16.1

Approximate POMDP Techniques

Motivation

In previous chapters, we have studied two main frameworks for action se-
lection under uncertainty: MDPs and POMDPs. Both frameworks address
non-deterministic action outcomes, but they differ in their ability to accom-
modate sensor limitations. Only the POMDP algorithms can cope with un-
certainty in perception, whereas MDP algorithms assume that the state is
fully observable. However, the computational expense of exact planning
in POMDPs renders exact methods inapplicable to just about any practical
problem in robotics.

This chapter describes POMDP algorithms that scale. As we shall see in
this chapter, both MDP and POMDP are extreme ends of a spectrum of pos-
sible probabilistic planning and control algorithms. This chapter reviews a
number of approximate POMDP techniques that fall in between MDPs and
POMDPs. The algorithms discussed here share with POMDPs the use of
value iteration in belief space. However, they approximate the value func-
tion in a number of ways. By doing so, they gain immense speed-ups over
the full POMDP solution.

The techniques surveyed in this chapter have been chosen because they
characterize different styles of approximation. In particular, we will discuss
the following three algorithms:

e QMDP is a hybrid between MDPs and POMDPs. This algorithm general-
izes the MDP-optimal value function defined over states, into a POMDP-
style value function over beliefs. QMDP would be exact under the—
usually false—assumption that after one step of control, the state becomes
fully observable. Value iteration in QMDPs is of the same complexity as
in MDPs.

548

16 Approximate POMDP Techniques

1: Algorithm QMDP() — (P1,...,pN))
2: V= MDP_discrete_hvalue_iteration() // see page 502
8: for all control actions u do
N
4: Q(zi,u) = r(z;,u) + Z Vi(z;) p(z; | w,z;)
J=1
5: endfor
N
6: return argmax Z pi Q(zi,u)
W i=1

L

Table 16.1 The QMDP algorithm computes the expected return for each control ac-
tion u, and then selects the action u that yields the highest value. The value function
used here is MDP-optimal, hence dismisses the state uncertainty in the POMDP.

* The augmented MDP, or AMDP. This algorithm projects the belief state
into a low-dimensional sufficient statistic and performs value iteration in
this lower-dimensional space. The most basic implementation involves a
representation that combines the most likely state and the degree of un-
certainty, measured by entropy. The planning is therefore only marginally
less efficient than planning in MDPs, but the result can be quite an im-
provement!

® Monte Carlo POMDP, or MC-POMDP. This is the particle filter version of
the POMDP algorithm, where beliefs are approximated using particles.
By constructing a belief point set dynamically—just like the PBVI algo-
rithm described towards the end of the previous chapter—MC-POMDPs
can maintain a relatively small set of beliefs. MC-POMDPs are applicable
to continuous-valued states, actions, and measurements, but they are sub-
ject to the same approximations that we have encountered in all particle
filter applications in this book, plus some additional ones that are unique
to MC-POMDPs.

These algorithms cover some of the primary techniques for approximating
value functions in the emerging literature on probabilistic planning and con-
trol.

16.2

(16.1)

(16.2)

(16.3)

16.2 QMDPs 549

OMDPs

QMDPs are an attempt to combine the best of MDPs and POMDPs. Value
functions are easier to compute for MDPs than for POMDPs, but MDPs rely
on the assumption that the state is fully observable. A QMDP is computa-
tionally just about as efficient as an MDP, but it returns a policy that is defined
over the belief state.

The mathematical “trick” is relatively straightforward. The MDP algo-
rithm discussed in Chapter 14 provides us with a state-based value function
that is optimal under the assumption that the state is fully observable. The
resulting value function V is defined over world states. The QMDP general-
izes this value to the belief space through the mathematical expectation:

. N
V) = EVE)] = Y pViw)
(33

Here we use our familiar notation p; = b(x;). Thus, this value function is
linear, with the parameters

w = V(z)

This linear function is exactly of the form used by the POMDP value iteration
algorithm. Hence the value function over the belief space is given by the
following linear equation:

1 N
V(b) = Z Pi uj
i=1

The MDP value function provides a single linear constraint in belief space.
This enables us to apply the algorithm policy_ POMDP in Table 15.2, with a
single linear constraint.

The most basic version of this idea leads to the algorithm QMDP shown
in Table 16.1. Here we use a slightly different notation than in Table 15.2:
Instead of caching away one linear function for each action u and letting
policy POMDP determine the action, our formulation of QMDP directly
computes the optimal value function through a function Q. The value of
Q(z;, u), as calculated in line 4 in Table 16.1, is the MDP-value of the control
u in state x;. The generalization to belief states then follows in line 6, where
the expectation is taken over the belief state. Line 6 also maximizes over all
actions, and returns the control action with the highest expected value.

