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Abstract

We propose Contextualized Knowledge Repository (CKR): an adaptation of the well studied theories of context for the Semantic
Web. A CKR is composed of a set of OWL 2 knowledge bases, which are embedded in a context by a set of qualifying attributes
(time, space, topic, etc.) specifying the boundaries within which the knowledge base is assumed to be true. Contexts of a CKR
are organized by a hierarchical coverage relation, which enables an effective representation of knowledge and a flexible method
for its reuse between the contexts. The paper defines the syntax and the semantics of CKR; shows that concept satisfiability and
subsumption are decidable with the complexity upper bound of 2NExpTime, and it also provides a sound and complete natural
deduction calculus that serves to characterize the propagation of knowledge between contexts.
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1. Introduction

More and more ontologies and data-sets are being published
using the Semantic Web languages such as RDF and OWL. Es-
pecially under the recent Linked Open Data initiative, large
knowledge sources such as DBpedia and Freebase, but also
many others were conceived and populated. It is also becom-
ing increasingly apparent that large portions of the knowledge
available via these sources are not absolute, but instead they are
assumed to hold under certain circumstances. Knowledge may
be relative to certain time period, a geo-political or geo-cultural
region, or certain specific topics, etc. Despite these facts, there
is a lack of a widely accepted mechanism to qualify knowl-
edge with the context in which it is supposed to hold. Instead,
contextual information is often crafted in the ontology identi-
fier or in attributes like rdfs:comment, owl:AnnotationProperty
which do not affect reasoning.

Extensions of the Semantic Web languages with specific
mechanisms that allow to qualify knowledge, e.g., w.r.t. its
provenance [1] or w.r.t. time and events [2], were proposed.
Among other works that offer possible solutions [3, 4, 5], the
most interesting are ALCALC [6] and Metaview [7], however,
a widely accepted approach has not yet been reached.

On the other hand, theories of context have been investigated
for years in the fields of artificial intelligence and knowledge
representation. In his seminal paper [8] McCarthy suggested to
formalize context in terms of first-class objects and utilize it in
reasoning. Further research lead to introduction of the context
as a box metaphor [9, 10] for suitable representations of con-
texts. In this approach, each context is a set of formulae which
hold under the same circumstances and whose boundaries are
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delimited by a set of dimensional attributes. The two kinds of
knowledge involved here are separated, the knowledge itself is
inside the “box” and the contextual meta knowledge is outside.
In addition, Lenat [11] proposed to organize the contexts into a
hierarchical structure called contextual space based on the val-
ues of their dimensions.

To clarify the representational requirements for a contextual
representation framework for the Semantic Web let us consider
the following scenario. Suppose we want to represent knowl-
edge about Football (FB), FIFA world cups (FWC), national
football leagues (NFL), world news (WN), and national news
(NN). Suppose also that all the information about FWC and
NFL should be included in FB, and that for each nation, all the
facts about its NFL should be included in its NN, and also all
the information about FWC should be included in WN. On the
other hand, only a part of information about NFL should be
included in WN (only that of worldwide interest). A well de-
signed contextual representation formalism should support the
following requirements:

knowledge about context: knowledge about contexts such as
contextual dimensions and relations between contexts as
for instance that one context is more specific than some
other, should be explicitly represented and reasoned about.
For example, we should be able to assert that the context
of FWC in 2010 is more specific than the contexts of FB
and WN in the same year;

contextually bounded facts: in each context we should be
able to state facts with local effect that do not necessar-
ily propagate everywhere. For example, an axiom like “a
player is a member of only one team” should be true in
some contexts (e.g., FWC, NFL, for each year) but not in
more general contexts like FB;

reuse/lifting of facts: to be able to seamlessly reuse the infor-
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mation contained in more specific contexts. For example,
the facts in FWC should be lifted up into WN and FB. This
lifting should be done without spoiling locality of knowl-
edge;

overlapping and varying domains: objects can be present in
multiple contexts, but not necessarily in all contexts, e.g.,
a player can exist in both the FWC context and in the
NFL contexts, but many players present in NFL will not
be present in FWC;

inconsistency tolerance: two contexts may possibly contain
contradicting facts. For instance NN of Italy could assert
that “Cassano is the best player of the world”, while at the
same time the world news report that “Rooney is the best
player of the world”, without making the whole system
inconsistent;

complexity invariance: the qualification of knowledge by
context should not increase the complexity.

Based on these requirements, we propose a framework called
Contextualized Knowledge Repository (CKR), build on top of
the expressive description logic SROIQ [12] that is behind
OWL 2 [13]. The CKR framework is tailored for the Semantic
Web, but it is rooted in the foundations of contextual knowl-
edge representation laid down by previous research in artifi-
cial intelligence. Adopting the context as a box paradigm, a
CKR knowledge base is composed of units, called contexts,
each qualified by a set of dimensional attributes that specify its
contextual boundaries. Contexts are organized by a hierarchical
coverage relation that regulates the propagation of knowledge
between them.

After brief preliminaries (Sect. 2) the paper defines the syn-
tax and semantics of CKR (Sect. 3); then it provides a sound and
complete natural deduction calculus that serves to characterize
the propagation of knowledge between contexts (Sect. 4); and
finally it shows that concept satisfiability and subsumption are
decidable with the complexity upper bound of 2NExpTime, i.e.,
same as for SROIQ (Sect. 5); related work is then discussed
and concluding remarks added in Sects. 6, 7. Detailed proofs of
all statements are attached in the appendix.

2. Preliminaries

The CKR framework is built on top of the SROIQ DL [12]
which is used as the local language of contexts. This language
constitutes the logical foundation of OWL 2 [13] and it is cur-
rently the most expressive language relevant to the Semantic
Web. In this section, we briefly introduce the necessary DL pre-
liminaries. For more details the reader is referred to the works
of Horrocks et al. [12] and Baader et al. [14]. Although seman-
tically CKR is able to handle the full SROIQ DL, in order to
achieve decidability of reasoning we will slightly limit its ex-
pressive power as we shall see below.

A DL vocabulary Σ = NC ] NR ] NI is a set of symbols
composed of three mutually disjoint countably infinite subsets:
the set NC of atomic concepts including the top concept > and

Concept constructors Syntax Semantics
atomic concept A AI

complement ¬C ∆I \CI

intersection C u D CI ∩ DI

existential restriction ∃R.C
{

x ∈ ∆I

∣∣∣∣∣∣∃y 〈x, y〉 ∈ RI

∧ y ∈ CI

}
self restriction ∃R.Self

{
x ∈ ∆I

∣∣∣ 〈x, x〉 ∈ RI
}

min. card. restriction >nR.C
{

x ∈ ∆I

∣∣∣∣∣∣ ]{y| 〈x, y〉 ∈ RI

∧ y ∈ CI} ≥ n

}
nominal {a}

{
aI

}
Role constructors Syntax Semantics
atomic role R RI

inverse role R−
{
〈y, x〉

∣∣∣ 〈x, y〉 ∈ RI
}

role composition S ◦Q S I ◦ QI

Axioms Syntax Semantics
concept inclusion (GCI) C v D CI ⊆ DI

role inclusion (RIA) S v R S I ⊆ RI

reflexivity assertion Ref(R) RI is reflexive
role disjointness Dis(P,R) PI ∩ RI = ∅

concept assertion C(a) aI ∈ CI

role assertion R(a, b)
〈
aI, bI

〉
∈ RI

negated role assertion ¬R(a, b)
〈
aI, bI

〉
< RI

Table 1: Syntax and Semantics of SROIQ

the bottom concept ⊥, the set NR of atomic roles including the
universal role U and the identity role I, and the set NI of indi-
viduals.

Complex concepts (complex roles) are recursively defined as
the smallest set containing all concepts (roles) that can be in-
ductively constructed using the concept (role) constructors in
Table 1, where A is any atomic concept, C and D are any con-
cepts, P and R are any atomic roles, S and Q are any (possibly
complex) roles, a and b are any individuals, and n stands for
any positive integer.

A SROIQ knowledge base K = 〈T ,R,A〉 consists of a
TBox T which contains GCI axioms; an RBox R which con-
tains RIA axioms, reflexivity and role disjointness axioms; and
an ABoxAwhich contains assertions. The syntax of all axioms
is shown at the bottom of Table 1. The closure v∗

R
of the RBox

R is defined as follows: if R v Q ∈ R and Q1◦Q◦Q2 v S ∈ R
then Q1◦R◦Q2 vR S ; and v∗R is the transitive and reflexive clo-
sure on vR.

A DL interpretation is a pair I =
〈
∆I, ·I

〉
where ∆I is a set

called interpretation domain and ·I is the interpretation function
which provides denotations for individuals, concepts and roles.
In SROIQ, as much as in any classical DL, ∆I is required to
be non-empty. We will see later on that in CKR we will relax
from this requirement. The interpretation function ·I assigns an
element aI of ∆I to each individual a, a subset CI of ∆I to each
concept C, and a subset RI of the product ∆I × ∆I to each role
R. In addition for any complex concept and role the respective
semantic constraint listed in Table 1 must be satisfied by ·I, plus
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>I = ∆I, ⊥I = ∅, UI = ∆I × ∆I, and II = {〈x, x〉 | x ∈ ∆I}1.
An axiom φ is satisfied by an interpretation I (denoted I |=DL φ)
if I satisfies the respective semantic constraint listed in Table 1.
An interpretation I is a model of K (denoted I |=DLK) if it
satisfies all axioms of K .

Only simple roles are allowed in the min cardinality restric-
tion, in the self restriction constructors, as well as in the re-
flexivity and the disjointness axioms. Simple roles are defined
recursively as follows: a) atomic role is simple if it does not
occur on the right-hand side of a RIA in R; b) an inverse role
R− is simple if R is simple; c) if R occurs on the right-hand side
of a RIA in R and each such RIA is of the from S v R where
S is a simple role, than R is also simple. Also the universal role
U is not allowed on the left-hand side of RIA axioms.

There are additional SROIQ constructors and axioms [12].
Specifically, concept constructors C t D, ∀R.C, 6nR.C and
=nR.C, and RBox axioms Sym(R), Tra(R), Irr(R). Although we
occasionally use some of them to simplify the notation, they
are all fully reducible2 into the core constructs listed in Table 1
which allows us to leave them out when laying out the theo-
retical foundation of CKR. Note that also Ref(R) is reducible,
but only in cases when R is simple (i.e., by replacing it with
> v ∃R.Self).

Two basic reasoning tasks for SROIQ and for any DL are
concept satisfiability, the task to decide for a given (possibly
complex) concept C whether there is a model I of K such that
CI is nonempty; and entailment, the task to decide for some
axiom φ whether I |=DL φ for all models I of K (which is then
denoted by K |=DL φ). These two tasks are known to be inter-
reducible [14, 12]. A tableaux algorithm that decides these two
tasks for SROIQ was given by Horrocks et al. [12]. The al-
gorithm, however, requires further syntactic restrictions on the
language, as discussed below.

It is required that the RBox is regular, which is defined as
follows [12]. A regular order on roles ≺ is a strict partial order
(i.e., a transitive and irreflexive binary relation) on roles such
that S ≺ R iff S − ≺ R for any roles S ,R. Given a regular order
on roles ≺, a RIA is ≺-regular if it has one of the following
forms: a) R◦R v R; b) R− v R; c) S 1◦ · · · ◦S n v R and S i ≺ R
for 1 ≤ i ≤ n; d) R◦S 1◦ · · · ◦S n v R and S i ≺ R for 1 ≤ i ≤ n;
e) S 1◦ · · · ◦S n◦R v R and S i ≺ R for 1 ≤ i ≤ n. An RBox R is
regular if there exists a regular order ≺ on its roles such that all
RIA of R are ≺-regular.
SROIQ is decidable for knowledge bases with regular

RBox. This is because the restriction assures the existence of a
regular automaton corresponding to the language generated by
the RBox, which is then used by the tableaux algorithm [12].
More recently an alternative condition called RBox stratifica-
tion was introduced by Kazakov [15]. Given a preorder (a tran-
sitive and reflexive binary relation) - on roles, let R h S if

1The identity role I is not originally part of SROIQ [12], however it can
be easily introduced as syntactic sugar by adding the axioms > v ∃I.Self and
> v ¬>2I.>.

2C t D reduces into ¬(¬C u ¬D); ∀R.C reduces into ¬∃R.¬C; 6nR.C
reduces into ¬>n+1R.C; =nR.C reduces into >nR.C u ¬>n+1R.C; Sym(R)
reduces into R− v R; Tra(R) reduces into R◦R v R; Irr(R) reduces into
∃R.Self v ⊥.

