™

Check for
updates

An Open Solution for a Low-Cost
Educational Toy

Pavel Petrovi¢'®® and Jozef Vagko®

! Comenius University, Bratislava, Slovakia
ppetrovic@acm. com
2 Fablab, Bratislava, Slovakia
jozef.vasko@fablab. sk

Abstract. In the summer of 2018 we organized two 5-day summer camps each
for 20 children aged 11-15 in Fablab Bratislava. In addition to learning about 2D
and 3D modelling and Arduino programming, every child has built and
experimented with a humanoid toy robot. For this purpose, we have developed a
flexible and extensible software solution that easily transitions and scales up to
any other toy or even advanced robot controlled by Arduino. In this article, we
describe our experiences from the camp as well as some other makers events and
efforts and give details on the respective framework and discuss the role of
makers movement in the educational process.

Keywords: Dtdt - Otto - Fablab - Makers - Arduino

1 Introduction and Related Work

Young people growing up in this decade benefit from an easy access to and availability
of information and technologies of all kinds thanks to the development of Internet.
Youngsters who have a deep interest in a particular hobby, subject, a challenge or a
specific project, and who have the time, enthusiasm, energy, and a goal mindedness are
in a much better starting position to enter and advance along the learning trajectory in a
fast pace than ever before. Yet, paradoxically, the amount of information available
works counter-productive when the children are facing a difficult question of where to
start, how to digest information that is too complex to start with and how to find in the
sea of the options — tasks, challenges, projects, and ideas — those that are suitable for
their actual knowledge and skill levels. Parents and other adults who face their own
challenges in a demanding world are seldom able to follow up on the developments and
fail to provide the youngsters the shared time and the opportunities to let them grow
from experiences while working with an appropriate learning material.

One possibility — often used by the parents and sometimes schools — is to rely on
good quality solutions, example of which are LEGO robotics educational sets and
programs. Their price, however, makes it inaccessible for many. Furthermore, the
marketing strategies of such producers are often somewhat limiting in terms of

© Springer Nature Switzerland AG 2020
M. Merdan et al. (Eds.): RiE 2019, AISC 1023, pp. 196-208, 2020.
https://doi.org/10.1007/978-3-030-26945-6_18

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 197

variability, good modularity, interoperability, portability, open-hardware and software,
and the software stability consequently. We feel that the development cycle of 6-8
years' is too slow to reflect on the fast technology developments and educators’ needs.
Thus meanwhile they are seconded by copyright breaching, but technologically
superior sets such as KAZI EVS5 sold for a quarter price (although possibly not in the
same production quality). There is never enough of the credit to give to the robotics set
producers for the valuable work they do on these useful educational tools, it is hard to
believe that in the highly flexible production factory processes of today it is so difficult
to provide a broader selection of different options that would better fit various needs
given by the educational goals of the customers. Many alternate solutions are frag-
menting the user base meanwhile, an interesting example of such being [9].

Educational programs such as FIRST LEGO League or RoboCup Junior provide an
excellent escape from the lack of opportunities. However, peeking at the results from
the regional tournaments, we see too many teams achieving too low score. For
example, in 2018, from 98 teams participating in 7 regional tournaments of FLL in
Slovakia only 30 achieved more than 100 points and 29 achieved less than 50 points
suggesting that many teams do not allocate enough time or efforts needed for the
learning transfer to be effective. Team performance often depends on the presence of a
necessary catalyst, in this case a skilled team-leader providing the technical, motiva-
tional, pedagogical guidance. In addition, relatively short meetings duration combined
with low meeting frequency further prevents efficient progress. The same material,
skills and ideas have to be re-acquired multiple times after having been lost. Sometimes
it takes tens of minutes to be able to follow-upon on the previous meeting. Especially
when the meeting club must tidy up the room after every single meeting and stow the
equipment and the work in progress somewhere in a storage cabinet.

Somewhat more effective regime with faster, yet longer-lasting learning progress
can be achieved in summer schools and summer camps. The positive impact of summer
schools on the future skill level and performance of participants is well known [8].