The insight that the MDP-optimal value function can be generalized to
belief space enables us to arbitrarily combine MDP and POMDP backups.

550

16.3

16.3.1

(16.4)

(16.5)

AUGMENTED STATE
SPACE

16 Approximate POMDP Techniques

In particular, the MDP-optimal value function V can be used as input to the
POMDP algorithm in Table 15.1 (page 529). With 7' further POMDP backups,
the resulting policy can actively engage in information gathering—as long
as the information shows utility within the next T time steps. Even for very
small values of 7', we usually obtain a robust probabilistic control algorithm
that is computationally vastly superior to the full POMDP solution.

Augmented Markov Decision Processes

The Augmented State Space

The augmented MDP, or AMDP, is an alternative to the QMDP algorithm. It
too approximates the full POMDP value function. However, instead of ignor-
ing state uncertainty beyond a small time horizon 7', the AMDP compresses
the belief state into a more compact representation, and then performs full
POMDP-style probabilistic backups.

The fundamental assumption in AMDPs is that the belief space can be
summarized by a lower-dimensional “sufficient” statistic f, which maps be-
lief distributions into a lower dimensional space. Values and actions are
calculated from this statistic f(b) instead of the original belief b. The more
compact the statistic, the more efficient the resulting value iteration algo-
rithm.

In many situations a good choice of the statistic is the tuple

5 (argmax b(z))
B Hy(z)

Here argmax, b(z) is the mdst likely state under the belief distribution b, and

Hix) = ~/. b(z) logb(z) dx

is the entropy of the belief. This space will be called the augmented state space,
since it augments the state space by a single value, the entropy of the belief
distribution. Calculating a value function over the augmented state space,
instead of the belief space, makes for a huge change in complexity. The
augmented state avoids the high dimensionality of the belief space, which
leads to enormous savings when computing a value function (from worst
case doubly exponential to low-degree polynomial).

The augmented state representation is mathematically justified if f(b) is a

(16.6)

16.3.2

16.3 Augmented Markov Decision Processes 551

sufficient statistic of b with regards to the estimation of value:

V) = V()

for all beliefs b the robot may encounter. In practice, this assumption will
rarely hold true. However, the resulting value function might still be good
enough for a sensible choice of control.

Alternatively, one might consider different statistics, such as the moments
of the belief distribution (mean, variance, ...), the eigenvalues and vectors of
the covariance, and so on.

The AMDP Algorithm

The AMDP algorithm performs value iteration in the augmented state space.
To do so, we have to overcome two obstacles. First, the exact value up-
date is non-linear for our augmented state representation. This is because
the entropy is a non-linear function of the belief parameters. It therefore
becomes necessary to approximate the value backup. AMDPs discretize
the augmented state, representing the value function V by a look-up table.
We already encountered such an approximation when discussing MDPs. In
AMDPs, this table is one dimension larger than the state space table used by
MDPs.

The second obstacle pertains to the transition probabilities and the payoff
function in the augmented state space. We are normally given probabilities
such as the motion model p(z’ | u, z), the measurement model p(z | z), and
the payoff function r(z,u). But for value iteration in the augmented state
space we need to define similar functions over the augmented state space.

AMDPs use a “trick” for constructing the necessary functions. The trick is
to learn transition probabilities and payoffs from simulations. The learning
algorithm is based on a frequency statistic, which counts how often an aug-
mented belief b transitions to another belief &' under a control u, and what
average payoff this transition induces.

Table 16.2 states the basic algorithm AMDP_value_iteration. The algo-
rithm breaks down into two phases. In a first phase (lines 2-19), it constructs
a transition probability table P for the transition from an augmented state b
and a control action u to a possible subsequent augmented state b'. It also
constructs a payoff function R which measures the expected immediate pay-
off r when u is chosen in the augmented state b.

