacent cells. The next state of a cell is determined by the 

current state of the cell and states of the neighboring cells. 

Rules that specify the state transitions are common to all cells 

in the automaton. CA have been intensely studied by various 

researchers. For instance, Stephen Wolfram in his book New 

Kind of Science studied the evolution of one-dimensional CA 

in time, and examined its regular, fractal and chaotic behavior 

[1]. A famous example is the Game of Life of John H. 

Conway, a two-dimensional CA, which was shown to be a 

universal computer, capable of computing an arbitrary 

algorithm [2]. Actual implementations of universal computers 

using Life have been constructed more recently, see [13] for a 

list. Other types of CA, including hexagonal and reversible CA 

– i.e. those able to compute in reverse direction back to 

recover their inputs – have also been shown to be universal 

computers [14]. However, in most studies, the basic property 

of CA has not been relaxed – namely that they are formed of 

cells of equal sizes, arranged in regular grids or meshes, with 

equal neighborhood structure (except of the border cells). We 

believe that even though such CA might be more amenable to 
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theoretical analysis, useful practical results may be obtained 

with automata with varying cell size, irregular grid structure, 

and varying neighborhood shape. Such CA may save large 

resources by substituting large areas that are filled by many 

regularly arranged cells by a single cell that is capable of 

performing the same functionality. We demonstrate this idea 

on a case study from Evolutionary Design, where the goal in 

general is to design a target shape (2D or 3D) that satisfies 

required criteria. We will show how irregular CA outperform 

as a representation type the standard CA with regular grid. In 

the following sections, we make a few notes about related 

work with irregular CA, introduce Evolutionary Design, the 

evolutionary algorithm we use, different representation types, 

CA as embroygenic representation, our example task, our 

proposed irregular CA, results we obtained, and finally add 

concluding remarks and ideas for the future work.   

II. RELATED WORK 

The inspiration for somewhat more dynamic structure of 

cells came from J. F. Miller who introduced Cartesian Genetic 

Programming in the French flag problem [7]. He used cellular 

representations and an updating engine. In his model, program 

of each cell decides on the amount of produced chemical, 

whether it will live, die, or change to a different cell type at the 

next time step, and how it will grow. Growing into another cell 

means overwriting its properties completely. Besides the three 

color states, there is also another state – dead. When a cell 

dies, it means that it does not act any more. Even though the 

cells still live and grow on locations placed on a regular grid, 

Miller‘s work has inspired us to do experiments with 

a dynamic grid of cells.  

H. de Garis used in his work [4] two dimensional shapes 

formed by a colony of cells in reproductive CA as embryos. 

The idea was to evolve reproduction rules for CA, such that 

the final shape of a colony of cells would match a desired 

shape as closely as possible. Each cell contains a differentiable 

chromosome, which consists of four ‗operons‘. Each operon 

contains a condition field and an action field. These operons 

can switch on and off over time. The sequential operon 

switching controls the growth of an embryo. If a cell matches 

one of the conditions of an operon, then the corresponding 

action is activated and its instructions executed. The matching 

is computed from the state of the cell, which is computed from 

the previous cell state and from states of the neighbors of the 

cell. The state of a cell was defined in terms of the 

configuration of its neighbor-less side(s) because only such 

cells can reproduce (there are 14 different states). Both these 

works showed some capability of a dynamic irregular cells 

structure to learn a desired shape, i.e. optimize the target 

pattern.  
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III. EVOLUTIONARY DESIGN 

Evolutionary design is one of the application domains of 

evolutionary computation, it extends beyond Computer-Aided 

Design (CAD), and it borrows ideas from natural evolution. 

Evolutionary design has been applied in many different areas 

over the last decades, in mechanical engineering to optimize 

structures (flywheels, propellers, wind turbines, supersonic 

aircrafts, etc.), in electrical engineering to optimize circuits, or 

in computer engineering to optimize hard problems (for 

example non-polynomial problems) [3, 4]. Even more, 

evolutionary design was used as not only the optimizer but as a 

creator, especially in different kinds of art, modern 

architecture, or in computer science to evolve artificial life [3, 

5]. In general, the types of evolutionary design can be divided 

into four main categories: evolutionary design optimization, 

creative evolutionary design, evolutionary art, and 

evolutionary artificial life forms. For each Evolutionary 

Design application, three most important implementation 

challenges must be faced: first, the type of an evolutionary 

algorithm, which is responsible for the organization of 

initializing, selecting, recombining, and mutating the potential 

solutions, second, the representation type, i.e. how to 

uniformly encode all potential solutions, and finally, the 

palette of the evolutionary operators – the ways how the 

mutation and recombination change the selected individuals. 