For more than 30-years a group of enthusiastic students, professionals, and training
staff members organizes a two-week electronics summer camp for talented children
(LSTME - Letné sustredenie talentovanej mladeZe v elektronike, Istme.sk), where both
authors have participated several times as leaders or instructors. From our personal
experience, working both as a leader in an afternoon robot-club and as an instructor in
this summer camp, we claim with confidence that skills of a typical strongly motivated
child advance further in the camp than during a full year of active and periodic
participation in an afterschool robot club. Intensity of the learning in the camp is
extremely accelerated by the presence of about 15 leaders and instructors - experienced
technicians who have answers to all the questions of the curious young mind. Adding
up to that they also bring various hardware and workshop equipment to the camp
making it possible to demonstrate the ideas in practical realizations: well-defined or
even open-ended projects. Disposition of the camp typically includes a full electronics
workshop for producing PCBs, LEGO robotics workshop, 3D printing workshop,

! MINDSTORMS releases: RCX: 1998, NXT: 2006, EV3: 2013.

ppetrovic@acm.org

198 P. Petrovi¢ and J. Vasko

computer room and audio-video studio. It takes place in the heart of nature and thus
interleaving laboratory work with a relaxing time and sports in the beautiful
environment.

One of the authors is a leader and manager of Fablab Bratislava — a fabulous
laboratory where everybody can come to realize his or her dreams using workshop
equipment such as 3D printers, laser cutters, vinyl cutter, automatic sewing machine,
miller machine, and more. Inspired by our experience from LSTME, we decided to
organize a day-camp in the space of Fablab Bratislava. We named it Denny tabor
digitalnych technoldgii (DT)? - a day camp of digital technologies. We had several
goals in mind when preparing the camp: (1) to let the children have a hands-on learning
experience with digital technologies so that they will understand their principles,
purpose and use and that they will be capable of fabricating various designs, potentially
coming back later and extending the Fablab users family, (2) show them the whole
process of completing a full project resulting in a real product that they take home and
can continue using and tinkering with it later on, (3) give them sufficient background
on 2D and 3D modelling and Arduino programming so that they understand the
complete process of a design and development of a novel prototype.

Further sections of this article describe some related work, the individual activities
of children in the camp, the robot that the children built and the framework that we
have developed for the robot and finally summarizes our thoughts on the role of such
activities in the educational process.

2 Organization

Children were divided into two groups of 10 based on their age and skills. These two
groups alternated between two workshops: (1) 2D and 3D modelling and (2) Elec-
tronics and programming. The day was started with a social warm-up game while we
waited for everybody to arrive, followed by the morning session lasting about 4 h.
After the lunch, we spent some time outside, playing games and easy sport such as
discgolf. In particular, we have used the activities from the Systems thinking playbook
[1] that helps people develop a systems thinking perspective when observing the world
or solving problems in a funny and gentle way. In the afternoon, the groups have
exchanged the rooms, and continued in another workshop session of about 4 h. In the
middle of the camp, we visited the laboratories of the National Centre for Robotics with
live demos of manipulators, 3D scanners, large mobile robots and industrial applica-
tions. At the end of the camp, all children presented their results and products to the
whole group, see Fig. 1. We feel the sharing, and enjoying the sharing is among the
most important principles in educational activities.

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 199

Interreg @

CENTRAL EUROPE “=-

Fig. 1. A happy participant in a final presentation and children playing with Ottos.

3 2D and 3D Modelling

The first group of the participants learned about 2D modelling by creating various
designs in Inkscape open-source software. Every participant drew a picture that was
printed on vinyl cutter and ironed on a T-shirt, and they also produced fabric bags and
tiny items such as jewelry and souvenirs. They were introduced into the world of 3D
design using the TinkerCAD software. Every participant has designed a fairy-tale 3D
scene (Fig. 2).

Fig. 2. Example designs from the 2D workshop.

4 Introduction to Arduino Platform

One of our primary goals was to show the children a technology they would be able to
use at home or their clubs after they will have returned from the camp. Arduino
platform is available at very reasonable prices, has a huge user-base and a community
with solutions to almost any challenge that an electronic hobbyist typically could
encounter. Every participant received the following equipment for experimentation:

ppetrovic@acm.org

200 P. Petrovi¢ and J. Vasko

Arduino Nano board, Arduino Nano Expansion Board, USB mini cable, and a set of
sensors and servo-motors. We have prepared a set of challenges — little projects on
which we demonstrated the various elementary features of the Arduino platform — such
as digital and analog inputs and outputs, PWM control as well as the language features
— expressions, variables, arrays, statements, conditions and loops.

A typical project consisted of a challenge that we solved together, while explaining
the principles. Next, the participants were asked to make modifications, improvements,
and solve similar challenges. These included — flashing LEDs on LED panel, alarms,
reacting to sound intensity, remembering and replaying a clapping rhythm. In some
activities, we combined LEGO parts with Arduino and servo. For example, designing a
ticking clock, or making the FLL mission models to move on their own.