These functions are estimated through a sampling procedure, in which we
generate n samples for each combination of b and u (line 8). For each of

1: Algorithm AMDP_value_iteration():
2: for all b do // learn model
3 for all u do
4: for all b do // initialize model
5: Pb,u,b') =0
6: endfor
7 R(b,u) =0
8: repeat n times // learn model
9: generate b with f(b) = b
10: sample x ~ b(x) // belief sampling
11: sample =’ ~ p(z' | u,z) // motion model
12 sample z ~ p(z | z') // measurement model
13: calculate b’ = B(b,u, z) // Bayes filter
14: calculate b’ = f(') // belief state statistic
15 P(b,u,b') = P(b,u,b') + L // learn transitions prob’s
16: R(b,u) = R(b,u) + "“=2) // learn payoff model
A7 endrepeat
18: endfor
19: endfor
20: forall b // initialize value function
21: V(6) = T'min
22: endfor
23: repeat until convergence // value iteration
24: for all b do
25: V(b) =~ max [ﬁ(u, b) + Z V(b') P(b,u, b’)]
W
26: endfor
27 return f/, 75, R // return value fct & model
1: Algorithm policy AMDP(V, P, R, b):
2: b= f(b)
3 return argmax | R(u, b) + Z V(¥ P(b, u, 5')]
u E’

Table 16.2 Top: The value iteration algorithm for augmented MDPs. Bottom: The
algorithm for selecting a control action.

16.3.3

(16.7)

(16.8)

16.3 Augmented Markov Decision Processes 553

these Monte Carlo simulations, the algorithm first generates a belief b for
which f(b) = b. This step is tricky (in fact, it is ill-defined): In the original
AMDP model, the creators simply choose to set b to a symmetric Gaussian
with parameters chosen to match b. Next, the AMDP algorithm samples a
pose z, a successor pose z', and a measurement z, all in the obvious ways. It
then applies the Bayes filter to generate a posterior belief B(b, u, z), for which
it calculates the augmented statistics (line 14). The tables P and R are then
updated in lines 15 and 16, using simple frequency counts weighted (in the
case of the payoff) with the actual payoff for this Monte Carlo sample.

Once the learning is completed, AMDP continues with value iteration.
This is implemented in lines 20-26. As usual, the value function is initial-
ized by a large negative value. Iteration of the backup equation in line 25
leads to a value function defined over the augmented state space.

When using AMDPs, the state tracking usually takes place over the orig-
inal belief space. For example, when using AMDPs for robot motion, one
might use MCL for tracking the belief over the robot’s pose. The algorithm
policy_ AMDP in Table 16.2 shows how to extract a policy action from the
AMDP value function. It extracts the augmented state representation from
the full belief in line 2, and then simply chooses the control action that maxi-
mizes the expected value (line 3).

Mathematical Derivation of AMDPs

The derivation of AMDP is relatively straightforward, under the assumption
that f is a sufficient statistic of the belief state b; i.e., the world is Markov
relative to the state f(b). We start with an appropriate modification of the
standard POMDP-style backup in Equation (15.2). Let f be the function that
extracts the statistic b from b, hence b = f(b) for arbitrary beliefs b. Assuming
that f is a sufficient statistic, the POMDP value iteration equation (15.2) can
be defined over the AMDP state space

Vi®) = mpx [rB)+ [Vo) ot b |

where b refers to the low-dimensional statistic of b defined in (16.4). Here
Vr-1(¥) and Vr(b) are realized through look-up tables.

This equation contains the probability p(b’ | u, b), which needs further ex-
planation. Specifically, we have

p(® |ub) = f p(®' | u,b) p(b | B) db

(16.9)

& f/mm%mmmﬂwmmamﬁ
g /[B(b,u,2)) p(= | 5) p(b | B) dz db

[20 =150.52) [pe12)

fp(a:’ | u,z) b(z) dz dz’ dz p(b| b) db

This transformation exploited the fact that the posterior belief & is uniquely
determined once we know the prior belief b, the control u, and the mea-
surement z. This same “trick” was already exploited in our derivation of
POMDPs. It enabled us to replace the distribution over posterior beliefs by
the Bayes filter result B(b,u,z). In the augmented state space, we there-
fore could replace p(b' | z,u,b) by a point-mass distribution centered on
F(B(b,u,2)).

Our learning algorithm in Table 16.2 approximates this equation through
Monte Carlo sampling. It replaced each of the integrals by a sampler. The
reader should take a moment to establish the correspondence: Each of the
nested integrals in (16.8) maps directly to one of the sampling steps in Ta-
ble 16.2.