R - S and S - R, and let R ≺ S if R - S and not R h S . A
RIA R1◦ · · · ◦Rn v R is --admissible if Ri - R for 1 ≤ i ≤ n.
Given a set of --admissible RIA R a RIA Q v S is --stratified
in R, if for every R such that R h S and Q = Q1◦R◦Q2 there
exists P such that Q1◦R v∗R P and P◦Q2 v

∗
R

S . Finally, R is
stratified if there is some preorder - on R such that every RIA
of R is --admissible and every RIA R v S such that R v∗

R
S is

--stratified in R.
Stratification is less restrictive then regularity, i.e., every reg-

ular RBox R can be extended into a stratified RBox R′ modulo-
R-equivalent to R, but not vice versa [15]. As also showed by
Kazakov [15], for deciding satisfiability and entailment with
respect to a SROIQ knowledge base with stratified RBox it is
possible to use the same tableaux algorithm introduced by Hor-
rocks et al. [12]. This is because the existence of the regular
automaton required by the algorithm is also assured for strati-
fied RBoxes. In order to show decidability of reasoning in CKR
we will rely on this result. In addition, we will slightly limit the
expressive power ofSROIQ as the local language: disjointness
axioms Dis(R, S ) will be excluded from CKR and role reflexiv-
ity axioms Ref(R) will only be allowed if R is simple. Therefore
the DL on which CKR is built can be described as almost full
SROIQ. We deem this to be a reasonable sacrifice in the ex-
pressivity of the local language that allows us to achieve the
contextualized representation of knowledge that is enabled by
CKR.

3. Contextualized Knowledge Repository

A CKR is composed of a set of contexts. Following the “con-
text as a box” metaphor [9], a context contains a set of logical
statements and it is qualified by a set of contextual attributes,
also called dimensions. An example of this type of representa-
tion is shown in Fig. 1 where an excerpt from a context repre-
senting the Italian national football league in 2010 is depicted.

time = 2010, location = Italy, topic = NFL
Team v =22has player.Player
Player v 61plays for.Team
Team(Milan)
plays for(Cassano,Milan)
· · ·

Figure 1: Italian national football league under the context as a box metaphor

It is apparent from this simple example, that there are two
layers in this kind of representation, the knowledge itself (we
will call this layer the object knowledge) and the data about the
knowledge (which we will call meta knowledge). McCarthy [8]
proposed to use an unique language for both types of knowl-
edge, namely quantified modal logic. While this is very pow-
erful from the representational perspective (e.g., the structure
of context may be inferred out of the object knowledge, etc.),
it easily leads to undecidability. At the opposite extreme there
are approaches such as multi-context systems [16], distributed
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[17] or package-based description logics [18], where the con-
text structure is fixed and it is not possible to specify knowl-
edge about contexts, which limits their practical applicability.
We therefore propose an intermediate approach, by allowing to
specify the context structure and properties in a (simple) logical
meta language, but avoiding to mix it with the object language
used within each context in order to maintain good computa-
tional properties. In our approach, the meta knowledge influ-
ences the object knowledge (in terms of logical consequence)
but not vice versa.

3.1. Language of Contextual Representation

In CKR, contextual attributes are specified in the meta lan-
guage, with vocabulary called the meta vocabulary. The content
of each context is specified in the object language, with vocab-
ulary called the object vocabulary. Both of these languages will
be DL. The meta vocabulary contains a specific set of symbols
in order to identify contexts and to assign dimensional values to
contexts. It contains a distinguished set of individuals that will
be used as context identifiers. Each dimension is represented
by a dedicated role A that will be used to assign dimensional
values to the contexts, a set of admissible dimensional values
DA which are individuals, and a role ≺A which will be used to
model the cover relation between dimensional values.

Definition 1 (Meta vocabulary). A meta vocabulary Γ is a DL
vocabulary that contains:

1. a set of individuals called context identifiers;
2. a finite set of roles A called dimensions;
3. a set of individuals DA called dimensional values, for ev-

ery dimension A ∈ A;
4. a role ≺A, called coverage relation, for every dimension

A ∈ A.

The number of dimensions k = |A| is assumed to be a fixed
constant. This will be important in order not to introduce an
additional complexity blow up. Also, relevant research on con-
textual dimensions suggests that their number is usually very
limited [11]. The meta assertions of the form A(C, d) for a con-
text identifier C and some d ∈ DA (e.g., time(c0, 2010)), state
that the value of the dimension A of the context C is d. The
meta assertions of the form d ≺A e (e.g., Italy ≺space Europe)3

state that the value d of the dimension A is covered by the value
e. Depending on the dimension, the coverage relation has dif-
ferent intuitive meanings, e.g., if A is space then the coverage
relation is topological containment, if A is topic then it is topic
specificity. It is of course up to the modeller to pick and repre-
sent the dimensional coverage appropriately.

The meta vocabulary allows us to construct dimensional vec-
tors of the form {Ai1 :=d1, . . . , Ain :=dn} which are composed of
attribute-value declarations such that each Aik is a dimension
of Γ and each dk is a value from DAik

. In accordance with the
context as a box paradigm, dimensional vectors will be used to

3To improve legibility we will use infix notation for the coverage relations,
e.g., we will equivalently use d ≺A e instead of ≺A(d, e).

identify each context by a specific set of dimensional values.
They are either full, if a value for each dimension in A is given,
or partial, if some dimensions are missing. The set of all full
dimensional vectors of Γ forms the dimensional space in which
contexts will be located.

Definition 2 (Dimensional space). Given a meta vocabulary Γ

with n dimensions A = {A1, . . . , An}, let us define:

1. a full dimensional vector in Γ is a set of attribute-value
declarations d = {A1:=d1, . . . , An:=dn} such that dk ∈ DAk

for every k with 1 ≤ k ≤ n;
2. a partial dimensional vector in Γ is a set of attribute-value

declarations dB = {Ai1 :=d1, . . . , Aim :=dm} such that 0 ≤
m ≤ n, dk ∈ DAik

for every k with 1 ≤ k ≤ m, and B =

{Ai1 , . . . , Aim } ⊂ A;
3. DΓ, the dimensional space respective to Γ, is the set of all

full dimensional vectors in Γ;
4. dB+eC, the completion of dB w.r.t. eC, given two partial di-

mensional vectors dB and eC, is equal to dB ∪ {(Aik :=dk) ∈
eC | Aik < B}.

We use bold Latin letters d, e, f, etc. to denote dimensional
vectors. Given a dimensional vector d and A ∈ A, we denote
by dA the value assigned to A in d (i.e., such that (A:=dA) ∈
d). If d is partial and it does not contain a value for A, then
dA is undefined. Analogously for vectors denoted by e, f, etc.
Observe that in fact for any full dimensional vector d, and any
subset of dimensions B ⊆ A, a partial dimensional vector dB is
obtained by projection of d with respect to the dimensions in B
(i.e., dB = {B:=dB | B ∈ B}). By definition dA = d. Note that
the empty dimensional vector {} is also a partial dimensional
vector in Γ.

One may object that for encoding a set of attributes with
structured value-sets in the meta knowledge, such a powerful
formalism as DL may be unnecessary. Several examples us-
ing simply ordered sets are found in the literature [19, 5, 20].
We have however intentionally chosen DL, as this brings the
option to employ reasoning also at the meta level. As the di-
mensional values are normal DL individuals, one may assign
them into classes and express constraints on them. Consider
for instance the location dimension corresponding to geograph-
ical regions. One may sort the values into classes such as
Country, City, CapitalCity, etc., and require e.g. Country v
∃≺location

−.CapitalCity, that is that every country has a capital
city as its subregion. One may further notice that for those con-
texts which have an instance of City assigned as the value of the
location dimension, there may possibly be a large part of shared
knowledge, especially axioms at the TBox level. In such a case
it might be useful to group all these axioms into some kind of
a context class (we have investigated this in our previous work
[21] and implemented context classes in our prototype imple-
mentation). This line of research is beyond the scope of this
paper, but it justifies DL as our choice of meta language. In
addition, in Sect. 5 we show that the complexity of reasoning
with CKR is in the same class as for the object language (i.e.,
2NExpTime in case of SROIQ).
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Inside the contexts, knowledge is encoded using the object
vocabulary. This is again a DL-vocabulary. While the object
vocabulary is shared between all contexts in a CKR knowledge
base, the symbols may have different interpretation in different
contexts. This is very natural when modeling contextualized
information. For instance, in the context of FIFA WC 2010 the
concept Finalist represents the finalist teams of the FIFA WC
2010, while in the context of FIFA WC 2006, the same con-
cept represents the finalists of the 2006 edition of FIFA WC.
Locality, however, does not imply opacity. When information
propagates across contexts, we need a way to refer to the spe-
cific interpretation of a symbol in a remote context. To be able
to do this, we introduce so called qualified symbols into the ob-
ject vocabulary. These are symbols with a dimensional vector
in subscript which indicates with respect to which context the
symbol should be interpreted.

Definition 3 (Object vocabulary). Let Γ be a meta vocabulary.
Given any DL-vocabulary ΣB, an object vocabulary Σ is an ex-
tension of ΣB such that for every concept/role symbol X in ΣB

(including >, U, I, but excluding ⊥), and for every dimensional
vector d (full or partial), Σ contains the concept/role symbol Xd.

An object vocabulary Σ is possibly constructed on top of
any DL-vocabulary ΣB. In such a case, ΣB is called the base-
vocabulary of Σ. Any symbol from Σ \ ΣB is called qualified
symbol. Concepts and roles of ΣB are non-qualified, but they
can also be perceived as qualified with respect to the empty di-
mensional vector {}. If no ambiguity arises, we skip the brackets
and the attribute names, so instead of e.g. X{location:=Italy,time:=2010}

we will write XItaly,2010, etc. Qualified symbols will be given a
special interpretation by the CKR semantics, but they are used
just like any other concept/role symbols. For instance, in the
context of football 2005–2010 one would like to define the con-
cept TopTeam as the set of teams that reached the final phase in
at least one edition of the FIFA WC in the last 5 years (note that
FIFA WC is run every 4 years). Given the dimensional value
FWC for the topic FIFA World Cup and 2006, 2010, etc. for
years, the concept TopTeam can be defined with the following
axiom:

TopTeam ≡ FinalistFWC,2010 t FinalistFWC,2006

Such an approach is reminiscent of the knowledge qualifica-
tion and unqualification operations (also context push and pop)
as known from the literature [9]. These operations allow for a
statement to be popped out of the context, preserving its mean-
ing, by modifying it to make the contextual parameters explicit.
Or in the opposite direction, a qualified statement can be pushed
inside a context and some of its qualifying parameters stripped.
Later on we will formalize these operations in the CKR frame-
work using a special operator called the @ operator.

3.2. Syntax of CKR
A context is a unit of knowledge, from which a CKR knowl-

edge base is composed. Each context has an identifier, a set of
dimensional attributes, one for each dimension, which are re-
spective to some meta vocabulary Γ, and it features a DL knowl-
edge base over some object vocabulary Σ.

Definition 4 (Context). Given a meta vocabulary Γ and
an object vocabulary Σ, a context on 〈Γ,Σ〉 is a triple
〈C, dim(C),K(C)〉 where:

1. C is a context identifier of Γ;
2. dim(C) is a full dimensional vector of DΓ;
3. K(C) is a SROIQ knowledge base over Σ.

Note that while symbols appearing inside contexts can pos-
sibly be qualified with partial dimensional vectors, dim(C), the
dimensional vector on which the context C resides, is always a
full dimensional vector in DΓ. We use the notation Cd to denote
a context with dim(C) = d.

Finally, a CKR knowledge base is composed of a collection
of contexts and an additional DL knowledge base over the meta
vocabulary which will be called meta knowledge. The meta
knowledge assigns dimensional values to each context and it
also asserts a hierarchical organization of contexts, which will
be called context coverage. This hierarchy is recorded by as-
serting a strict partial order on the dimensional values of each
dimensional attribute A ∈ A using the role ≺A.

Definition 5 (Contextualized Knowledge Repository). Let Γ be
a meta vocabulary and let Σ be an object vocabulary. A Con-
textualized Knowledge Repository (CKR) on 〈Γ,Σ〉 is a pair
K = 〈M,C〉 such that:

1. C is a set of contexts on 〈Γ,Σ〉;
2. M, called meta knowledge, is a DL knowledge base on Γ

such that:
(a) every A ∈ A is declared a functional role;
(b) for every C ∈ C with dim(C) = d and for every A ∈ A

we have M |= A(C, dA);
(c) for every A ∈ A, the relation {d ≺A d′ | M |=

≺A(d, d′)} is a strict partial order on DA.

To indicate that a formula φ belongs to a context Cd of a CKR
K we will often write d : φ instead of just φ. Similarly, by the
notation d : φ ∈ K we mean that φ ∈ Cd, where Cd is a context
of K; and by K ∪ {d : φ} (K \ {d : φ}) we denote a new CKR
constructed by adding φ to Cd (respectively subtracting it).