In addition, we presented a set of additional optional projects to the participants that
demonstrated further features and that were meant for those who are confident with the
acquired or previous experience and were seeking more information. We have used
some of these ideas in our framework as well. This included: using interrupts to
respond to ultrasonic sensor, harmless software serial communication (see below),
playing more complex melodies described in easy sequence, playing tones and
melodies in the background (Fig. 3).

Fig. 3. Parts used in the Arduino challenges.

5 Building Otto

We used a design that was inspired by [2], but we wished to make it more human-like.
We added the arms of the same shape as the legs, except of making the arms a little bit
wider in order to increase their distance from the body. We have produced both a
version for the 3D printer and a version for laser cutter. The main difference from our
point of view was the time required for producing the parts — about 12 h for 3D
printing compared to about 30 min of plywood laser cutting. The difference increases if
the production process fails for any unspecified reason. Since we really wanted to
prepare parts for all the 40 participants, we chose the laser-cut version to save the time.
Another difference between the two designs is the way the joints are attached to the
servo-motors. In the 3D printed version, the motor is attached by a single screw,

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 201

whereas in the plywood version, servo horn is attached to the motor, and the horn fits
inside a wooden part to smoothly control the turning. The original author of Otto has
later improved the 3D version too. The plywood version contains more parts and
requires more advanced manual skills. We have therefore used the 3D printed version
in the group with younger and less experienced students (Fig. 4).

Fig. 4. The original [2] and our two versions of robot Otto.

Once the participants acquired the elementary programming skills and began to be
fluent in using Arduino platform and programming in its C++ language, they received
a bag containing laser-cut plywood or 3D printed parts, screws, battery pack, wires, and
electronic parts and they began to build their own robot Otto. The building process took
the whole 4-h session, but every participant managed to build it. The process is doc-
umented at the website of the day camp [3]. For the wooden version, participants used
hammer to align the parts properly, and a glue just for a very few connections with
otherwise loose contact (Fig. 5).

paacy

Fig. 5. Building robot Otto from parts.

ppetrovic@acm.org

202 P. Petrovi¢ and J. Vasko

Otto has been prepared for use of the Arduino Nano with its expansion board,
which fit nicely into its head. Apart from that, we chose to design the electronics in our
own custom way and write all the software completely on our own.

The following parts have been used (in total including the material worth about 20
Eur): 6 pcs. SG-90 micro-servo, Arduino Nano with ATmega328 (and mini/micro USB
cable), Arduino Nano Shield I/O Extension Board, 4 AA batteries holder, passive
buzzer, ultrasonic sensor HC-SRO4P, at least 10pcs female-female 10 cm jumper
cables, HC-05 Bluetooth module, SBS50A Schottky diode — or similar with about 0.5—
0.7 voltage drop, minimum voltage 10 V, and current 3A, 1000 uF capacitor — or
similar to filter out high current demands, KCDI11 power switch, 4pcs screws
M3/5 mm, optionally: DFPlayer mini mp3 player, 8 Ohm 1 W speaker.

5.1 Powering and Wiring the System

A very nice feature of the Arduino Nano Expansion Board is that it provides multiple
pins with GND and 5 V connections, allowing easy connection of many sensors,
servos, and other devices. Unfortunately, all these 5 V pins rely on a single power
regulator, which is capable of delivering 1.5 A current. The power consumption of 6
servo-motors, Bluetooth module, ultrasonic sensor, and other devices summed up
indicates higher demands. Therefore, we ought to skip the DC power input of the
expansion board, its power regulator and built-in capacitor and connect the batteries
directly to the 5 V pins, ensuring the highest possible current supply. Unfortunately,
that would breach another limitation — the absolute maximum ratings of the Arduino
board (and in fact most TTL electronics) voltage, which is stated as 6 V in the data-
sheet. A pack of 4 AA alkaline batteries when fresh (each producing 1.65 V) gives
6.6 V in total, which is unacceptable. We have therefore inserted a Schottky diode,
with about 0.5-0.7 voltage drop to clamp the maximum within the limits. Since the
original capacitor was also circumvented, we added another high-capacity 1000 uF
electrolytic capacitor. This part of the process as well as installation of the ultrasonic
sensor in a more space-efficient way required a little bit of soldering. Most of the
participants had no soldering experience, and this was a nice opportunity for them to
see it and try it for the first time, while we observed the process and made sure the
resulting connections are fine.