Along the same lines, we can derive an expression for the expected payoff

r(5, u):

(b, u) /r(b,u) p(b | b) db
= /[r(:c,u) b(z) dz p(b | b) db

Once again, the algorithm AMDP_value_iteration approximates this inte-
gral using Monte Carlo ~sampling. The resulting learned payoff function
resides in the lookup R. The value iteration backup in lines 20-26 of
AMDP_value_iteration is essentially identical to the derivation of MDPs.
As noted above, this Monte Carlo approximation is only legitimate when
bis a sufficient statistics of b and the system is Markov with respect to b. In
practice, this is usually nof the case, and proper sampling if augmented states
would therefore have to be conditioned on past actions and measurements—
a nightmare! The AMDP algorithm ignores this, by simply generating b’s
with f(b) = b. Our example above involved a symmetric Gaussian whose
parameters matched b. An alternative—which deviates from the original
AMDP algorithm but would be mathematically more sound—would involve

16.3 Augmented Markov Decision Processes 555

Uy o1 Iyl

W

tarting Position l Starting Position
LYJRLYA:

(d)

()

Start Position

C- -

Ve

Figure 16.1 Examples of robot paths in a large, open environment, for two different
configurations (top row and bottom row). The diagrams (a) and (c) show paths gen-
erated by a conventional dynamic programming path planner that ignores the robot’s
perceptual uncertainty. The diagrams (b) and (d) are obtained using the augmented
MDP planner, which anticipates uncertainty and avoids regions where the robot is
more likely to get lost. Courtesy of Nicholas Roy, MIT.

simulation of entire traces of belief states using the motion and measure-
ment models, and using subsequent pairs of simulated belief states to learn
P and R. Below, when discussing MC-POMDPs, we will encounter such a
technique. MC-POMDPs sidestep this issue by using simulation to generate
plausible pairs of belief states.

16.3.4

20 Positional Uncertainty at Goal

Conventional] Navigation +s—
18 - I Coastal Navigation ~~— -

16 |
14 |
12 |

Entropy at Goal

b e

N S N RO
—_—
[

Oy % 15 2. 25°3 35 4 45 5 55
Maximum Range of Laser Range Sensor in Meters

Figure 16.2 Performance comparison of MDP planning and Augmented MDP plan-
ning. Shown here is the uncertainty (entropy) at the goal location as a function of the
sensor range. Courtesy of Nicholas Roy, MIT.

Application to Mobile Robot Navigation

The AMDP algorithm is highly practical. In the context of mobile robot nav-
igation, AMDPs enable a robot to consider its general level of “confusion”
in its action choice. This pertains not just to the momentary uncertainty, but
also future expected uncertainties a robot may experience through the choice
of its actions.

Our example involves a robot navigating in a known environment. It was
already given as an example in the introduction to this book; see Figure 1.2
on page 7. Clearly, the level of confusion depends on where the robot nav-
igates. A robot traversing a large featureless area is likely to gradually lose
information as to where it is. This is reflected in the conditional probabil-
ity p(b' | u,b), which with high likelihood increases the entropy of the belief
in such areas. In areas populated with localization features, e.g., near the
walls with distinctive features, the uncertainty is more likely to decrease.
The AMDP anticipates such situations and generates policies that minimize
the time of arrival while simultaneously maximizing the certainty at the time
of arrival at a goal location. Since the uncertainty is an estimate of the true
positioning error, it is a good measure for the chances of actually arriving at
the desired location.

16.3 Augmented Markov Decision Processes 557

(@)

(b)

(c)

(d)

(e)

)

Figure 16.3 The policy computed using an advanced version of AMDP, with a
learned state representation. The task is to find an intruder. The gray particles are
drawn from the distribution of where the person might be, initially uniformly dis-
tributed in (a). The black dot is the true (unobservable) position of the person. The
open circle is the observable position of the robot. This policy succeeds with high
likelihood. Courtesy of Nicholas Roy, MIT, and Geoffrey Gordon, CMU.

558

COASTAL NAVIGATION

16 Approximate POMDP Techniques

Figure 16.1 shows example trajectories for two constellations (two differ-
ent start and goal locations). The diagrams on the left correspond to a MDP
planner, which does not consider the robot’s uncertainty. The augmented
MDP planner generates trajectories like the ones shown on the right. In Fig-
ures 16.1a&b, the robot is requested to move through a large open area, ap-
proximately 40 meters wide. The MDP algorithm, not aware of the increased
risk of getting lost in the open area, generates a policy that corresponds to
the shortest path from the start to the goal location. The AMDP planner, in
contrast, generates a policy that stays close to the obstacles, where the robot
has an increased chance of receiving informative sensor measurements at the
expense of an increased travel time. Similarly, Figure 16.1c&d considers a sit-
uation where the goal location is close to the center of the featureless, open
area. Here the AMDP planner recognizes that passing by known objects re-
duces the pose uncertainty, increasing the chances of successfully arriving at
the goal location.