Note that functional roles required by the definition above
are quite common in DL (SHIF and all more expressive log-
ics). Although this is not so common, inSROIQ (and therefore
in OWL 2) it is possible to implement also strict partial order
of the dimensional coverage (particularly, by asserting Tra(≺A)
and Irr(≺A)). On the other hand, in simpler logics it is possi-
ble to assure appropriate structure of the dimensions simply by
enumerating the coverage in the ABox. The order is required
to ensure a reasonable hierarchical organization of the contexts
in a CKR knowledge base. In expressive logics we are able
to verify the order automatically. If the logic is not expressive
enough, we can still organize the knowledge base and verify the
order extra-logically (e.g., we can use some other programmatic
means for that). Therefore CKR may indeed be built with sim-
pler, more tractable logics: an RDFS-based version has already
been developed [22].

The coverage relation between the dimensional values of
each dimension encoded in the meta knowledge provides the
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base for the coverage between dimensional vectors and con-
texts. One dimensional vector covers another, if its dimensional
values cover the values of the other, one by one. That is, the
coverage between dimensional vectors (≺) is a product of the
dimensional order relations ≺A. One context covers another if
the same holds for their associated dimensional vectors. We
will also introduce a handy notation for coverage with respect
to a subset of dimensions only (≺B).

Definition 6 (Coverage). Given a CKR K on 〈Γ,Σ〉 with dimen-
sions A, given any dimension A ∈ A and any two dimensional
values d, d′ ∈ DA, given any two dimensional vectors d and e
(full or partial), any subset B ⊆ A, and given any two contexts
C and C′ we say that:

1. d covers d′ w.r.t. A (denoted d ≺A d′) if M |= ≺A(d, d′);
2. e covers d w.r.t. B (denoted d ≺B e) if dB ≺B eB for all

B ∈ B;
3. e covers d (denoted d ≺ e) if d ≺A e;
4. C′ covers C (denoted C ≺ C′) if dim(C) ≺ dim(C′).

Note that d ≺ e implies that d and e are defined on the same
set of dimensions. If d ≺B e, then d and e may be defined on
a different set of dimensions but both must be defined on all
dimensions of B ⊆ A.

Intuitively, if one context covers another, its perspective is
broader. For instance, the context concerned with football in
general would cover the contexts of FIFA World Cup and con-
texts concerned with national football leagues. To give an ex-
ample, let us now formally model the coverage relation for the
contexts described in the introduction. We will have the topic
dimension with the following values in Dtopic: FB (football),
FWC (FIFA World Cup), NFL (National football league), WN
(world news), NN (national news). The space dimension will
have the values world, africa and italy in Dspace. The time di-
mension will have only one value 2010. The following cov-
erage between the dimensional values will be asserted in the
ABox of M:

FWC ≺topic WN NFL ≺topic FB africa ≺space world
FWC ≺topic FB NFL ≺topic NN italy ≺space world

The fact that the FWC is covered by WN in this example is due
to world news report on the World Cup together with other top-
ics, therefore this context is broader. Similarly for NFL and NN.
The context coverage relation generated from this coverage be-
tween dimensional values is shown in Fig. 2.

Figure 2: Coverage relation between contexts

3.3. Semantics of CKR
The semantics of CKR relies on the DL semantics inside

each context (local semantics), while the relations between the

contexts are handled by some additional semantic conditions.
Local interpretation and local models are like standard DL-
interpretations and models with two notable exceptions: empty
domains are allowed; and, while all contexts in a CKR share a
common object vocabulary Σ, not every symbol of Σ needs to
be interpreted by each local interpretation. This will be espe-
cially true in case of individuals which may but also may not be
meaningful in a given context.

Definition 7 (Local Interpretation). Given a CKR K over 〈Γ,Σ〉
with Σ = NC ] NR ] NI, and a context Cd of K, a pair Id =〈
∆d, ·

Id
〉

is a local interpretation of Cd if:

1. either ∆d = ∅;
2. or there exists N′I ⊆ NI s.t. Id is a DL-interpretation over

Σ′ = NC ] NR ] N′I .

Note that for any complex concept or role X, XId is defined
only if it is defined also for every individual occurring in X.
In the following, whenever we write XId then we also mean
that Id is defined for X. Observe in the definition below, that
in a local model Id of Cd, Id is necessarily defined on every
individual actually occurring in Cd. It may be defined on some
individuals in addition due to the semantic relations between
contexts.

Definition 8 (Local Model). Given a CKR K, a context Cd of
K, a local interpretation Id is a local model of Cd (denoted
Id |=DL Cd) if Id |=DL φ for every axiom φ ∈ K(Cd).

Note that the local interpretation with empty domain trivially
satisfies any TBox or RBox axiom (e.g., C v D is satisfied
because both CId = ∅ and DId = ∅ if ∆d = ∅). Therefore
such an interpretation is always a model of any context that
does not explicitly contain individuals. On the other hand, if at
least one individual is contained inside a context then such an
interpretation is no longer a model.

A model of a CKR knowledge base is a collection of local
models, one for each context, which are bound together by fur-
ther semantic conditions in order to take into account relations
between contexts. In a CKR model, local domains may pos-
sibly overlap, reflecting the fact that the contexts may possi-
bly describe same things from a different perspective. Local
domains will be organized in accordance with the coverage hi-
erarchy. In addition special attention is given to individuals,
which are interpreted equally if they occur in two contexts that
share a common super-context, and the meaning for the quali-
fied concepts and roles is provided.

Definition 9 (CKR Model). A model of a CKR K is a collection
I = {Id}d∈DΓ

of local models such that for all d, e, and f, for
every atomic concept A, atomic role R, atomic concept/role X
and individual a:

1. (>d)If ⊆ (>e)If if d ≺ e
2. (Af)Id ⊆ (>f)Id

3. (Rf)Id ⊆ (>f)Id × (>f)Id

4. aIe = aId , given d ≺ e, either if aId is defined,
or aIe is defined and aIe ∈ ∆d

5. (XdB )Ie = (XdB+e)Ie

6



6. (Xd)Ie = (Xd)Id if d ≺ e
7. (Af)Id = (Af)Ie ∩ ∆d if d ≺ e
8. (Rf)Id = (Rf)Ie ∩ (∆d × ∆d) if d ≺ e
9. Id |=DL Cd

Let us now explain the semantic constraints imposed in CKR
models passing through the conditions of the definition one by
one.

Condition 1 Given Cd ≺ Ce, the perspective of Cd is narrower
than of Ce and vice versa the perspective of Ce is broader
than of Cd. Condition 1 implements this in the semantics.
It has two practical consequences: Firstly, together with
Conditions 5 and 6 it implies that ∆d is required to be a
subset of ∆e in any CKR model if d ≺ e. This follows as
indicated above the = and ⊆ relations:

∆d = >Id (5)
= >

Id
d

(6)
= >

Ie
d

(1)
⊆ >

Ie
e

(5)
= >Ie = ∆e (1)

This is a basic premise in order to make the knowledge of
Cd accessible to Ce by the latter constraints.

The second consequence of Condition 1 is that if Cd ≺ Ce,
then any other context Cf is aware of this in the sense that
>
If
d ⊆ >

If
e . This allows for some basic desirable properties

of reasoning about the knowledge of other contexts. For
instance, in any context it is entailed that >FWC,2010,Africa v

>FB,2010,World (given that FWC ≺ FB and Africa ≺ World).
Hence if an individual is known to belong to the context
of FIFA WC 2010, we always know that it also belongs to
the context of football of the same year.

Conditions 2 and 3 take care that in every context Cd the in-
terpretations of symbols qualified with some f are roofed
under the concept >f which thus represents the domain of
Cf as viewed inside Cd and in a CKR model >Id

f repre-
sents the image that Id keeps of ∆f . That is for instance
TeamFWC,2010,Africa v >FWC,2010,Africa holds in any context.
Or if a qualified role such as hasPlayerFWC,2010,Africa oc-
curs in some context, it is assured by the semantics that all
its possible values are always instances of >FWC,2010,Africa,
i.e., individuals that are known to occur in CFWC,2010,Africa.

As implied by further conditions the image of ∆f in Cd
(i.e., the set >Id

f ) may be but as well may not be entirely
precise, depending on how Cd and Cf are related by the
coverage. As we learned from equation (1), this image is
necessarily precise in cases when d ≺ f. In the opposite
case, the image of the domain of a super-context is a nar-
rowing of the original domain (i.e., >Id

f ⊆ ∆f if d ≺ f). If
neither d ≺ f nor f ≺ d then the image is even less precise
and there can be elements in >Id

f which do not belong to
∆f at all.

Condition 4 is responsible for the semantic treatment of indi-
viduals in CKR. If a narrower context Cd is covered by a
broader context Ce, and an individual a is defined in both
of these contexts, then the interpretation of a must be equal
in both of these contexts. This is assured by propagating
the semantics of a from Cd into Ce, but not necessarily the

other way around: if aId is defined then aIe must be de-
fined and must be equal to Ie; on the other hand, if aIe is
defined then aId must be defined to the same value only if
aIe is part of the Ce’s image of >d.

One practical consequence of this treatment is that if the
same individual a occurs in two context which share at
least one common super-context, it has the same inter-
pretation. Another consequence is that it allows to pred-
icate about (non)existence of objects in a context from a
broader context. For instance if >FWC,2010,Africa(England)
and ¬>FWC,2010,Africa(Egypt) are stated in a context broader
than CFWC,2010,Africa (e.g., in CFB,2010,World), as a conse-
quence it is implied that England participates in the last
FIFA WC while Egypt does not. That is, on the seman-
tic level the individual England is always defined in this
context while the individual Egypt is always undefined in
it.

Condition 5 provides meaning for partially qualified symbols.
It assures that the values for attributes which are not speci-
fied are always taken from the current context in which the
expression appears. Therefore in the end all symbols even
those partially qualified are treated as fully qualified by the
semantics. It is important to understand that also symbols
with no qualifying vectors are viewed as qualified sym-
bols, they are qualified with the empty dimensional vector
{}. Their qualification is taken from the context in which
they appear and they are thenceforth treated as fully qual-
ified by the semantics.

Due to this kind of treatment, partially qualified symbols
are in fact some syntactic sugar added to the framework,
For instance, instead of CoachFB,World we can equivalently
use CoachFB,2010,World inside CFWC,2010,Africa and instead of
playsFor we can equivalently use playsForFWC,2010,Africa in
the very same context. On the other hand, we consider
partially qualified symbols necessary in order to achieve
practical usability of the framework.

Condition 6, 7, and 8 provide semantics for qualified sym-
bols. It is ensured that the meaning of a symbol Xd is
based on its interpretation in Cd as much as the partially
overlapping domains allow. Therefore the propagation of
knowledge is respective to the hierarchy of contexts as fol-
lows.

Condition 6 states that the interpretation of Xd is strictly
bound to XId in all contexts that cover Cd. This is in-
deed possible due to the fact that ∆d is totally contained
the interpretation domains of all such contexts, which is
assured by Condition 1. For example, the interpretation
of TeamFWC,2010,Africa in C〈FB,2010,World〉 is the same as the
interpretation of Team in the context C〈FWC,2010,Africa〉.

Conditions 7 and 8 assure that given Cd ≺ Ce and a sym-
bol Xf , where f is not necessarily related to d or e, the two
interpretations of Xf in Id and Ie are equal modulo the
interpretation domain of the narrower context ∆d. This es-
pecially implies that if a particular individual (or pair of
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individuals if X is a role) occurs in both contexts Cd and
Ce, then it ether belongs to both XId

f and XIe
f or it belongs

to none of them. Consider our example CKR from Fig. 2.
In this CKR the contexts Cwn (the context of world news
2010) and Cf (the context of football in 2010) are unre-
lated. Therefore if a qualified concept Playerf occurs in-
side Cwn we cannot be sure that all its instances belong to
the domain of Cf . Due to Condition 7 however, the inter-
pretations assigned to Playerf by Cwn and Cwc must agree
as much as the partially overlapping domains permit (be-
cause wc ≺ wn). Similarly, as wc ≺ f, the interpretations
assigned to Playerf by Cwc and Cf must agree as much
as the domains permit. Hence if one of the instances of
Playerf in Cwn is a constant Rooney, which also appears in
Cwc, then due to Condition 7 we have that RooneyIe ∈ ∆wc
and we already showed that ∆wc ⊆ ∆f in equation (1). For
further details see Examples 1–3 where we study some ba-
sic properties of such a semantics.

Condition 9 states that in a CKR model, the local interpreta-
tion Id of each context Cd is also a model of Cd according
to the local semantics, i.e., that of DL.

The two classic reasoning tasks for DL are satisfiability of
concepts and entailment (especially of subsumption formulae)
with respect to a knowledge base. In a CKR model, a formula
may be satisfied in one context but in another it may be unsat-
isfied. In addition, for some contexts in a knowledge base, all
admissible CKR models may have a local model with empty
domain whereas for other contexts there may be CKR models
with non-empty local domain. Therefore given a CKR K one
has to specify with respect to which context the reasoning task
in question is to be evaluated. Such reasoning tasks will be
called d-satisfiability of concepts and d-entailment.