The connections to the buzzer, Bluetooth module, ultrasonic sensor and optional
devices were made with usual jumper wires.

6 Open Software Framework

To satisfy one of the goals stated in the introduction, we intended to create a more
sophisticated control framework for the Otto robot so that the participants do not have
to invent their own complete code for the Otto robot. The latter option was not possible
due to a short time remaining in the stage of the camp after they have built their robots.
Yet, with the background they have acquired in the first part of the week, they should
be able to make modifications in the code and tune it to their needs and desires. We

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 203

wanted to give the children the ability to create their own choreographies in a simple
manner so that they could also be easily shared with others.

6.1 Calibration

When building the robot, servos are screwed in at some particular angular position
while the leg or arm is turned to a particular configuration. The builder has to observe
that the full range of movement can be achieved for each degree of freedom. Yet, it is
very difficult to mount the motors at the same exact position on every robot and the
servo motors themselves can exhibit somewhat different behavior as such. To com-
pensate for that and to produce the very same results when dancing according to some
shared choreography, each robot should be calibrated. The semi-automatic calibration
procedure involves manually tuning the position of each leg to a standardized position
and then storing the calibrated values into EEPROM memory so that the robot will
remember the calibration even when powered off and on again. In addition, some
children have made a mistake when mounting the servo motor on the leg, turning it
around — getting a fully functional robot, but with one (or more) servos reversed. To
deal with the situation, the calibration also stores the orientation of each servo. When
dancing according to some choreography, the actual value is recomputed to match both
the servo shift and the servo reversal. The calibration also stores the allowed range for
each degree of freedom, which is enforced when controlling the robot movement
manually.

6.2 Bluetooth Communication

Arduino boards are typically programmed in a very convenient way through built-in
USB to serial converter and using a built-in bootloader program, and we like to keep up
with this standard. However, unfortunately, the ATmega328 microcontroller only has a
single USART hardware port. Connecting the Bluetooth module to its Tx, Rx pins
interferes with the programming and the module must be disconnected each time before
the programming takes places. That is a no-option, since the robot would have to be
opened each time for the program download. In addition, we would like to keep the
Bluetooth communication in a separate channel so that the wireless communication
link does not have to be re-established every time we want to update the program with a
new version. A possible solution is provided by the SoftwareSerial library for Arduino.
Unfortunately, this library is implemented in a poor way: during the communication on
the serial line, the global interrupt flag is disabled, meaning the timer-generated PWM
signals by the Servo library for the movements of the legs and arms get extremely
distorted, resulting in chaotic and unpredictable movements. We have therefore
implemented our own “software serial” communication that relies only on the pin-
change interrupt, which is available on most Arduino pins. The challenge is that every
byte transmitted may have a different number of pin change interrupts and often even
after the last pin-change interrupt occurs, we do not yet know, which byte is being
transmitted. Consider, for instance, two different situations: receiving byte
191 = (10111111), vs. receiving byte 175 = (10101111),, see Fig. 6.

ppetrovic@acm.org

204 P. Petrovi¢ and J. Vasko

$s10101111s

s10111111s

Fig. 6. Ambiguity within the pin-change interrupt routine.

After reading bits 0-2 (101), we will see no more pin change interrupts in the case of
175. We must leave the buffer in a “quantum” undecided state and infer that the received
byte is 175 only after we will have received a request to read the next byte from the port.
If that request, however, comes before the expected time of the stop bit, we may not be
sure, and we must report that no new bytes are available yet. Otherwise, we can conclude
that the received byte must be 175. The full implementation of this efficient and non-
disturbing software serial algorithm is demarked in the source code [4].

6.3 Playing Melodies in the Background

A simple passive buzzer is a very low-cost solution to add sound to an Arduino project,
and even though the sound is a bit loud, it can play nice melodies. Arduino has the
built-in tone() function for producing sounds at specified frequencies of a specified
duration in the background, using timer 2. Unfortunately, this plays only a single tone,
and we need to play the full melodies. And since all Arduino timers are already
occupied (0 — system time, 1 — servos, 2 — tone), there is no remedy. We chose to
phase-out the standard rome() function and write our own that allows playing full
melodies. A melody is a sequence of bytes, where each typically byte represents a
single tone — its duration (full, half, quarter, eighth, sixteenth), and octave (1-5). It
allows also rests, dotted notes, playing sounds of arbitrary melody, and in the latest
version also a repetition sign. The tricky part for this implementation was that the timer
pre-scaler has to change depending of the note frequency since humans have quite a
large audible frequency range, see again the source code for details.