Figure 16.2 shows a performance comparison between the AMDP naviga-
tion strategy and the MDP approach. In particular, it depicts the entropy of
the robot’s belief b at the goal location, as a function of the sensor character-
istics. In this graph, the maximum perceptual range is varied, to study the
effect of impoverished sensors. As the graph suggests, the AMDP has sig-
nificantly higher chances of success. The difference is largest if the sensors
are very poor. For sensors that have a long range, the difference ultimately
disappears. The latter does not come as a surprise, since with good range
sensors the amount of information that can be perceived is less dependent
on the specific pose of the robot.

The feature to anticipate and avoid uncertainty has led to the name coastal
navigation, for the application of AMDPs to robot navigation. This name in-
dicates the resemblance to ships, which, before the advent of satellite-based
global positioning, often stayed close to the coastline so as to not lose track
of their location.

We close our discussion of AMDPs by noting that the choice of the statistic
f has been somewhat arbitrary. It is possible to add more features as needed,
but at the obvious increase of computational complexity. Recent work has led
to algorithms that learn statistics f, using non-linear dimensionality reduc-
tion techniques. Figure 16.3 shows the result of such a learning algorithm,
applied to the problem of clearing a building from a moving intruder. Here
the learning algorithm identifies a 6-dimensional state representation, which
captures the belief of the robot for any plausible pursuit strategy. The gray
particles represent the robot’s belief about the intruder’s location. As this

16.4

16.4.1

(16.10)

16.4.2

16.4 Monte Carlo POMDPs 559

example illustrates, AMDPs with a learned state representation succeed in
generating quite a sophisticated strategy: The robot first clears part of the
corridor, but always stays close enough to the room on the top that an in-
truder cannot escape from there. It then clears the room, in time short enough
to prevent an intruder to pass by the corridor undetected. The robot finally
continues its pursuit in the corridor.

Monte Carlo POMDPs

Using Particle Sets

The final algorithm discussed in this chapter is the particle filter solution to
POMDPs, called MC-POMDP, which is short for Monte Carlo POMDP. MC-
POMDPs acquire a value function that is defined over particle sets. Let X’ be
a particle set representing a belief . Then the value function is represented
as a function

VX —®R

This representation has a number of advantages, but it also creates a number
of difficulties. A key advantage is that we can represent value functions over
arbitrary state spaces. In fact, among all the algorithms discussed thus far,
MC-POMDPs are the only ones that do not require a finite state space. Fur-
ther, MC-POMDPs use particle filters for belief tracking. We have already
seen a number of successful particle filter applications. MC-POMDPs extend
particle filters to planning and control problems.

The primary difficulty in using particle sets in POMDPs pertains to the
representation of the value function. The space of all particle sets of any
given size M is M-dimensional. Further, the probability that any particle set
is ever observed twice is zero, due to the stochastic nature of particle gener-
ation. As a result, we need a representation for V' that can be updated using
some particle set, but then provides a value for other particle sets, which
the MC-POMDP algorithm never saw before. In other words, we need a
learning algorithm. MC-POMDP use a nearest neighbor algorithm using locally
weighted interpolation when interpolating between different beliefs.

The MC-POMDP Algorithm

Table 16.3 lays out the basic MC-POMDP algorithm. The MC-POMDP al-
gorithm required a number of nested loops. The innermost loop, in lines 6

JUOU

B o e et] R Lo

=

e AN R

[S S SN
N 22

—
b

= e
ARl L

173

18:
19:
20:
21;
22
23

24:

Algorithm MC-POMDP(b,, V):

repeat until convergence
sample x ~ b(z) // initialization
initialize X with M samples of b(z)

repeat until episode over
for all control actions u do // update value function

Q(u) =0

repeat n times
select randomzr € X
sample z’ ~ p(z’ | u,x)
sample z ~ p(z | =')
X' = Particle_filter(X, u, z)

Q) = Q) + - 7 [r(a,u) + V(X'

endrepeat
endfor
V(X) = max Q(u) // update value function
u* = argmax Q(u) // select greedy action
u
sample z’ ~ p(z' | u,z) // simulate state transition

sample z ~ p(z | ')

X' = Particle_filter(X,u,2) // compute new belief

sety =X =X/ // update state and belief
endrepeat

endrepeat

return V'

Table 16.3 The MC-POMDP algorithm.