Definition 10 (d-satisfiability of concepts). Given a CKR
knowledge base K over 〈Γ,Σ〉 with d ∈ DΓ and a concept C
over Σ, we say that C is d-satisfiable w.r.t. K if there exists a
CKR model I = {Ie}e∈DΓ

of K such that CId , ∅.

Definition 11 (d-entailment). Given a CKR knowledge base K
over 〈Γ,Σ〉 with d ∈ DΓ and any formula φ over Σ with syntax
listed in Table 1 under Axioms, we say that φ is d-entailed by K
(denoted by K |= d : φ) if for every CKR model I = {Ie}e∈DΓ

of
K we have Id |=DL φ.

In addition, we consider satisfiability of a CKR knowledge
base as a decision task. In this case it makes sense to define
d-satisfiability as well as global satisfiability.

Definition 12 (d-satisfiability). A CKR knowledge base K over
〈Γ,Σ〉 with d ∈ DΓ is said to be d-satisfiable if there exists a
CKR model I = {Ie}e∈DΓ

of K such that ∆d , ∅.

Definition 13 (Global satisfiability). A CKR knowledge base K
over 〈Γ,Σ〉 is said to globally satisfiable if there exists a CKR
model I = {Id}d∈DΓ

of K such that for every d ∈ DΓ we have
∆d , ∅.

As usual with DL, the d-entailment (of concept subsumption)
and d-(un)satisfiability are inter-reducible: K |= d : C v D iff
C u ¬D is not d-satisfiable w.r.t. K; on the other hand, C is
d-satisfiable w.r.t. K iff K 6|= d : C v ⊥. In addition, C is d-
satisfiable w.r.t. K iff K ∪ {d : C(a)} is d-satisfiable where a is a
new constant previously unused in K. This follows from the fact
that local models are all valid SROIQmodels and from the fact
that the reduction holds in SROIQ. For details on these reduc-
tions see for instance the DL Handbook by Baader et al. [14].

4. Reasoning in CKR

In this section we provide a characterization of entailment
in CKR in terms of a natural deduction (ND) calculus [23].
CKR entailment is the product of two orthogonal semantic en-
tailments: local entailment and cross-context entailment, The
former is induced by the local semantics and coincides with en-
tailment in SROIQ; the latter is induced by the constraints that
Definition 9 imposes on each pair of contexts related via cover-
age. SROIQ entailment, i.e., φ1, . . . , φn |=DL φ, is known to be
decidable.4 We therefore assume a black box decision proce-
dure that checks if φ1, . . . , φn |=DL φ.

Reasoning rules in the ND calculus allow to deduce conclu-
sions in one of the contexts based on evidence from other con-
texts, they are therefore a kind of bridge rules [16]. As an ex-
ample consider the following simple bridge rule:

d : A v B d ≺ e
e : Ad v Bd

(2)

The rule implies that whenever A v B is true in a context
Cd such that d ≺ e, then Ad v Bd should be true in Ce. This is
indeed sound thanks to conditions 5 and 6 of Definition 9 which
together impose that in any CKR model I the interpretation of
A and B in Id coincide respectively with the interpretations of
Ad and Bd in Ie.

The rationale of rule (2) is that a statement in a narrower con-
text, namely Cd, can be embedded into a larger context, namely
Ce, by applying a transformation that preserves semantics. We
generalize this idea by introducing the notion of embedding be-
tween DL knowledge bases and by showing that in CKR such
embedding preserves the meaning of SROIQ expressions.

4.1. Embedding of DL knowledge bases

A DL embedding is a mapping that embeds a DL knowl-
edge base with a narrower perspective into another one with a
broader perspective. The vocabulary of the context being em-
bedded splits in two parts: Σc that contains symbols which are
completely specified with respect to the embedded context, and
Σe that contains the remaining symbols which are called ex-
ternal. For instance, the symbol Playersports is external in the
context CFB,2010,World, This is because FB ≺ sports. If we state

4Decidability is guaranteed under the assumption that the knowledge base
is stratified (see [15] for more details), and we have to impose this condition
also for CKR. This point is discussed later.
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the axiom Playersports v ∃.playsFor.Team here, it is only valid
in this context where all the players are football players and
football is a team sport. In other sports such as tennis players
need not have to play for a team. Therefore, when embedding
the axiom into the broader context of sports we need to take
care to embed the proper meaning of the axiom it has in FB and
so we need to pay attention to external symbols.

Definition 14 (DL embedding). Let Σ and Σ′ be two DL alpha-
bets, and let Σ be partitioned into two disjoint sets Σc and Σe

with > ∈ Σc. A DL embedding is a total function f : Σ → Σ′

that maps individuals, atomic concepts, and atomic roles of Σ

to individuals, atomic concepts, and atomic roles of Σ′ respec-
tively. The extension f ∗ of f that maps complex expressions and
axioms over Σ into complex expressions and axioms over Σ′ is
defined as given in Table 2.

The DL embedding is done on the syntactic level. On the
semantic level, if one knowledge base is embedded into another,
we should be able to embed models of the former knowledge
base to the models of the latter. A pair of such models is said to
be complying with the embedding.

Definition 15 (Embedding-complying interpretations). Two
DL-interpretations I and I′ of Σ and Σ′ respectively comply
with the DL embedding f if:

1. aI = f (a)I
′

, for each individual a of Σ such that aI is
defined;

2. XI = f (X)I
′

, for each concept/role X ∈ Σc;
3. AI = f (A)I

′

∩ f (>)I
′

, for each concept A ∈ Σe;
4. RI = f (R)I

′

∩ f (>)I
′

× f (>)I
′

, for each role R ∈ Σe.

If two interpretations I and I′ comply with the embedding f
then I′ is apparently an extension of I. It contains the domain
∆ of I as ∆ = f (>)I

′

⊆ ∆′ and the f -images of all internal sym-
bols of Σc are interpreted inside f (>)I

′

. The images of external
symbols of Σe can possibly exceed f (>)I

′

when interpreted in
I′ but we can always obtain the corresponding interpretations
of their pre-images by restriction to f (>)I

′

. This corresponds
to the fact that the symbols external to Σ are not completely
specified in I.

An important point is that the meaning of any symbol, inter-
nal or external, with respect to I can always be retained from
I′. The following lemma shows that this is also true for com-
plex descriptions composed of a mixture of internal and exter-
nal symbols and as a consequence also the meaning of axioms
is preserved.

Lemma 1. If two DL-interpretations I and I′ comply with
the embedding f : Σ → Σ′, then, for every concept C, CI =

( f ∗(C))I
′

, for every role R, RI = ( f ∗(R))I
′

, and for every axiom
φ, I |= φ iff I′ |= f ∗(φ).

Proof. (Sketch.) Full proof is listed in Appendix A.1. The
first claim of the lemma, concerned with concepts and roles, is
proved by structural induction. The base case (i.e., for atomic
concepts and roles) follows from the fact that the interpretations
I and I′ comply with the embedding f (Definition 15). For
every type of complex concept and role we then have to argue

the claim from the induction hypothesis, from the construction
of f ∗ (Table 2), and from basic properties of DL-interpretations.
The second claim of the lemma that is concerned with axioms is
then proved for each type of axioms, mostly as a consequence
of the first claim.

Armed with this result we will now show that given any CKR
K and any two contexts Cd and Ce such that d ≺ e it is pos-
sible to construct a DL-embedding between Cd and Ce. For
convenience we will call this embedding the @d operator. For
any construct φ the embedded value will be φ@d. The opera-
tor will allow us to characterize the knowledge propagation in
CKR along the two basic axes, from narrower to broader con-
text and vice versa. Later on in Sect. 5 we will find another use
for embeddings, when showing how CKR can be reduced into
a regular DL knowledge base.

Definition 16 (@d operator). For every full dimensional vector
d, the operator (·)@d is defined as f ∗d (·), where fd is an embed-
ding from Σ into itself defined as follows:

• fd(a) = a for every individual a;
• fd(Xd′B ) = Xd′B+d for every concept/role X;
• Σc = {Xd′B ∈ Σ | d′B � dB}; Σe = Σ \ Σc.

For instance if the concept Team occurs in Cd with d =

{FWC, 2010,Africa}, it belongs to Σc as d′B � dB for B = ∅.
Hence Team@d = TeamFWC,2010,Africa. This is natural, as
in a context wider than Cd the concept TeamFWC,2010,Africa is
fully defined by Team in Cd. But NationalTeamFB < Σc

as FB � FWC. Hence we have NationalTeamFB@d =

NationalTeamFB,2010,Africa u >FWC,2010,Africa. Intuitively, in or-
der to embed NationalTeamFB from Cd into a broader context
one must restrict it to >FWC,2010,Africa because its interpretation
in the broader context may be broader.

Lemma 2. Given a CKR K with two contexts Cd and Ce such
that d � e, and given any model I of K, the pair of local inter-
pretations Id and Ie complies with the embedding fd respective
to the operator @d.

Proof. Let K be a CKR over 〈Γ,Σ〉. Let Cd, Ce be two contexts
of K such that d � e. Let the @d operator be defined on the
embedding fd : Σ → Σ as given in Definition 16, that is, we
have Σc = {Xd′B ∈ Σ | d′B � dB} and Σe = Σ \ Σc. We need to
show that all four conditions of Definition 15 are satisfied:

1. aId = fd(a)Ie , for each individual a of Σ such that aId is
defined: this follows from the Condition 4 of Definition 9;

2. XId = fd(X)Ie , for each concept/role X ∈ Σc. In this
case X = Yd′B for some d′B � dB. If d′B = dB then
Yd′B+d = Yd and the proposition follows either trivially if
d = e or directly from Condition 6 if d ≺ e. Now as-
sume that d′B ≺ dB. From Definition 9 we have XId =

YId
d′B

= YId
d′B+d (Condition 5), and YId

d′B+d = YIe
d′B+d because

d′B+d ≺ d � e (Condition 6). Finally, from the construc-
tion of fd, YIe

d′B+d = fd(Yd′B )Ie = fd(X)Ie ;
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f ∗(A) =

{
f (A) if A ∈ Σc

f (>) u f (A) if A ∈ Σe

f ∗(R) =

{
f (R) if R ∈ Σc

f (I) ◦ f (R) ◦ f (I) if R ∈ Σe

f ∗(¬C) = f (>) u ¬ f ∗(C)
f ∗(⊥) = ⊥

f ∗(R−) = ( f (R))−

f ∗(R ◦ S ) = f ∗(R) ◦ f ∗(S )

f ∗(C u D) = f ∗(C) u f ∗(D)

f ∗(∃R.C) =

{
∃ f (R). f ∗(C) if R ∈ Σc

f (>) u ∃ f (R). f ∗(C) if R ∈ Σe

f ∗(∃R.Self) =

{
∃ f (R).Self if R ∈ Σc

f (>) u ∃ f (R).Self if R ∈ Σe

f ∗(> nR.C) =

{
>n f (R). f ∗(C) if R ∈ Σc

f (>) u>n f (R). f ∗(C) if R ∈ Σe

f ∗({a}) = { f (a)}

f ∗(C(a)) = f ∗(C)( f (a))
f ∗(R(a, b)) = f (R)( f (a), f (b))
f ∗(¬R(a, b)) = ¬ f (R)( f (a), f (b))
f ∗(C v D) = f ∗(C) v f ∗(D)
f ∗(R v S ) = f ∗(R) v f (S )
f ∗(a = b) = f (a) = f (b)
f ∗(a , b) = f (a) , f (b)

Table 2: DL-embedding on complex expressions and axioms

d : φ1 . . . d : φn {φ1 . . . φn} |= φ

d : φ
LReas

d :⊥(a)
e :> v ⊥

Bot
d � e

f : Ad v >e

-
f :∃Rd> v >d

-
f :> v ∀Rd>d

Top

e : φ@d e :>d(a1) · · · e :>d(an) d � e
d : φ

Push
d : φ d � e

e : φ@d Pop

d : A t B(x)
[d : A(x)] [d : B(x)]

e : φ e : φ
e : φ

tE
d :∃R.A(x)

[d : R(x, y), d : A(y)]
e : φ

e : φ
∃E

[d : >(a)]
d : > v ⊥
d : > v ⊥

aE

d :>nR.A(x)
[d : yi , y j, d : R(x, yi), d : A(yi)]1≤i, j≤n

e : φ
e : φ

(>n)E

Restrictions : 1) LReas can be applied if every individual occurring in φ occurs in a φi for some 1 ≤ i ≤ n; 2) in
the Push rule a1, . . . , an are assumed to be all individuals occuring in φ; 3) the individuals a, y, and yi, 1 ≤ i ≤ n,
occuring in aE, ∃E, and (>n)E are new, not occuring elsewhere in K and the proof apart from the assumptions
discharded by these rules.