An additional aspect is setting of the parameters, which is 

usually based on empirical and some theoretical assessment. 

We describe the important choices in the following sections. 

IV. EVOLUTIONARY ALGORITHM 

For the evolutionary algorithm we chose the state of the art 

method of Nikolaus Hansen, Covariance Matrix Adaptation 

Evolution Strategy (CMA ES) [6]. Evolutionary strategies as 

contrasted to Genetic Algorithms rely more on mutation than 

random recombination of the crossover type. The populations 

tend to be smaller, and they are not represented by a set of 

individuals, rather, they are represented by a probabilistic 

distribution of multivariate normal distribution. The 

individuals are sampled from this distribution at the beginning 

of each generation. At the end of each generation, the 

individuals adjust the parameters of the distribution according 

to their performance and then they die. This kind of algorithm 

is typically very useful in searching for vectors of real-valued 

parameters in a smooth fitness landscape. However, various 

additional techniques, such as evolution path and step-size 

control make this method a successful one, even in problems 

with multi-modal, ill-conditioned, and non-separable fitness 

landscapes. All details can be found in [6]. 

V. REPRESENTATION TYPES 

A crucial step in the design of an evolutionary solver is the 

selection of an effective representation for the current 

problem. The very important consideration is that if two 

individuals are closely related on the genotype level then they 

should be closely related on the phenotype level as well. 

Otherwise, two solutions are incomparable. In other words, 

a minor change in the genotype should not cause a major 

change in the phenotype, otherwise the fine tuning of the  

system becomes difficult. Another important issue to consider 

before choosing an appropriate representation/embryogeny is 

the dimensionality of the search space and the level of 

complexity. An efficient representation/embryogeny can 

provide the following benefits: reduction of the search space, 

complex phenotype solutions, constraint handling, adaptation 

and repetition. The advantages and drawbacks will be further 

discussed for each representation category. Representations 

versus embryogenies: 

• direct representations (no or external embryogeny) 

• indirect or generative representations (explicit or implicit 

embryogeny) 

• cellular representations (implicit embryogeny) 

Direct representations are the simplest type of 

representations where the genotype directly encodes the 

phenotype. The simplest direct representation is a binary 

representation, so called bitarray [8], where each bit represents 

a single unit of the design pattern, a pixel or voxel (Figure 1). 

Examples of evolutionary operators in this case would be 

random initialization, simple bit-mutation, and some kind of 

geometric crossover: combining coherent components of two 

parent solutions to obtain offspring. 

 

 

 

 

 

Fig. 1.  Example of a direct representation. 

 

More complex and sophisticated representations are indirect 

representations. In indirect representations, the phenotype is 

determined by the genotype, but the genotype does not encode 

the phenotype directly, but rather encodes instructions how to 

construct the resulting phenotype. An example of generative 

representations are L-systems, see for example [9], unordered 

lists, program trees, or graphs. More specific examples include 

Voronoi diagrams, dipoles representations, and Iterated 

Function System (IFS) [10]. In this case, the evolutionary 

operators are typically working on a genotype encoded for 

instance by a set of vertices – seeds for Voronoi diagram 

(Figure 2). Mutating thus moving the seeds leads to altering 

the resulting shape correspondingly. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Example of an indirect representation: Voronoi representation for the 

2x1 cantilever test problem [15]. 
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Cellular representations are a very promising representation 

type used in evolutionary design. They combine the properties 

of direct and indirect representations in the sense that the 

cellular topology (for instance a grid) maps to the phenotype 

topology directly. For instance, the cellular grid can map one 

to one with the resulting picture, thus a cell can match a pixel. 

On the other hand, the color or other properties of the cells are 

gained implicitly thus indirectly (Figure 3). 

 

 

 

 

 

 

Fig. 3.  An illustration of a cellular representation, the resulting shape is the 

outcome after several iterations of the CA. 

 

In reference to the natural inspiration to Evolutionary 

Algorithms, generative representations are often extended by 

an embryogenesis – a natural process of development from 

embryo to fetus, or simply a process of growth that defines 

how a genotype is mapped onto a phenotype. In the terms of 

CA, the transition function of a single CA cell is a genotype, 

and the constructed CA is an embryo that develops to a final 

target shape – a phenotype through a series of iterations.  

VI. EXAMPLE TASK 

For the purpose of this work, we consider a task of 

constructing a 2D shape with an exact prescribed pattern. As 

such, this task is not really a practical application of 

Evolutionary Design, but rather a testing of the representation. 