(16.11)

SHEPARD'S
INTERPOLATION

16.4 Monte Carlo POMDPs 561

through 16 in Table 16.3, updates the value function V for a specific belief
X. It does so by simulating for each applicable control action u, the set of
possible successor beliefs. This simulation takes place in lines 9 through 12.
From that, it gathers a local value for each of the applicable actions (line 13).
The value function update takes place in line 16, in which V is simply set to
the maximum of all Q,’s.

Following this local backup is a step in which MC-POMDPs simulate the
physical system, to generate a new particle set X'. This simulation takes place
in lines 17 through 21. In our example, the update always selects the greedy
action (line 17); however, in practice it may be advantageous to occasionally
select a random action. By transitioning to a new belief X, the MC-POMDP
value iteration performs the update for a different belief state. By iterating
through entire episodes (outer loops in lines 2 through 5), the value function
is eventually updated everywhere.

The key open question pertains to representation of the function V. MC-
POMDP uses a local learning algorithm reminiscent of nearest neighbor. This
algorithm grows a set of reference beliefs X; with associated values V;. When
a query arrives with a previously unseen particle set Xyyery, MC-POMDP
identifies the K “nearest” particle sets in its memory. To define a suitable
concept of nearness for particle sets requires additional assumptions. In the
original implementation, MC-POMDP convolves each particle with a Gaus-
sian with small, fixed covariance, and then measures the KL-divergence be-
tween the resulting mixtures of Gaussians. Leaving details aside, this step
makes it possible to determine K nearest reference particle sets A3, ..., Xk,
with an associated measure of distance, denoted d1, . . ., dx (we note that KL-
divergence is not a distance in the technical sense, since it is asymmetric). The
value of the query set Xyyery, is then obtained through the following formula

L
V(Xquery) Sl] Zd_ka
k=1

with n = [Z % dlk] 1. Here &} is the k-th reference belief in the set of K
nearest neighbors, and d;, is the associated distance to the query set. This
interpolation formula, known as Shepard’s interpolation, explains how to cal-
culate V(X’) in line 13 of Table 16.3.

The update in line 16 involves an implicit case differentiation. If the ref-
erence set contains already K particle sets whose distance is below a user-
defined threshold, the corresponding V-values are simply updated in pro-

562

(16.12)

16.4.3

(16.13)

(16.14)

(16.15)

16 Approximate POMDP Technigues

portion to their contribution in the interpolation:
Vel oyt Vk+a77 e Q) ~ Vi)

where o is a leaming rate. The expression max, Q(u) is the “target” value
for the function V, and 7 J- is the contribution of the k-th reference particle
set under Shepard’s interpolation formula.

If there are less than K particle sets whose distance falls below the thresh-
old, the query particle set is simply added into the reference set, with the
associated value V' = max, Q(u). In this way, the set of reference particle
sets grow over time. The value of K and the user-specified distance threshold
determine the smoothness of the MC-POMDP value function. In practice, se-
lecting appropriate values will take some thought, since it is easy to exceed
the memory of an ordinary PC with the reference set, when the threshold is
chosen too tightly.

Mathematical Derivation of MC-POMDPs

The MC-POMDP algorithm relies on a number of approximations: the use
of particle sets constitutes one such approximation. Another one is the lo-
cal learning algorithm for representing V, which is clearly approximate. A
third approximation is due to the Monte Carlo backup step of the value func-
tion. Each of these approximations jeopardizes convergence of the basic al-
gorithm.

The mathematical justification for using particle filters was already pro-
vided in Chapter 4. The Monte Carlo update step follows from the general
POMDP update Equation (15.43) on page 532, which is restated here:

Vr(b) = «~ max [r(b,u) +[VT,1(B(b, u,2)) p(z | u,b) dz]

The Monte Carlo approximation is now derived in a way entirely analogous
to our AMDP derivation. We begin with the measurement probability p(z |
u, b), which resolves as follows:

p(z | u,b) ff (z | 2") p(z’ | u,z) b(z) dz dz’

Similarly, we obtain for r(b, u):

el). = f Al

(16.16)

16.4.4

16.4 Monte Carlo POMDPs 563

This enables us to re-write (16.13) as follows:
Vr(b) = -~ max []r(a:,u) b(z) dx

+ f Vr_1(B(b, u, 2)) [] f p(z | &) p(z’ | u,z) b(z) da d:r’} dz]

ymax [[[+ Vs (BG.w,2) a1 2) pla’ | o)
b(z) dz dz’ dz

The Monte Carlo approximation to this integral is now a multi-variable sam-
pling algorithm, which requires us to sample = ~ b(z), 2’ ~ p(z’ | u,z) and
z ~ p(z |). Once we have z, 2/, and z, we can compute B(b,u, z) via
the Bayes filter. We then compute Vy_;(B(b, u, z)) using the local learning
algorithm, and r(z,u) by simply looking it up. We note that all these steps
are implemented in 7 through 14 of Table 16.3, with the final maximization
carried out in line 16.