Table 3: CKR inference rules

3. AId = fd(A)Ie ∩ fd(>)Ie , for each concept A ∈ Σe; In this
case A = Bd′B with d′B � dB. From Definition 9 we have
AId = BId

d′B
= BId

d′B+d (Condition 5), and BId
d′B+d = BIe

d′B+d∩∆d

(Condition 7). As ∆d = >Id = >
Id
d = >

Ie
d (Condition 5,

then Condition 6), we finally get BIe
d′B+d ∩ ∆d = BIe

d′B+d ∩

>
Ie
d = fd(BdB )Ie ∩ fd(>)Ie = fd(A)Ie ∩ fd(>)Ie from the

construction of fd;
4. RId = fd(R)Ie ∩ fd(>)Ie× fd(>)Ie , for each role R ∈ Σe:

this case is exactly analogous to the previous one, only we
need to use Condition 8 instead of Condition 7 of Defini-
tion 9 which is concerned with roles.

4.2. ND calculus for CKR

We now briefly introduce natural deduction (ND), for more
details see the work of Prawitz [23]. An ND calculus is a set of
inference rules of the form:

[Bn+1] [Bn+m]
α1 · · · αn αn+1 · · · αn+m

α
ρ (3)

with n,m ≥ 0, where for all i, αi and α are formulae, Bi are
sets of formulae. The formulae αi are the premises of ρ, α is
the conclusion, and Bi are the assumptions discharged by ρ. A
deduction of α depending on a set of formulae Φ is a tree rooted
in α inductively constructed starting from a set of assumptions
included in Φ by applying the inference rules. Formally deduc-
tion is defined by induction:

1. a formula α is a deduction of α depending on {α};
2. if for each 1 ≤ i ≤ n+m, Πi is a deduction of αi depending

on Φi and the calculus contains the rule (3), then

Π1 · · ·Πn+m

α
ρ

is a deduction of α depending on
(⋃n

i=1 Φi

)
∪(⋃n+m

i=n+1 (Φi \ Bi)
)
.

A formula α is derivable from Φ if there is a deduction of α
depending on a subset of Φ. α is provable if it is derivable form
the empty set.

A ND system for a CKR K = 〈M,C〉 over 〈Γ,Σ〉 is shown in
Table 3. The premises of the ND rules of our calculus are either
object formulae of the form d : φ where d ∈ DΓ and φ is a DL
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formula over Σ, or meta formulae µ over Γ. Conclusions and
discharged assumptions are always object formulae.

Definition 17 (Derivability in CKR). Given a CKR K = 〈M,C〉
over 〈Γ,Σ〉 and a set of object formulae Φ, an object formula
d : φ is derivable from K and Φ (denoted by K,Φ ` d : φ) if it is
derivable in the calculus given in Table 3 from the set Ψ which
contains the following formulae:

1. e : χ, for every χ ∈ Ce and for every e ∈ DΓ;
2. µ, for every meta formula such that M |=DL µ;
3. ψ, for all ψ ∈ Φ.

Instead of K, ∅ ` d : φwe simply write K ` d : φ. Even if ND
derivations are formally defined as trees, we will often present
them as a sequence of derivation steps. This can be naturally
achieved, we only have to track the set of premises from which
the resulting formula in each step is derived. Hereafter ` always
denotes this calculus as formally defined by Definition 17, and
whenever we say proof calculus or just calculus, we refer ex-
actly to this calculus. The proof calculus allows us to define the
syntactic notion of d-consistence of a CKR knowledge base.

Definition 18 (d-consistence). A CKR K is d-consistent if it is
not possible to prove d : > v ⊥ by the calculus, i.e., if K 0 d :
> v ⊥. Otherwise K is d-inconsistent.

The first main result of this work is presented in Theorem 1
where the calculus is showed to be a sound and complete char-
acterization of logical consequence in CKR. In other words, the
calculus rules show us how logical consequence is propagated
between contexts in a CKR knowledge base.

Theorem 1 (Soundness and Completeness). For every CKR K
over 〈Γ,Σ〉, for every d ∈ DΓ, and for every formula φ over Σ,
K ` d : φ if and only if K |= d : φ.

Proof. (Sketch.) The full proof is attached in Appendix A.2.
The soundness is proved by showing for each rule that it is
sound, i.e., that starting from valid premises it only derives valid
conclusions.

In order to prove the completeness we make use of the re-
ductions between reasoning tasks. For any formula d : φ, a
CKR K′ can be constructed such that K |= d : φ if and only
if K′ is d-unsatisfiable. We therefore prove, that if K′ is d-
unsatisfiable then a proof exists in the CKR calculus that K′ is
d-inconsistent. This guarantees, that whenever K |= d : φ then
there exists a calculus proof that supports this. The implication
– if K′ is d-unsatisfiable then the calculus proves that K′ is d-
inconsistent – is proven by contraposition, i.e., we prove that if
there is no calculus proof concluding that K′ is d-inconsistent
then it is d-satisfiable. This is proved by a variant of the Henkin
construction of a model based on constants (see e.g. [24]). For
details see the appendix.

Let us show some examples of deductions in CKR. Consider
the CKR with structure depicted in Fig. 2. Example 1 shows
how knowledge is propagated from Cwc into Ci via the com-
mon super-context Cf , and Example 2 shows how knowledge is
propagated from Cwn into Cf via the common sub-context Cwc.

Finally Example 3 shows how contradicting knowledge can co-
exist in different separated context.

Example 1. The following deduction shows how the subsump-
tion wc : WChamp v Player propagates from the FIFA WC
context Cwc to the Italian National League context Ci. Notice
that the result of this deduction, i.e., i : WChampwc v Playerwc,
in the context Ci is weaker than the premise as it holds only on
the set of players of the Italian National League. In other words,
the knowledge shifting from Cwc to Ci is limited by the domain
of interpretation of Ci.

(1) wc : WChamp v Player premise

(2) f : (WChamp v Player)@wc Pop, wc � f

(3) f : WChampwc v Playerwc by @

(4) f : WChampwc u >i v Playerwc u >i LReas

(5) f : (WChampwc v Playerwc)@i by @

(6) i : WChampwc v Playerwc Push, i � f

Example 2. The following deduction shows how wn :
Playerf v Pro (i.e., every football player mentioned in the
world news is a professional) propagates from Cwn to Cf , trough
the common sub-context Cwc.

(1) wn : Playerf v Pro premise

(2) wn : (Playerf v Pro)@wn Pop, wn � wn

(3) wn : Playerf v Prown by @

(4) wn : Playerf u >wc v Prown u >wc by LReas

(5) wc : Playerf v Prown Push, wc � wn

(6) f : Playerf u >wc v Prown u >wc Pop, wc � f

(7) f : Playerf u >wc v Prown LReas

Notice that we did not infer f : Playerf v Prown, i.e., that every
single player of football is understood as a professional player
in the world news, but the fact that this subsumption holds only
for the players of the FIFA world cup domain.

Example 3. Suppose that the Italian News context Cin con-
tains the facts that Rooney does not take part to the Italian
league in 2010, i.e., ¬>i(Rooney), and that he is not consid-
ered a good football player, i.e., ¬GoodPlayerf(Rooney). Sup-
pose also that the world news context Cwn contains the op-
posite evaluation, i.e., GoodPlayerf(Rooney). In the CKR of
Fig. 2, these two contradicting statements do not necessarily
lead to inconsistency. Indeed, to derive inconsistency one has
to find a context where to combine the two contradicting facts.
However, to transfer the facts wn : GoodPlayerf(Rooney)
and in : ¬GoodPlayerf(Rooney) into a common context, one
has to pass through Ci. But the fact that Rooney is not an
individual of Ci disables any inference about Rooney in Ci.
Model-theoretically we admit CKR models where RooneyIwn ,
RooneyIin .

4.3. Properties of Reasoning

With help of the ND calculus we will be able to formulate
and prove some interesting properties of reasoning with CKR
knowledge bases. We will first examine the propagation of
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(a) (b)

Figure 3: Basic knowledge propagation: (a) common super-context scheme; (b) common sub-context scheme

knowledge in CKR that is enabled by the qualified symbols.
We will show that it occurs only in contexts that are connected
by the coverage hierarchy. We will start by considering the ba-
sic cases of connected contexts.

Let us generalize the situation discussed in Example 1. Con-
sider the CKR K represented in Fig. 3 (a), composed of three
contexts Cd, Ce and Cf such that d � f and e � f. We will
call Cf a common super-context of Cd and Ce. It shows that the
mere existence of a common super-context enables communi-
cation from Cd to Ce.

Property 1 (Communication via a common super-context). In
every CKR K with two contexts Cd, Ce that share a common
super-context Cf , we have:

K ` d : A v B =⇒ K ` e : Ad v Bd

Proof. Proof in the ND calculus:

(1) d : A v B Premise

(2) f : Ad v Bd (= (A v B)@d) Pop, d � f

(3) f : Ad u >e v Bd u >e (= (Ad v Bd)@e) LReas

(4) e : Ad v Bd Push, e � f

Notice that in order to enable the communication between
Cd and Ce, the mere presence of a common super-context is re-
quired. This will work even if, as in Fig. 3 (a), the super-context
is empty. One may ask whether the common super-context Cf
is a “symmetric channel” which induces also the inverse com-
munication, i.e., does the subsumption Ad v Bd if entailed in Ce
propagate back to Cd in the form A v B. This is not the case,
it is proven by the counter model I, in which: ∆d ∩ ∆e = ∅,
∆f = ∆d ∪ ∆e, AId = ∆d and BId = ∅. By the conditions of
Definition 9 we have that AIe

d = BIe
d = ∅. Hence we have found

a model that satisfies e : Ad v Bd but not d : A v B.
If in a CKR K, Cf � Cd and Cf � Ce then we call Cf a

common sub-context of Cd and Ce. This situation is dual to
the previous case. We have already outlined this situation in
Example 2, and in general it is depicted in Fig. 3 (b). We will
see that to some extent communication between two contexts
is also induced by a common sub-context. In this case, how-
ever, the domain of the common sub-context comes into play
and effectively restricts the amount of information that can be
communicated.

Property 2 (Communication via a common sub-context). In
every CKR K with two contexts Cd, Ce that share a common
sub-context Cf , we have:

K ` d : A v B =⇒ K ` e : Ad u >f v Bd u >f

Proof. Again we prove the claim by the ND calculus:

(1) d : A v B Premise

(2) d : Ad v Bd (= (C v D)@d) Pop, d � d

(3) d : Ad u >f v Bd u >f (= (Ad v Bd)@f) LReas

(4) f : Ad v Bd Push, f � d

(5) e : Ad u >f v Bd u >f (= (Ad v Bd)@f) Pop, f � e

Therefore we see that the amount of communication is effec-
tively constrained by the domain of the common sub-context
Cf . We now show that the full amount of communication, as
much as in the case of common super-context, is not possi-
ble, i.e., the fact that A v B is entailed in Cd does not imply
Ad v Bd in Ce. Of course this is under the assumption that
there is no common super-context shared by Cd and Ce. The
claim is proved by a counterexample given by the following
interpretation I of the CKR K:

• ∆d = {x, y},
Id(A) = Id(Ad) = {x}, Id(B) = Id(Bd) = {x, y},
Id(>f) = {x}, Id(>e) = {x, y};

• ∆f = {x},
If(Ad) = If(Bd) = {x},
If(>d) = If(>e) = {x};

• ∆e = {x, z},
Ie(Ad) = {x, z}, Ie(Bd) = {x},
Ie(>f) = {x}, Ie(>d) = {x, z}.

Clearly, I satisfies Definition 9 and hence it is a model of K. But
on the other hand, AIe

d * BIe
d , that is to say, K 6|= e : Ad v Bd.

Analogously to the previous case, Cf can be seen as a com-
munication channel, in this case however Cf constitutes the “in-
tersection” of Cd and Ce and allows to pass only knowledge
within its domain, which is contained in both domains of Cd
and Ce.

We now proceed by showing how the two propagation pat-
terns described above, can be composed to define a general
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propagation pattern between any pair of contexts in a CKR
knowledge base that are connected. Two context with di-
mensions d and e are connected in K, if there is a sequence
d = d1, . . . ,dn = e, with n ≥ 1, and for all 1 ≤ i < n either
di ≺ di+1 or di � di+1. The sequence d1, . . . ,dn is called a path
connecting Cd and Ce. For any 1 ≤ i ≤ n, di is a minimum of
d1, . . . ,dn if one of the following conditions holds:

1. i = 1, and d1 ≺ d2

2. i = n, and dn−1 � dn

3. 1 < i < n and di−1 � di ≺ di+1.

If for two contexts Cd and Ce of K there exists no path that
connects them, they are called isolated contexts.