We would like to see our algorithm constructing novel and 

unanticipated shapes that would, however, show the expected 

qualities and properties. Obviously, that is the ultimate goal of 

the engineers, but we, trying to stand on the science side, are 

more interested in studying the properties – namely the 

evolvability and performance of the different representations. 

Therefore, the exact purpose of the objective function is 

secondary to our interest, and comparing to a specific output 

pattern serves well to see how flexible a proposed 

representation could be. 

Our starting point was a dissertation of Alexandre Devert 

[11], who successfully evolved CA iterating to a stable fix-

point – a target shape in form of a 2D pattern – simply called a 

―flag‖ (Figure 4). In particular, by means of the CMA-ES 

evolutionary algorithm, Devert optimized weights of a feed-

forward neural network (NN) that controlled the state 

transition function of the cells. Inspired by the Turing's 

diffusion-reaction system, Devert's CA also uses diffusion of 

chemicals, i.e. smoothing the spreading of states through the 

automaton using the application of Gaussian blur operator. 

Note that CA usually contain cells that take upon a discrete set 

of states, while in this case, a cell state is a vector of arbitrary 

real values. This makes the states less crisp, more continuous 

and thus more amenable for evolution and smooth behavior of 

artificial NN. Using a vector of numbers allows storing 

independent values, for instance corresponding to distances 

from left and top borders. However their actual meaning 

hidden from us, it is discovered by the evolutionary algorithm. 

Figure 5 shows a diagram explaining the states of a cell. The 

states are of two types: internal states and external chemicals. 

The transition function is a standard multi-layer perceptron 

(MLP) with a fixed number of hidden nodes. Thus the 

genotype in this case consists of a vector of input weights for 

all hidden and output neurons, which are directly connected to 

the new cell states and chemicals. In more detail: the input for 

the MLP is the chemical vector consisting of the chemicals of 

the current cell with chemicals of its neighbors, and the state 

vector consisting of the states of the current cell. The output of 

the MLP are the new values for states, chemicals, and 

optionally the cell merge/split control signal or the cell color 

signal – determining the resulting pattern. The inputs to the 

hidden layer are the states, and neighbor chemicals but not the 

chemicals of the current updating cell. All input values are 

connected to all hidden neurons. Similarly, all hidden neurons 

are connected to all output values. Output values consist of 

new states and chemicals of the cell. Furthermore, the layer of 

neurons computing the output chemical values has another 

input also - the chemicals of the current updating cell that were 

omitted for the hidden layer (Figure 5). The output value for 

each of the hidden neurons and perceptron final outputs are 

computed by applying the activation function - hyperbolic 

tangent of the sum of all its weighted inputs together with the 

previous neuron value. The colors of all the cells are computed 

as: 

                                                                                               (1) 

where i is the i-th cell, ci is its chemical vector, si is its state 

vector, w refer to weights. 

 

 

 

 

 

 

 

 

 

Fig. 4.  Examples of target patterns (flags) used in our experiments. 

 

The objective function simply compares the specified and 

resulting patterns, for both regular and irregular CA: 

 

                                                                                               (2)     

where cells is a number of cells in the embryo, colorCelli is a 

color value of the cell, colorPixeli is a random point in the 

picture covered by the cell, sizemax is the maximum size of a 

cell in the embryo. 
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Fig. 5. Cell state transition is guided by a neural network. States are of two 

types: internal states and external chemicals that diffuse and interact with 

neighboring cells [5]. 

 

In our previous work [12], we have successfully repeated 

Devert's experiments (Figure 6) and modified the algorithm in 

such a way, that the same CA was able to converge to two 

different flags (fix-points) depending on the environmental 

conditions – i.e. fixed inputs provided to the cells on the 

border of the CA. Automaton was always initialized with zeros 

as initial states in all cells, but the cells on the border were 

connected to ―constant‖ cells that were either 0 or 1 – 

depending whether the automaton was to produce the first or 

the second required pattern. 

 

 

 

 

Fig. 6. Examples of resulting patterns of CA controlled  by an evolved 

transition function [5]. A reconstructed experiment of Devert [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Example of two flag patterns represented by the same CA: on the left, 

two bands 90 and two bands 90 inverted, on the right, two bands 90 and two 

bands 45. All possible outcomes – no fix-points, one fix-point and two fix-

points are shown. 

Figure 6 contains example outcomes of a single fix-point 

CA. Figure 7 shows two evolved shapes that are represented 

by a single CA able to reach two fix-points (attractors). Our 

attempts to evolve more than two fix-points by varying the 

content of the constant border cells did not find a solution. 