6.4 Choreographies

The most important feature of the framework is the ability to design choreographies
with no programming skills. A choreography is a plain text file consisting of a
sequence of movements, one per line. Each movement is a triple: the time in mil-
liseconds (from the start of the movement, or the latest time reset command), the degree
of freedom to move, and the target position to reach. Each degree of freedom can move
using a different speed, which can be changed anywhere within the choreography.
Everything on a line behind a # character is treated as a comment. Instead of a

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 205

movement command, the line can contain a control command. These include: starting a
specified melody, playing a sound effect, “goto” — continuing the choreography from a
specified line, resetting the time clock, which is important because the time is specified
only using a 16-bit integer, which would prevent specifying longer choreographies,
setting a total time of the choreography — even when looped, the dance will be stopped
after that time, and in the most recent version, also the possibility to define procedures
(i.e. sequences of movements) that can be inserted at any other location by a single
command. This involves recalculating the times for the movement commands, meaning
the time specification inside of a procedure is relative to the time of the procedure start.
In the framework that we have presented to the participants, there was a limitation of
one movement at a time (with the exception of full-speed movements — they could be
triggered in parallel). In the most recent version, we have implemented the required
data structures and procedures that allow simultaneous movements. This, however,
changed the semantics — times in the original version meant the time to wait since the
last movement command, whereas times in the latest version are times relative to the
choreography start, or the most recent clock reset command. Every choreography is
terminated by a triple “0 0 0”.

Children in the camp used the last day to get their robot working, and they created a
couple of little dances as well as the sequence that produced a bipedal walking. To
upload the choreography to the robot volatile SRAM memory, it can be simply copy-
pasted to the terminal window, preceded by the ‘@’ character. The framework allows
to store up to three choreographies to the non-volatile EEPROM memory and recalling
them after the robot is powered up again. It is also possible to set the autostart flag,
which means the robot will start a selected choreography automatically when turned
on.

6.5 Starting Programs Using Ultrasonic Sensor

We wanted to implement a convenient interaction with the robot using the ultrasonic
sensor and timing. Placing a hand, or some more hard-surface object (such as mobile
phone) triggers interaction. After that, the robot observes carefully the movements in
front of its sensor. By repeating the obstacle/no-obstacle sequence of gestures, the robot
counts the “program” to be started. When the sequence stops, it will know how much it
has counted, and starts the respective program. To make the interaction easier, the
whole scenario is accompanied by sounds.

The robot is equipped with a single sensor — a forward pointing low-cost ultrasonic
sensor, which occasionally suffers from freezing when it receives no echo. It can be
reset by grounding its output ECHO signal for a short time, but we have to take caution
to detect this behavior with proper timing. Also, the measured distance in this case
would be replaced by a magic constant and it has to be distinguished from the real
distance readings. The robot may be operated in a large room, or in a small space, and
thus to program the above-described procedure took some noticeable efforts, see again
the sources for details.

ppetrovic@acm.org

206 P. Petrovi¢ and J. Vasko

6.6 Controlling the Robot with Android Devices

The interaction with the robot can take place both at the USB serial communication line
and on the Bluetooth serial line. All information is printed to both and inputs from both
are being responded to. Most commands are triggered immediately by pressing a single
key. This communication interface allows for a direct control of any degree of freedom,
changing the speed of the movement, testing all the sound effects, melodies, saving and
loading the choreographies and calibration parameters, entering the calibration pro-
cedure, but also triggering special choreographies. We have tuned walking behavior in
four directions: forward and backward walking, and turning at a spot left/right, and
these could be triggered by sending a single character through the communication line.
Thus it is possible to easily control the robot from Android after being connected
through Bluetooth, using a free BT control application, such as Arduino Bluetooth
Controller [5].

7 Example Choreographies

We have implemented two example choreographies, which attracted some attention to
this robot and our summer activity at various national fora: a cancan dance based on the
melody of Offenbach, and walking accompanied by Jarre’s Popcorn melody. Both can
be found at the camp’s website [3]. Here is one version of infinite walking choreog-
raphy with music in the background

@1 11 1 #change hands 100 3 62
#lean to the left 16 90 14 69

100 1 48 1, 158 0 # -

1 2 69 100 1. 113 100 1 48
#move right hand 1 2 146 12 69

1 6 180 160 #end of steps
100 4 104 15 90 192

1 .3 104 # second step 000

8 Framework Scalability

This framework for the robot Otto that we have developed is a generic framework that
can in fact be used with any other toy controlled by Arduino. We have done just that
after we have built a larger humanoid robot Lilli with 25 degrees of freedom [7]. Servos
are controlled by two external boards connected through I12C bus, but this required a
very little work. Furthermore, we have added a very low-cost mp3 player that interacts
with Arduino and added commands that start or stop playing a specified sound sample
on a connected speaker.