The following property shows that if two contexts Cd and Ce
are not directly covered one by another but instead connected
by a path of multiple contexts, then still subsumptions entailed
in Cd at least partially propagate into Ce (and vice versa). The
amount of information that is propagated is effectively con-
strained by the domains of those contexts which are minima
on the path that connects Cd and Ce.

Property 3. Given a CKR K with di1 , . . . ,dik being all the min-
ima of the path d1, . . . ,dn connecting Cd with Ce. Then

d : A v B ` e : Ad u
l

1≤ j≤k

>di j
v Bd u

l

1≤ j≤k

>di j

Proof. (Sketch.) The proof can be obtained by an iterative ap-
plication of the two Properties 1 and 2.

For instance, consider our example CKR depicted in Fig. 2.
If in the context of Italian news Cin it is asserted that all play-
ers of Inter Milan are considered good players, e.g., by the ax-
iom ∃playsForf .{Inter Milan} v GoodPlayer, this subsumption
propagates into Cwn as (∃playsForf .{Inter Milan})u>i u>wc v

GoodPlayerinu>iu>wc, as the contexts Ci (Italian league) and
Cwc (FIFA WC) are the two minima on the path connecting Cwn
to C∈. As a consequence this subsumption will certainly apply
in Cwn on all players that participate to both FIFA WC and the
Italian league.

On the other hand, if two contexts are not connected by any
path, they are totally independent. This is a simple consequence
of the following property.

Property 4. Let K = 〈M,C〉 be a CKR over 〈Γ,Σ〉 that is d-
satisfiable and for the context Cd ∈ C there is no other Ce ∈ C
with d ≺ e or e ≺ d. Let us construct K′ = 〈M,C \ {Cd}〉. Then
for any f ∈ DΓ, f , d, and for any DL formula φ over Σ we
have:

K |= f : φ ⇐⇒ K′ |= f : φ

Proof. (Sketch.) The property is proven by establishing a one-
to-one correspondence between the models of K and K′ (disre-
garding Cd):

• given a model I of K, a model I′ of K′ is constructed sim-
ply by taking I and deleting Id from it;

• given a model I′ of K′, a model I of K is constructed by
taking I′ and extending it with Id = 〈∅, ∅〉 (i.e., the inter-
pretation with empty domain), and by setting XIe

d = ∅ for
every concept/role X and for every e ∈ DΓ.

Therefore if If |= φ in every model of K, also I′f |= φ in every
model of K′ and vice versa.

We can find another justification of Property 4 by inspecting
the calculus rules in Table 3. Apart from the Bot rule, no other
rule enables transfer of consequence between context which are
not directly related in terms of coverage. The Bot rule is only
applicable if one context is inconsistent, therefore in fact no
transfer of knowledge may possibly occur between two uncon-
nected contexts that are consistent.

As an important consequence of Condition 4 of Definition 9
we will show that equality among individuals propagates across
contexts if at least one of the individuals involved is defined in
a common sub-context.

Property 5 (Propagation of equality). Given a CKR K over
〈Γ,Σ〉 with two contexts Cd, Ce sharing a common sub-context
Cf , and given two individuals a, b ∈ Σ, the following holds:

K ` d : a = b ∧ K ` f : >(a) =⇒ K ` e : a = b

Proof. The proof again in the ND calculus

(1) d : a = b Premise

(2) f : >(a) Premise

(3) d : >f (a) Pop, f � d

(4) d : >(a) LReas

(5) d : >d(a) Pop, d � d

(6) d : >d(b) From (1) and (5) by LReas

(7) f : a = b From (1), (5), (6) and f � d by Push

(8) e : a = b Pop, f � e

One of our desiderata in contextualized knowledge represen-
tation is certain inconsistency tolerance by the system. Incon-
sistency should not necessarily pollute whole CKR if it occurs
in one of the contexts. Let us analyze the propagation of in-
consistency in CKR. As a direct consequence of Property 4, we
have that inconsistency does not propagate to contexts which
are not connected with the inconsistent part of the system.

Property 6. Let Cd and Ce be any two isolated context of a
CKR K such that K is e-consistent, and for no context Cf and
for no individual a ∈ Σ we have K ` f : ⊥(a). Then:

K,d : > v ⊥ 0 e : > v ⊥

Also, inconsistency does not necessarily propagate from a
narrower context into a broader one, at least not until individu-
als come into play.
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Property 7. Let K be CKR such that for no context Cf we have
K ` f : ⊥(a) for any individual a ∈ Σ. Then for any two contexts
Cd and Ce of K such that d ≺ e we have:

K,d : > v ⊥ 0 e : > v ⊥

Proof. Consider a CKR K with two contexts Cd, Ce, d ≺ e, with
the only axiom > v ⊥ in Cd, and with Ce empty. The model I
in which Id = 〈∅, ∅〉 and Ie = 〈{x}, {> 7→ {x},⊥ 7→ ∅,>d 7→ ∅}〉

is indeed a model of K in which e : > v ⊥ is not entailed. The
property is now a direct consequence of the soundness of the
calculus.

Thus we see that allowing local models with empty domains
is an important preposition in order to minimize inconsistency
propagation. On the other hand, if the inconsistency appears in
a broader context Ce, it is pushed also into all contexts covered
by Ce. This is due to the fact that the empty domain of Ie makes
all domains under Ce necessarily empty. We can also directly
prove this by the CKR calculus.

Property 8. Given a CKR K with two contexts Cd and Ce such
that d ≺ e, we have:

K, e : > v ⊥ ` d : > v ⊥

Proof. First, we have K, e : > v ⊥ ` e : >d v ⊥ by LReas, and
consecutively K, e : > v ⊥ ` d : > v ⊥ by Push.

The inconsistency tolerance of a CKR knowledge base
reaches its limit as soon as individuals appear in one of the in-
consistent contexts. In such a case whole CKR becomes incon-
sistent.

Property 9. Let Cd and Ce be any contexts in a CKR K, we
have that:

K,d : >(a),d : > v ⊥ ` e : > v ⊥

Proof. By LReas we obtain K,d : >(a),d : > v ⊥ ` d : ⊥(a).
Consequently we have K,d : >(a),d : > v ⊥ ` e : > v ⊥ by
the Bot rule.

Model-theoretically speaking, if an individual occurs in an
inconsistent context, not even the local interpretation with
empty domain qualifies for a local model. Hence there is no
model for the CKR, because it requires a local model for every
context. In the calculus this situation is handled by the Bot rule,
which is the only rule applicable if there is an inconsistent con-
text with an individual present, and also it is the only rule which
propagates its conclusion arbitrarily, even to isolated contexts.

Finally, an inconsistent context with empty domain blocks
the communication. If Cd and Ce are connected through a path
that contains an inconsistent context Cf , then such a path does
not contribute to the transfer of knowledge between Cd and Ce.

Property 10. Given a CKR K with two contexts Cd and Ce such
that for each path d1, . . . ,dn connecting Cd and Ce there is 1 <
k < n such that K ` dk : > v ⊥, then for any two formulae φ, ψ
over Σ such that K ∪ {d : φ} is d-satisfiable, we have:

K,d : φ ` e : ψ ⇐⇒ K ` e : ψ

Proof. (Sketch.) Let Π be a proof of e : φ from K ∪ {d : φ}.
Let π = d1 : φ, . . . ,dn : ψ, where d1 = d, dn = e be the
path in Π that starts in the assumption node d : φ, it follows
the conclusions consecutively derived from d : φ, and finally
reaches e : ψ.

Observe first that the Bot rule was not applied anywhere on
the path π, because this would allow us to derive inconsistency
in d but we assumed that the contrary, i.e., that K ∪ {d : φ} is
d-satisfiable.

From the fact that the path π was constructed by rule applica-
tions, and all calculus rules apart from Bot only allow to derive
a consequence in a context directly related by the coverage, it
follows that d1, . . . ,dn is a path in the CKR K. From the as-
sumptions, at least for one 1 < k < n such that K ` dk : > v ⊥.
Therefore the subtree of Π rooted in d1 : φ can be replaced by
dk : φk since K ` dk : φk by LReas.

5. Decidability and Complexity

Decidability of CKR entailment is proved indirectly by em-
bedding CKR into a single DL knowledge base. To do this we
reuse the notion of embedding between DL knowledge bases as
previously defined in Sect. 4.1. First we need a vocabulary that
is robust enough to keep track of all semantic relations inside
a CKR knowledge base. Since each qualified symbol Xd may
have different meanings in different contexts, we need to intro-
duce one version Xe

d of the symbol per each context Ce. We
know from the semantics that non-qualified concept and role
symbols have the same meaning as if qualified with respect to
the context where they appear. In addition, also constants may
possibly have different meaning in different contexts, therefore
for each constant a we introduce a version ae for each context
Ce.

Definition 19 (Transformed vocabulary #(Γ,Σ)). Given a pair
of meta/object vocabularies 〈Γ,Σ〉, let ΣB = NB

C ] NB
R ] NB

I
be the base-vocabulary of Σ. Let us define a DL-vocabulary
#(Γ,Σ) = #NC ] #NR ] #NI such that:

1. #NC = {Ae
d | A ∈ NB

C ∧ d, e ∈ DΓ};

2. #NR = {Re
d | R ∈ NB

R∧d, e ∈ DΓ}∪{S
d,e,f
R | R ∈ NB

R∧d, e, f ∈
DΓ}, where S is some new symbol not appearing in Σ;

3. #NI = {ae | a ∈ NB
I ∧ e ∈ DΓ} ∪ {undef}, where undef is a

new symbol not appearing in Σ.

The role symbols of the form S d,e,f
R which we also added to

#NR are auxiliary and will be later used to maintain decidability
of the transformed knowledge base. In addition we have intro-
duced a new constant undef. This constant is needed because
some of the constants in CKR need not to be necessarily de-
fined in all contexts. This will be simulated by allowing some
of the constants in #NI to be equal to undef.

For each full dimensional vector d ∈ DΓ, we now define an
operator (·)#d which will be based on an embedding gd of Σ

into #(Γ,Σ).

Definition 20 (#d operator). Given a pair of meta/object vocab-
ularies 〈Γ,Σ〉, for every full dimensional vector d ∈ DΓ, (·)#d
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is defined as g∗d(·), where gd is an embedding from Σ to #(Γ,Σ)
defined as follows:

• gd(a) = ad for every individual a;
• gd(XfB ) = Xd

fB+d for every concept/role XfB ;
• Σc = Σ; Σe = ∅.

Observe that in this case the split of Σ into the internal part Σc

and the external part Σe is different: Σc = Σ and Σe = ∅. This is
in line with the fact that the single DL knowledge base which is
the result of the transformation has complete information about
all symbols in every context. That is, in terms of CKR we could
see the transformed knowledge base as if placed on top of all
contexts with respect to the coverage ≺. Using the (·)#d op-
erator we now transform a CKR knowledge base K into a DL
theory #(K) over #(Γ,Σ).

Definition 21 (Transformed CKR #(K)). For every CKR K over
〈Γ,Σ〉, let #(K) be a DL knowledge base over #(Γ,Σ) such that
for every individual a, concept A, role R, concept/role X (all
atomic), and for any full dimensional vectors d, e, f it contains
the following axioms:

1. >f
d v >

f
e for d ≺ e;

2. Ad
e v >

d
e ;

3. ∃Rd
e .> v >

d
e and > v ∀Rd

e .>
d
e ;

4. add the following three axioms5 (if the indicated condition
is true):
a) >d

d u {a
e} v {ad} if d ≺ e;

b) {ad} v {ae, undef} if d ≺ e;
c) ¬>d

d(undef);
6. Xd

d ≡ Xe
d if d ≺ e;

7. Ad
f ≡ Ae

f u >
d
d if d ≺ e;

8. if d ≺ e, add the following 4 axioms:
a) Id

d ◦ Re
f ◦ Id

d v Rd
f and Rd

f v Re
f ,

b) Id
d ◦ Re

f v S d,e,f
R and S d,e,f

R ◦ Id
d v Rd

f ;
9. φ#d for all φ ∈ K(C) and d = dim(C).

The axioms added to #(K) in the previous definition corre-
spond step-by-step to the conditions of Definition 9; in each
step we add axioms to deal with the respective condition. Step 5
is missing, as we do not deal with incomplete symbols directly;
as we previously explained incomplete symbols are a kind of
syntactic sugar, and therefore all symbols XdB occurring in Ce
are represented by Xe

dB+e in this construction as they have the
same meaning. In Step 4, the first two axioms (a) and (b) di-
rectly correspond to Condition 4 of Definition 9, axiom (c) is
needed to assure that the newly added constant undef will not
be identified with any individual of the original CKR. In Step 8,
the pair of axioms (a) actually serves to maintain Condition 8
of Definition 9; the second pair (b) added in this step has no in-
fluence on the semantics of #(K), but it serves to maintain #(K)
decidable, as further discussed below.