However, we would like to try different methods, for instance 

providing a different constant input to all the cells in the CA. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Plot of three different evolutionary runs showing the fitness of both 

shapes (and their average) against the number  of evaluations. The first case 

was unsuccessful, second case evolved only one fix-point, while the third case 

evolved both fix-points. 
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In this work, returning back to our discussion in the 

introduction, we are looking at the possibility to deal with CA 

that do not have a regular grid structure. 

VII.  IRREGULAR CA STRUCTURE 

A newer version of our CA consists of irregular rectangular 

grid of cells that can be of different sizes. The color of a 

specific cell is a part of the target pattern in the same way, 

regardless its size. Our goal is to let the CA decide the 

structure of the cells on its own, based on the pattern. Thus the 

cell states determine not only the resulting color but also 

whether the cell wants to merge with neighboring cells or split. 

If the signal is positive (negative) and above (below) some 

threshold, it will try to merge (split), and there is a neutral 

interval around zero when the cell remains in the same size. 

Cells are allowed to merge only in a square manner – i.e. when 

any four cells that form a square together like to merge, they 

are all replaced by a single cell. The resulting cell states are 

determined as an average of the merged cells. A cell willing to 

split is allowed to do so at any time, and the four newly born 

cells are arranged in a square, receiving copies of all the parent 

cell states.  

At the same time, we would like to find a suitable transition 

function (i.e. MLP in our case), which we could install in all 

the cells, again, regardless of their size, to obtain a resulting 

pattern with the required properties. Experiments persuaded us 

that trying to do these two things simultaneously (optimize 

structure and color) given our representation is not necessarily 

a good idea, and thus we tried the incremental approach: first 

find a suitable structure and only then find a good transition 

function once the structure is fixed, although irregular. We can 

hypothesize that simultaneous evolution is difficult, because 

changing the topology, while the transition is being searched 

for is too destructive. Finding transition is challenging already 

when the topology is static, but making it dynamic complicates 

the matters strongly. 

Optimizing the structure of a picture means adaptation of 

cell sizes and positions to the pattern of the picture. The 

pattern of the picture consists of contours in the picture, the 

borders of monochromatic regions in the picture. In the 

optimal case, the cells would adapt to the various color regions 

of the picture, and each cell would match a different region at 

the end. However, our grid is not so flexible as it is allowed to 

consist of square cells only. The shape of color regions is 

simply approximated using the squares with sides of length 2
k
. 

At the beginning, each cell corresponds to one pixel of a target 

picture. The cells are allowed to do one of the three actions: 

merge together, split, or do nothing. The desired growing 

action of a cell is determined by merge/split signal computed 

by the MLP controller. The objective function in this case 

penalizes all cells that cover more than one color region. In 

particular, the numbers of pixels in all color regions, except 

the largest one that the cell covers, are summed together for all 

the cells in the automaton. Secondly, the objective function 

penalizes the number of cells used, i.e. the algorithm will try to 

minimize the number of cells. The balance between the two 

criteria is determined by the size of the grid, but there is a 

space for improvement. Alternately, an approach using a 

multi-objective evolutionary algorithm could be used to get a 

balance between the two criteria. The objective function we 

used is as follows: 

                                                                                               (3) 

 

where width, height are dimensions of the embryo, blacki, 

whitei is the number of black/white pixels respectively per 

each cell, black, white is the total number of black/white pixels 

respectively in the embryo. 

Once the topology was optimized, i.e. the best fitness in the 

population stopped to improve, the second stage of color 

optimization automatically followed. It used the same 

objective function as in the regular CA, (2). 

VIII. RESULTS 

We performed the first experiments with only the first stage 

of the evolution – to see if we can optimize the structure of the 

grid at all. They showed the capability of the CA to adapt its 

structure to the structure of the target pattern. Some examples 

of resulting optimized structures of the 33x33 pixels pictures 

are shown in Figure 9, the shading shows the underlying color 

pattern. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.   Examples of resulting optimized patterns (structure). 

 

The success in structure optimization was a necessary 

condition for the optimization of both the structure and the 

color. Evaluations of average best fitness values of 

experiments performed to optimize the structure and then the 

color of the targets are shown in Figure 10. Examples of the 

resulting optimized structures with colors of the 33x33 pixels 

pictures are shown in Figure 11. The total number of 

evaluations was shorter in case of the staged evolution with 

evolving the structure first than in case of regular grid CA, 

although the color mapping was not so good. Further 

experiments might be needed to investigate the potential.   
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Fig. 10. The average best fitness values achieved by optimization of the 

structure (top) and then color (bottom of two patterns (two bands 45 – 

converges more slowly, and two bands 90 – converges faster). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.   Examples of resulting optimized patterns (structure and color). 