The local learning algorithm, which plays such a central role in MC-
POMDPs, may easily destroy any convergence we might otherwise obtain
with the Monte Carlo algorithm. We will not attempt to characterize the con-
ditions under which local learning may give accurate approximations, but
instead simply state that care has to be taken setting its various parameters.

Practical Considerations

From the three POMDP approximations provided in this chapter, MC-
POMDP is the least developed and potentially the least efficient one. Its
approximation relies on a learning algorithm for representing the value func-
tion. Implementing an MC-POMDP algorithm can be tricky. A good under-
standing of the smoothness of the value function is required, as is the number
of particles one seeks to employ.

The original implementation of the MC-POMDP algorithm led to the re-
sults shown in Figure 16.4. A robot, shown in Figure 16.4a, is placed near a
graspable object located on the floor near the robot, which it can detect using
a camera. However, initially the object is placed outside the robot’s percep-
tual field. A successful policy will therefore exhibit three stages: A search
stage, in which the robot rotates until it senses the object; a motion stage in
which the robot centers itself relative to the object so that it can grasp it; and a
final grasping action. The combination of active perception and goal-directed
behavior make this a relatively challenging probabilistic control problem.

wr

(c) % success
1

06

04

02

iteration
Figure 16.4 A robotic find and fetch task: (a) The mobile robot with gripper and
camera, holding the target object. (b) 2-D trajectory of three successful policy execu-
tions, in which the robot rotates until it sees the object, and then initiates a successful
grasp action (c) success rate as a function of number of planning steps, evaluated in
simulation.

Figure 16.4b shows example episodes, in which the robot turned, moved,
and grasped successfully. The trajectories shown there are projected motion
directories in 2-D. Quantitative results are shown in Figure 16.4c, which plots
the success rate as a function of update iterations of the MC-POMDP value
iteration. 4,000 iterations of value backup require approximately 2 hours
computation time, on a low-end PC, at which point the average performance
levels off at 80%. The remaining 20% failures are largely due to configura-
tions in which the robot fails to position itself to grasp the object—in part a
consequence of the many approximations in MC-POMDPs.

16.5

16.5 Summary 565

Summary

In this section, we introduced three approximate probabilistic planning and
control algorithms, with varying degrees of practical applicability. All three
algorithms relied on approximations of the POMDP value function. How-
ever, they differed in the nature of their approximations.

The QMDP framework considers uncertainty only for a single action
choice: It is based on the assumption that after the immediate next con-
trol action, the state of the world suddenly becomes observable. The full
observability made it possible to use the MDP-optimal value function.
QMDP generalizes the MDP value function to belief spaces through the
mathematical expectation operator. As a result, planning in QMDDPs is as
efficient as in MDPs, but the value function generally overestimates the
true value of a belief state.

Extensions of the QMDP algorithm combine the MDP-optimal value
function with a sequence of POMDP backups. When combined with
T POMDP backup steps, the resulting policy considers information-
gathering actions within the horizon of T, and then relies on the QMDP
assumption of a fully observable state. The larger the horizon T is, the
closer the resulting policy to the full POMDP solution.

The AMDP algorithm pursues a different approximation: It maps the be-
lief into a lower-dimensional representation, over which it then performs
exact value iteration. The “classical” representation consists of the most
likely state under a belief, along with the belief entropy. With this repre-
sentation, AMDPs are like MDPs with one added dimension in the state
representation that measures the global degree of uncertainty of the robot.

To implement an AMDP, it becomes necessary to learn the state transition
and the reward function in the low-dimensional belief space. AMDPs
achieve this by an initial phase, in which statistics are cached into look-
up tables, representing the state transition and reward function. Thus,
AMDPs operate over a learned model, and are only accurate to the degree
that the learned model is accurate.

AMDPs applied to mobile robot navigation in known environments is
called coastal navigation. This navigation technique anticipates uncer-
tainty, and selects motion that trades off overall path length with the

566

16.6

16.7

16 Approximate POMDP Techniques

uncertainty accrued along a path. The resulting trajectories differ signifi-
cantly from any non-probabilistic solution: A “coastally” navigating robot
stays away from areas in which chances of getting permanently lost are
high. Being temporarily lost is acceptable, if the robot can later re-localize
with sufficiently high probability.