Thanks to the transformation we are now able to check d-
satisfiability of a CKR knowledge base K by checking for satis-
fiability/entailment in #(K). This is formally established by the
following two lemmata.

5Please note that in our previous report [25] we mistakenly introduced a
simpler version of this step that, most notably, did not involve nominals. This
simpler construction is not correct.

Lemma 3. If K is d-satisfiable then #(K) is satisfiable.

Proof. (Sketch.) As K is d-satisfiable, there exists a model I of
K with ∆d , ∅. Let us construct a DL interpretation I =

〈
∆, ·I

〉
over #(Γ,Σ) as follows:

1. ∆ =
⋃

d∈DΓ
∆d ∪ {xundef} where xundef is a new element not

occurring in ∆d for all d ∈ DΓ;
2. (ad)I = aId if aId is defined otherwise (ad)I = xundef for

every individual a and for every d ∈ DΓ;
undefI = xundef;

3. (Ad
e )I = CId

e for every atomic concept C of Σ and for every
d, e ∈ DΓ;

4. (Rd
e )I = RId

e for every atomic role R of Σ and for every
d, e ∈ DΓ;
(S d,e,f

R )I = (Id
d )I ◦ (Re

f )I for every role R and for all d, e, f ∈
DΓ;

Clearly ∆ , ∅. It remains to prove that all the axioms of #(K)
are satisfied by I. Depending on the type of axiom, this largely
a consequence of Definition 9 or Lemma 1. Full proof is listed
in the appendix.

Lemma 4. If there is d such that #(K) 6|= >d
d v ⊥, then K is

d-satisfiable.

Proof. (Sketch.) Given a CKR K let I be a model of #(K) such
that (>d

d)I is not empty. This model exists since by hypothesis
#(K) 6|= >d

d v ⊥. Let us construct the CKR model I = {Id}d∈DΓ
,

where for every d ∈ DΓ, Id = 〈∆d,Id〉 is defined as follows:

1. ∆d = (>d
d)I;

2. aId = (ad)I if (ad)I , undefI otherwise aId is undefined
for every individual a;

3. (XfB )Id = (Xd
fB+d)I for every atomic concept/role XfB .

It remains to prove that the conditions of Definition 9 are sat-
isfied. This follows from the construction of #(K), for the full
proof see the appendix.

For any given CKR K, #(K) is a SROIQ knowledge base.
As discussed in Sect. 2, reasoning in SROIQ is known to be
decidable only under certain restrictions. Since the RIA intro-
duced in Step 8 of the construction #(K) spoil the regularity of
the role hierarchy of #(K), we rely on RBox stratification. Par-
ticularly, in Step 8, in order to maintain the stratification of the
RBox after the pair of axioms (a) is introduced, we add also the
pair (b) that is based on the requirements for stratified RBoxes
[15]. Thus the stratification of #(K) is not broken in Step 8.
Since a new role S d,e f

R is used in each iteration of this step, this
has no influence on the semantics of other symbols. This is an
important step in order to avoid introduction of undecidability
solely by the reduction of K into #(K). As undecidability may
still be caused by complex dependencies in the role hierarchy
of K, therefore we will use stratification of #(K) as a sufficient
condition to distinguish cases when this is not true. We sum-
marize the findings of this section in the following theorem.

Theorem 2. If #(K) is stratified, then checking if K |= d : φ is
decidable with the complexity upper-bound of 2NExpTime.
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Proof. (Sketch.) The decidability follows directly from Lem-
mata 3, 4 and from the fact that #(K) is stratified. The com-
plexity upper-bound follows from the fact that the reduction is
polynomial, more precisely, cubic. Given a CKR K of size m
it produces a SROIQ knowledge base #(K) of size O(m3). An
important fact to establish this result is that the number of di-
mensions in K is assumed to be a fixed constant. This is justified
by relevant research on properties of context space (e.g., Lenat
[11] suggests that twelve dimensions should be enough). Also
that the number of contexts n is always smaller than the size
of the knowledge base m, as when a new context is introduced,
axioms are added to M which is part of K. Full proof is listed
in the appendix.

6. Related Work

The theoretical foundations of contextualized knowledge
representation were laid down by McCarthy [8]. It is based on
the idea to represent logically and reason also about the meta
knowledge that constraints the validity of the knowledge rep-
resented in the first place (object knowledge). McCarthy pro-
posed a unique language for both kinds of knowledge, namely
quantified modal logic. This approach allows for great repre-
sentation power, but easily leads to undecidability. Therefore
in CKR we avoid mixing the meta knowledge and the object
knowledge arbitrarily; the meta knowledge semantically influ-
ences the object knowledge, but not the other way around.

Among the most influential works in contextualized knowl-
edge representation is undoubtedly the one of Lenat [11], who
proposed a structured knowledge base organized in units called
micro theories, which in our framework correspond to contexts.
Lenat also proposed dimensional parameters to be attached to
the micro theories, and investigated on the types of dimensions
and the structure of the dimensional space. The paper describes
the basic set of twelve dimensions that should be satisfactory
for most applications. This theoretical framework was imple-
mented in the CYC system [26] which is a successful commer-
cial product. The CKR framework shares notable similarities
with this approach, in that the knowledge is organized in con-
texts, which are arranged in a dimensional space. However, the
propagation of knowledge between contexts is implemented on
a different basis in CKR, there are no qualified symbols in the
Lenat’s approach [11]. In addition, CKR is fully compatible
with SROIQ (and therefore OWL 2), so that knowledge avail-
able via the Semantic Web can be directly stored and retrieved
in a contextualized way.

Perceiving the need for some means of representing context
in the Semantic Web, Both aRDF [19] and Context Description
Framework [5] extend RDF triples with an n-tuple of qualifi-
cation attributes with partially ordered domains. Apart from
CKR being on top of OWL 2, it differs from these approaches
by qualifying whole theories and not each formula separately.
This approach is more compact as usually the context is shared
a by group of formulae.

Straccia et al. [20] enable RDFS graphs to be annotated with
values from a lattice. The semantics of the framework is based
on an interpretation structure that is common in multi-valued

logics. This effectively restricts the dimensional structure to
a complete lattice, as for every two contexts there must be a
meet (∧) and a join (∨) and also global bottom (⊥) and top (>)
must exist. Contrary to this, the CKR semantics permits any
directed acyclic graph, even an unconnected one. This is inten-
tional, as we want to permit certain dimensions to be modeled
based on exiting ontologies. The location dimension may for
instance be based on the Geonames6 ontology. Also, if for in-
stance a believer dimension is added, a separated dimensional
space may be necessary as no knowledge propagation between
believers is desired. Also the top class (rdfs : Resource) has
the same semantics in all contexts, and all constants are equally
defined in all contexts – in CKR this is controlled by the context
hierarchy – and no equivalent of qualified symbols is available
in this framework.

Another extension of RDFS to cope with context was pro-
posed by Guha et al. [3] and further developed in Bao et al.
[27]. A new predicate isin(c, φ) is used to assert that the triple φ
occurs in the context c. A set of operators to combine contexts
(c1 ∧ c1, c1 ∨ c2, ¬c) and to relate contexts (c ⇒ c2, c → c2)
is defined, making the approach particularly suited for manipu-
lating contexts. Unfortunately, no sound and complete axioma-
tization or decision procedure was provided so far.

The contextual DL ALCALC [6] is a multi-modal extension
of the ALC DL with the contextual modal operator [C]rA rep-
resenting “all objects of type A in all contexts of type C reach-
able from the current context via relation r.” In both ALCALC
and CKR contextual structure is formalized in a meta language
separated from the object language used to describe the domain.
The main difference between CKR and ALCALC is that CKR
is more expressive in the object language (SROIQ vs. ALC)
but less expressive in the contextual assertions, allowing quali-
fication of knowledge only w.r.t. individual contexts rather than
context classes as inALCALC. The effect of this choice is that
in CKR the complexity of reasoning is the same as in the object
language (i.e., 2NExpTime) while in ALCALC the complexity
jumps to 2ExpTime compared to ExpTime for ALC. On the
other hand, this comparison is only preliminary, and it will be
more accurate to compare the two frameworks w.r.t. the same
local language. We plan to investigate an ALC-based CKR as
future work.

The Metaview approach [7] enriches OWL ontologies with
logically treated annotations and it can be used to model con-
textual meta data similarly to CKR albeit on per-axiom basis.
The main difference is that in the Metaview approach the con-
textual level has no direct implications on ontology reasoning,
but it makes possible to reason about the ontology or even data.
Also a contextually sensitive query language MQL is provided.
The examples presented in this paper concentrate especially on
modeling provenance of data and associated confidence, and the
framework seems well suited for this purpose. Our research is
concerned with other aspects of context, e.g., to break down the
data-set into smaller well manageable units, knowledge reuse,
etc. A context-aware query language was also designed and im-

6http://www.geonames.org/
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plemented for CKR [21]. It would be interesting to further com-
pare the frameworks. And also, from the point of view of CKR,
to cope with the goals suggested by the Metaview approach, for
instance we can try modeling different confidence-levels of data
by means of a new dimension.

Related to our approach is also the data tailoring technique
that was described by Tanca [28]. Here, the contextual structure
is captured by a “context dimension tree”, which is in fact a
refinement of dimensional vectors into a tree form. Top level
dimensions are thus specialized into sub-dimensions, and only
leaf configurations represent possible contexts associated with
different views of the data. This serves to provide the user with
an appropriate view, based on her context. Multiple dimensions
relevant for this application are suggested, such as time, topic
of interest, but also interface (e.g. human or machine). The
dimension tree is combined with a set of constraints to limit
the valid combinations which serves to filter out some of the
irrelevant configurations. The notable parallel of this approach
to ours is that a structured dimensional space is used to break
down the data set into relevant portions.

On the semantic level, CKR is also related to approaches
such as multi-context systems [16], distributed description log-
ics [17], E-connections [29], but especially approaches con-
cerned with semantic importing such as package-based descrip-
tion logics (P-DL) [18] and semantic imports [30]. In P-DL
imports of symbols are implemented by relating the elements
of interpretation domains with one-to-one mappings. The work
of Pan et al. [30] goes even closer to our approach by assum-
ing that the interpretation domains of distinct ontologies may
overlap. In both cases additional semantic constraints are in-
troduced to support various desired properties of the importing
paradigm.

In our current work, we use similar techniques, however we
use them to meet different goals. Borrowing the viewpoint of
the semantic imports paradigm, we may observe that imports
are implemented between the contexts of CKR, however, to
various extents depending on the relation of the two contexts
in question. If the contexts are directly related by the coverage,
all information from the narrower context is accessible in the
broader context using a technique similar to importing. On the
other hand, the narrower of the two contexts may only access
part of the other context’s information. If two contexts are re-
lated indirectly, then the importing is even more limited. Thus
we can see that similar techniques are being used in order to
characterize a complex scenario of information reuse in accor-
dance with the underlaying ideas of the AI theories of context
which is carefully crafted in the semantic conditions asserted in
CKR models.

In addition we would like to mention also the work done on
ontology versioning and semantic difference in description log-
ics [31, 32]. While there are certain obvious similarities be-
tween ontology versioning and contextual representation, most
notably in both cases there are multiple knowledge bases that
one has to handle and reason with, the motivation and also the
problems one faces in these two approaches are different. In on-
tology versioning we face the problem of knowledge evolution,
there are multiple versions of the ontology and we are interested

in characterization of the changes (the notion of semantic dif-
ference), which would allow to store and reason with the differ-
ent versions efficiently. That is, at any time one wants to draw
conclusions from a particular revision of interest. In contextual
representation on the other hand, we are dealing with knowl-
edge chunks which are not evolving versions of one another,
but rather one is complementary to each other. When we draw
conclusions from one of them, they are possibly influenced by
the other chunks, but not in the sense of outdated/updated in-
formation. Although implemented differently in each of the ap-
proaches, the most interesting similarity is probably the need to
break down the information into multiple units and to be able
to combine it efficiently when it is relevant.

7. Conclusion

With increasing numbers of ontologies and data-sets being
published on the Web under the initiatives such as Semantic
Web and Linked Open Data, the need of having a way to con-
sider, process, and take advantage also of the context associated
with knowledge becomes more and more apparent. Multiple
approaches to deal with context have been proposed; we have
reviewed a number of them in the previous section. It is not yet
the case that a commonly acknowledged representation frame-
work and methodology to deal with context on the Semantic
Web has been found.

Building on the foundations of contextual knowledge rep-
resentation [8, 16, 10, 11] we have proposed Contextualized
Knowledge Repository (CKR) – a context-aware representation
framework specifically tailored for the Semantic Web. CKR of-
fers several distinctive features. The knowledge base is struc-
tured into units called contexts with contextual attributes explic-
itly assigned; this allows to group axioms and data that are as-
sumed to hold under similar circumstances, and improves topi-
cal organization and maintenance of the knowledge base. Such
approach is also well in line with the context as a box paradigm
which opens the possibility to exploit the existing body of re-
search on contextual representation [9, 10] in applications of
the framework.