ppetrovic@acm.org

An Open Solution for a Low-Cost Educational Toy 207

8.1 Multiple Arduino Units

Sometimes a single Arduino Nano is not sufficient for the project needs. One possibility
is to leave the platform and move to more advanced solutions such as the family of the
STM32 boards, however, nothing can really beat the high availability of solutions and
libraries that are available to Arduino. One option is to connect several Arduino
computers together. We have done just that in one of our outdoor robots, where we
have developed a proprietary fast communication protocol using standard GPIO lines
(since the serial lines, I2C and SPI are often used by other connected devices) [6]. We
are currently working on extending Otto’s framework with the ability to distribute the
control over multiple Arduinos by forwarding the communication traffic to all the
Arduinos in the chain.

9 Makers Movement in Educational Process

Our efforts are very deeply founded in the makers movement. A prototype of Lilli, the
more advanced of the robots controlled by our framework has first been presented at
Maker Faire in Vienna in May 2018 by Per Salkowitsch. We have encountered Otto
robot for the first in June 2018 at Robotic Day in Prague. Makers movement provides
unlimited sources of inspiration. It is in conformance with our very strong belief in the
joy of sharing. Fablab’s also are very central to the Makers movement — for instance
Maker Faire in Vienna is organized by Viennese Fablab. However, what is the role of
all this technology — 3D modelling, printing laser, vinyl cutter, automated sewing
machine, water ray production, 3D scanning, and other in the educational process?
With the Industry 4.0, there is a clear shift into very high versatility in production,
very large degree of automation and customization. Prototyping is a skill that becomes
essential for all parties involved in the new organization of the development and
production cycle. Some schools (with the help of EU funding) have invested large
resources into establishing technical workshops, where all pupils spend several hours
per week learning about this revolutionary technology. We believe that significant
efforts are needed to make it easier for the educators to select in the sea of available
information suitable activities, projects, and technologies to make this transition suc-
ceed. Our little contribution has been realized with this idea in mind. We also believe in
the change of the organization of school education. Learning 1 lesson of history per
week might contribute to a reasonable and regular work habit, but it is not suitable for
efficient learning. Instead, spending more hours a week until a particular educational
unit is completed gives stronger and longer lasting experience and allows for some
courses to take place outside of the schools, in regional centers similar to Fablabs.

10 Future Directions and Conclusions
We have received only a positive feedback from both the participants and the parents.

Several participants have attended “Otto service days” in the weeks after the
camp. Some of them are now regularly attending a club for children in Fablab

ppetrovic@acm.org

208 P. Petrovi¢ and J. Vasko

Bratislava, others joined robotics clubs around the city. We are planning a second
(DT)? in the forthcoming summer, considering our own reconfigurable robotics as the
target platform to work on. Since the last summer, “our” version of Otto has been built
by several groups around the country and we often use it at various public presenta-
tions. The framework has been used multiple times in seminars with the students of
Applied Informatics at Comenius University. Links to the Github repositories with the
software and all the details about the camp and our version of Otto robot can be found
at the (DT)* website [3].

References

1. Sweeney, L.B., Meadows, D. (eds.): The Systems Thinking Playbook: Exercises to Stretch
and Build Learning and Systems Thinking Capabilities. Chelsea Green Publishing, White
River Junction (2010)

. Otto DIY (2019). www.ottodiy.com

. (DT)? website (2018). dtdt.fablab.sk

. (DT)2 Otto Github repo. (2019). github.com/Robotics-DAI-FMFI-UK/dtdt-otto/

. Joannis Tzanellis: Arduino Bluetooth Controller. play.google.com/store/apps/details?id=eu.
jahnestacado.arduinorc

. Smely Zajko Github rep. github.com/Robotics-DAI-FMFI-UK/smely-zajko-ros

. Cu-lilli robot home. kempelen.dai.fmph.uniba.sk/lilli/

. Markowitz, D.G.: J. Sci. Educ. Technol. 13, 395 (2004)

. Klein, M., et al.: Hedgehog: a versatile controller for educational robotics. In: Construction-
ism 2018 Conference Proceedings (2018)

whn A~ W

NelEe cBEN Bo)}

ppetrovic@acm.org