IX.  CONCLUSIONS AND FUTURE WORK 

In this case study of Evolutionary Design, we investigate 

Cellular Automata as embryogenic representation type. We 

build upon a successful work [11] that used regular-grid CA as 

a representation to construct a specified 2D color pattern. The 

work was later extended to find CA that can represent two 

different flags. Our interest is in modifying the regular grid 

structure of the automaton in order to provide a more flexible 

representation that distributes the resources based on the local 

complexity in different parts of the pattern. We show that 

using CA with irregular grids and cells of different sizes 

produces reasonable patterns, with more compact 

representation of the resulting shape. We also achieved this 

faster than using a regular-grid CA. In the future work, we 

would like to study the CA with irregular mesh in more details. 

In our work, we tried only one specific type of cell 

merging/splitting, while various different types are possible. 

For instance, one could replace the first stage of the evolution 

with a deterministic method – for instance rendering an 

optimal quad-tree that fills the color regions without conflicts, 

or allowing cells of non-square shapes. It remains yet to try, if 

irregular automata can also evolve multi-fixed-point CA as we 

showed for the regular ones. We are also interested to learn 

about other work that relates to CA with irregular grid, in 

order to improve our knowledge on developmental 

evolutionary representations. A very interesting topic is a 

synthesis of CA by theoretical means, as contrasted to 

stochastic-search optimization. There are known methods for 

constructing finite-state automata as well as some theoretical 

work on 2D CA. This may also lead to modifying the 

transition function (the controller) – and using a different type 

of controller instead of MLP. We are also running more 

experiments to asses how much the representation suitability 

could scale up for more complex patterns. 

ACKNOWLEDGMENT 

Authors are thankful to Alexandre Devert for providing us 

with the source code for experiments from his dissertation, as 

well as for being always available to explain his approach. Part 

of this work was done with the support of Erasmus Exchange 

Programme.  

REFERENCES 

[1] S. Wolfram, ―A New Kind of Science‖, Wolfram Media Inc., 2001. G. 

[2] E. Berlekamp, J. Conway, R. K. Guy, ―Winning Ways for Your 

Mathematical Plays‖, Academic Press, 1982. 

[3] M.Whitelaw, ―Breeding Aesthetic Objects: Art and Artificial 

Evolution‖, in Creative evolutionary systems, edited by P. J. Bentley 

and D. W. Corne, Academic Press, pp. 129 -145, 2002. 

[4] H. de Garis, Artificial Embryology and Cellular Differentiation, in P. J. 

Bentley (ed.) Evolutionary design by computers, Morgan Kaufman, pp. 

281-295, 1999. 

[5] J. Romero, P. Muchado, The Art of Artificial Evolution, 2008. 

[6] N. Hansen, The CMA Evolution Strategy: A Tutorial, 2008. 

[7] J. F. Miller, Evolving a self-repairing, self-regulating, French flag 

organism, In GECCO, Springer Verlag, pp. 129—139, 2004. 

[8] C. Kane and M. Schoenauer, Topological Optimum Design using 

Genetic Algorithms, Control and Cybernetics, 1996. 

[9] G. S. Hornby, Generative representations for evolutionary design 

automation, Brandeis University, Waltham, MA, 2003, Ph.D. 

Dissertation. 

[10] H. Hamda, F. Jouve, E. Lutton, M. Schoenauer and M. Sebag, Compact 

unstructured representations for evolutionary topological optimum 

design, Applied Intelligence, Volume 16, 2002 

[11] A. Devert, Building processes optimization : Toward an artificial 

ontogeny based approach,Université Paris-Sud, France, 2009, Ph. D. 

Dissertation. 

[12] J. Hlavačiková (Baran), ―Cellular Embryogenic Representations in 

Evolutionary Design‖, Master thesis, Comenius University, 2010. 

[13] Universal Computer, LifeWiki, on-line at:  

  http://conwaylife.com/wiki/index.php?title=Universal_computer  

  accessed: July 12th 2010. 

[14] K. Morita, M. Morgenstern, K. Imai, Universality of Reversible 

Hexagonal Cellular Automata, Theoret. Informatics Appl. 33, pp.  535-

550, 1999. 

[15] H. Hamda et al. Compact Unstructured Representations for 

Evolutionary Topological Optimum Design, Applied Intelligence 16, 

139–155, 2002. 