* The MC-POMDP algorithm is the particle filter version of POMDPs. It
calculates a value function defined over sets of particles. To implement
such a value function, MC-POMDPs had to resort to a local learning tech-
nique, which used a locally weighted learning rule in combination with a
proximity test based on KL-divergence. MC-POMDPs then apply Monte
Carlo sampling to implement an approximate value backup. The result-
ing algorithm is a full-fledged POMDP algorithm whose computational
complexity and accuracy are both functions of the parameters of the learn-
ing algorithm.

The key lesson to take away from this chapter is that there exists a number of
approximations whose computational complexity is much closer to MDPs,
but that still consider state uncertainty. No matter how crude the approx-
imation, algorithms that consider state uncertainty tend to be significantly
more robust than algorithms that entirely ignore state uncertainty. Even a
single new element in the state vector—which measures global uncertainty
in a one-dimensional way—can make a huge difference in the performance
of a robot.

Bibliographical Remarks

The literature on approximate POMDP problem solving was already extensively discussed in
the last chapter (15.7). The QMDP algorithm described in this chapter is due to Littman et al.
(1995). The AMDP algorithm for a fixed augmented state representation was developed by Roy
et al. (1999). Later, Roy et al. (2004) extended it to a learned state representation. Thrun (2000a)
devised the Monte Carlo POMDP algorithm.

Exercises

1. In this question, you are asked to design an AMDP that solves a simple
navigation problem. Consider the following environment with 12 discrete
states.

16.7 Exercises 567

Initially, the robot is placed at a random location, chosen uniformly
among all 12 states. Its goal is to advance to state 7. At any point in time,
the robot goes north, east, west, or south. Its only sensor is a bumper:
When it hits an obstacle, the bumper triggers and the robot does not
change states. The robot cannot sense what state it is in, and it cannot
sense the direction of its bumper. There is no noise in this problem, just
the initial location uncertainty (which we will assume to be uniform).

(a) How many states will an AMDP minimally have to possess? Describe
them all.

(b) How many of those states are reachable from the initial AMDP state?
Describe them all.

(c) Now assume the robot starts at state 2 (but it still does not know, so its
internal belief state will be different). Draw the state transition diagram
between all AMDP states that can be reached within four actions.

(d) For this specific type problem (noise-free sensors and robot motion,
finite state, action, and measurement space), can you think of a more
compact representation than the one used by AMDPs, which is still
sufficient to find the optimal solution?

(e) For this specific type problem (noise-free sensors and robot motion,
finite state, action, and measurement space), can you craft a state space
for which AMDPs will fail to find the optimal solution?

2. In the previous chapter, we learned about the tiger problem (Exercise 1 on
page 544). What modification of this problem will enable QMDP to come
up with an optimal solution? Hint: There are multiple possible answers.

3. In this question, we would like you to determine the size of the belief state
space. Consider the following table:

568

16 Approximate POMDP Technigues

problem number Sensors state initial
number of states sensors transition | state
#1 3 perfect noise-free | known
#2 3 perfect noisy known
#3 3 noise-free | noise-free | unknown (uniform)
#4 3 noisy noise-free | known
#5 3 noisy noise-free | unknown (uniform)
#6 3 none noise-free | unknown (uniform)
#7 3 none noisy known
#8 1-dim continuum | perfect noisy known
#9 1-dim continuum | noisy noisy known
#10 2-dim continuum | noisy noisy unknown (uniform)

A perfect sensor always provides the full state information. A noise-free
sensor may provide partial state information, but it does so without any
randomness. A noisy sensor may be partial and is also subject to noise.
A noise-free state transition is deterministic, whereas a stochastic state
transition is called noisy. Finally, we only distinguish two types of initial
conditions, one in which the initial state is known with absolute certainty,
and one in which it is entirely unknown and the prior over states is uni-
form.

Your question: What is the size of the reachable belief space for all 10
problems above? Hint: It may be finite or infinite, and in the infinite case
you should be able to tell what dimension the belief state has.

- We want you to brainstorm about the failure modes of an AMDP plan-

ner. In particular, the AMDP learns state transition and reward functions.
Brainstorm what can go wrong with this when such learned models are
used for value iteration. Identify at least three different types of problems,
and discuss them in detail.