Contextual attributes have structured value-sets which results
into a hierarchical organization of contexts in a dimensional
space. This makes the relations between contexts explicit and
allows to maintain contexts with different levels of generality.
Part of the knowledge expressed in a context has local valid-
ity, but part may as well influence related contexts. CKR al-
lows knowledge to be lifted between contexts with so called
qualified concepts and roles. This provides a significant level
of control to the knowledge engineer who may exactly specify
which symbols have only local meaning and which are reused
between contexts. The complexity of the lifting mechanism is
hidden from the user as it is automatically implemented by the
semantics; there is no need to express lifting axioms directly.

The knowledge inside each context is fully expressed using
the standard Semantic Web languages. The CKR framework in
this paper uses the SROIQ DL which corresponds to OWL 2,
but an RDFS-based version has been developed as well [22].
The meta knowledge is gathered in a separate knowledge base
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which is expressed in the same language as well. Therefore
adopting the framework by a user familiar with the standard
Semantic Web languages should not be difficult.

In this paper we have described syntax and semantics of CKR
built on top of the SROIQ DL. We have provided a sound and
complete ND calculus that characterizes logical consequence
in CKR, particularly focusing on cross-context entailment (i.e.,
the transfer of knowledge between contexts). We have also
studied basic properties of cross-context entailment in CKR.
Finally, we have showed that reasoning with CKR is decid-
able with computational complexity same as for SROIQ (i.e.,
within the class 2NExpTime).

In the future, we plan to investigate the formal properties of
CKR based on more tractable fragments of OWL 2, e.g., OWL-
Horst [33]. We have already developed a prototype on top of
the Sesame 2 triple store which uses RDFS as local language
[22]. In the prototype, contexts have been naturally imple-
mented with named graphs [34]. We also plan to study tableaux
based reasoning techniques for CKR which would allow to de-
velop a reasoner for the DL-based CKR, and also to investigate
on additional meta level constructs (such as for instance context
classes) and novel applications of meta level reasoning.

In order to evaluate the practical applicability of CKR we
are currently undergoing an experimental study in which we
model and populate a CKR knowledge base of non trivial size.
We have chosen the domain of football tournaments and more
specifically the different editions of FIFA WC. This domain
was broken down into a number of contexts, some of them
more general such as the generic contexts sports and foot-
ball, some more specific such as the particular editions of
FIFA WC (e.g., CFIFA WC,2010,South Africa), but also as specific
as the stages of each tournament, and further down to single
matches (e.g., CFIFA WC Match 42,2010,South Africa). In every con-
text we put axioms that are relevant to this context. For in-
stance the axioms GoalKeeper v Player, Midfielder v Player
and Player v Sportsmansports belong to the generic context
of football as they serve to model various player positions
in the game and the fact that all football players are sports-
men. On the other hand the axioms TeamA v ¬TeamB and
TeamAtTeamB v TeamFIFA WC belong to the context of a par-
ticular match of the FIFA WC, and serve to assure that there
are two teams involved in this match, that these two teams are
distinct and are both part of the respective edition of FIFA WC.
The knowledge base was populated with data available from
Freebase, DBPedia, and other sources on the Web, and then
stored in our prototype implementation of CKR. In this study,
we aim to evaluate the representational aspects, that is, how
easy is to model with the CKR framework, whether the result-
ing modeling is efficient and practical, etc., but also on the com-
putational aspects such as the efficiency of query answering.
We plan to publish our results in near future.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Lemma 1. If I and I′ comply with f : Σ → Σ′,
then, for every concept C, CI = f ∗(C)I

′

, for every
role R, RI = f ∗(R)I

′

, and for every axiom φ, I |= φ
iff I′ |= f ∗(φ).

Let us have two DL-alphabets Σ and Σ′, a DL-embedding
f : Σ → Σ′ and two respective DL-interpretations I and I′

complying with f . From Definition 15 this implies the follow-
ing four facts which we denote by (†):

1. aI = f (a)I
′

, for all individuals a of Σ such that aI is de-
fined;

2. XI = f (X)I
′

, for all symbols X ∈ Σc;
3. AI = f (A)I

′

∩ f (>)I
′

, for all concepts A ∈ Σe;
4. RI = f (R)I

′

∩ f (>)I
′

× f (>)I
′

, for all roles R ∈ Σe.

Let us first realize how the domain ∆I of I is embedded into
the domain ∆I

′

of Σ′. Later in the proof we will denote this
observation by (‡):

∆I = >I = f (>)I
′

⊆ ∆I
′

The second equation is due to > ∈ Σc and from the fact that I
and I′ comply with the embedding f . The other two equations
trivially follow from I and I′ being DL-interpretations.

We will now prove that for every concept or role X it holds
that XI = f ∗(X)I

′

. The proof is by structural induction on X:

if X = A ∈ Σc, then f ∗(A)I
′

=

= f (A)I
′

by definition of f ∗

= AI from (†,2)

if X = A ∈ Σe, then f ∗(A)I
′

=

= f (A) u f (>)I
′

by the definition of f ∗

= f (A)I
′

∩ f (>)I
′

by the interpretation of u
= (A)I from (†,3)

if X = ¬C, then f ∗(¬C)I
′

=

= f (>) u ¬ f ∗(C)I
′

by definition of f ∗

= f (>)I
′

∩ ¬ f ∗(C)I
′

by interpretation of u
= f (>)I

′

∩ (∆I
′

\ f ∗(C)I
′

) by interpretation of ¬
= f (>)I

′

\ f ∗(C)I
′

due to f (>)I
′

⊆ ∆I
′

= ∆I \ f ∗(C)I
′

from (‡)
= ∆I \CI by induction
= ¬CI by interpretation of ¬

if X = C u D, then f ∗(C u D)I
′

=

= f ∗(C) u f ∗(D)I
′

by definition of f ∗

= f ∗(C)I
′

∩ f ∗(D)I
′

by interpretation of u
= CI ∩ DI by induction
= C u DI by interpretation of u
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if X = ∃R.C and R ∈ Σc, then f ∗(∃R.C)I
′

=

= ∃ f (R). f ∗(C)I
′

by definition of f ∗ and R ∈ Σc

= {x ∈ ∆I
′

| ∃y (x, y) ∈ f (R)I
′

∧ y ∈ f ∗(C)I
′

} by interpreta-
tion of ∃

= {x ∈ ∆I
′

| ∃y (x, y) ∈ f (R)I
′

∧ y ∈ CI} by induction
= {x ∈ ∆I

′

| ∃y (x, y) ∈ RI ∧ y ∈ CI} from (†,2)
= {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI} by RI ⊆ ∆I × ∆I and

∆I ⊆ ∆I
′

= ∃R.CI by definition of ∃

if X = ∃R.C and R ∈ Σe, then f ∗(∃R.C)I
′

=

= f (>) u ∃ f (R). f ∗(C)I
′

by definition of f ∗ and R ∈ Σe

= f (>)I
′

∩ ∃ f (R). f ∗(C)I
′

by interpretation of u
= ∆I ∩ ∃ f (R). f ∗(C)I

′

from (‡)
= ∆I ∩ {x ∈ ∆I

′

| ∃y (x, y) ∈ f (R)I
′

∧ y ∈ f ∗(C)I
′

} by
interpretation of ∃

= ∆I ∩ {x ∈ ∆I
′

| ∃y (x, y) ∈ f (R)I
′

∧ y ∈ CI} by induction
= {x ∈ ∆I | ∃y (x, y) ∈ f (R)I

′

∩ ∆I × ∆I ∧ y ∈ CI} since
CI ⊆ ∆I

= {x ∈ ∆I | ∃y (x, y) ∈ f (R)I
′

∩ f (>)I
′

× f (>)I
′

∧ y ∈ CI}
from (‡)

= {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI} from (†,4)
= ∃R.CI by interpretation of ∃

if X = ∃R.Self and R ∈ Σc, then f ∗(∃R.Self)I
′

=

= ∃ f (R).SelfI
′

by definition of f ∗ and R ∈ Σc

= {x ∈ ∆I
′

| (x, x) ∈ f (R)I
′

} by interpretation of ∃R.Self
= {x ∈ ∆I

′

| (x, x) ∈ RI} by (†,2)
= {x ∈ ∆I | (x, x) ∈ RI} due to RI ⊆ ∆I × ∆I and ∆I ⊆ ∆I

′

= ∃R.SelfI by definition of ∃R.Self

if X = ∃R.Self and R ∈ Σe, then f ∗(∃R.Self)I
′

=

= f (>) u ∃ f (R).SelfI
′

by the definition of f ∗ with R ∈ Σe

= f (>)I
′

∩ {x ∈ ∆I
′

| (x, x) ∈ f (R)I
′

} by interpretation of u
and ∃R.Self

= ∆I ∩ {x ∈ ∆I
′

| (x, x) ∈ f (R)I
′

} from (‡)
= {x ∈ ∆I | (x, x) ∈ f (R)I

′

} as ∆I ⊆ ∆I
′

by (‡)
= {x ∈ ∆I | (x, x) ∈ f (R)I

′

∩ ∆I × ∆I}

= {x ∈ ∆I | (x, x) ∈ f (R)I
′

∩ f (>)I
′

× f (>)I
′

} from (‡)
= {x ∈ ∆I | (x, x) ∈ RI} from (†,4)
= ∃R.SelfI by definition of ∃R.Self

if X = >nR.C and R ∈ Σc, then f ∗(>nR.C)I
′

=

= >n f (R). f ∗(C)I
′

by definition of f ∗ and R ∈ Σc

= {x ∈ ∆I
′

| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ f ∗(C)I
′

} inter-
pretation of >n

= {x ∈ ∆I
′

| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ CI} by induction
= {x ∈ ∆I

′

| ∃1≤i≤n yi (x, yi) ∈ RI ∧ yi ∈ CI} by (†,2)
= {x ∈ ∆I | ∃1≤i≤n yi (x, yi) ∈ RI ∧ yi ∈ CI} as RI ⊆ ∆I×∆I,

∆I ⊆ ∆I
′

= >nR.CI by interpretation of >n

if X = >nR.C and R ∈ Σe, then f ∗(>nR.C)I
′

=

= f (>) u>n f (R). f ∗(C)I
′

by definition of f ∗ and R ∈ Σe

= f (>)I
′

∩ {x ∈ ∆I
′

| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ f ∗(C)I
′

}

by u, >n
= ∆I ∩ {x ∈ ∆I

′

| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ f ∗(C)I
′

} by
(‡)

= {x ∈ ∆I| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ f ∗(C)I
′

} as ∆I ⊆

∆I
′

by (‡)
= {x ∈ ∆I

′

| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∧ yi ∈ CI} by induction
= {x ∈ ∆I| ∃1≤i≤n yi (x, yi) ∈ f (R)I

′

∩ ∆I×∆I∧ yi ∈ CI} as
CI ⊆ ∆I

= {x ∈ ∆I| ∃1≤i≤n yi (x, yi) ∈ f (R)I
′

∩ f (>)I
′

× f (>)I
′

∧ yi ∈

CI} by (‡)
= {x ∈ ∆I | ∃1≤i≤n yi (x, yi) ∈ RI ∧ yi ∈ CI} by (†,4)
= >nR.CI by definition of >n

if X = {a}, then f ∗({a})I
′

=

= { f (a)}I
′

by definition of f ∗

= { f (a)I
′

} by interpretation of nominals
= {aI} from (†,1)
= {a}I by interpretation of nominals

if X = R ∈ Σc, then f ∗(R)I
′

=

= f (R)I
′

by definition of f ∗

= RI by (†,2)

if X = R ∈ Σe, then f ∗(R)I
′

=

= f (I) ◦ f (R) ◦ f (I)I
′

by definition of f ∗

= {(u, v) | ∃ (x, y) ∈ f (R)I
′

∧ (u, x), (v, y) ∈ f (I)I
′

} by inter-
pretation of ◦

= {(x, y) | (x, y) ∈ f (R)I
′

∧ (x, x), (y, y) ∈ f (I)I
′

} as II
′

is
identity on f (>)I

′

= {(x, y) | (x, y) ∈ f (R)I
′

∩ f (>)I
′

× f (>)I
′

} as II
′

is identity
on f (>)I

′

= {(x, y) | (x, y) ∈ f (R)I} from (†,4)
= f (R)I

if X = R ◦ S , then f ∗(R ◦ S )I
′

=

= f ∗(R) ◦ f ∗(S )I
′

by definition of f ∗

= f ∗(R)I
′

◦ f ∗(S )I
′

by interpretation of ◦
= RI ◦ S I by induction
= R ◦ S I by interpretation of ◦

Let us now continue with the second proposition of the
lemma, i.e., that for every axiom φ, I |= φ if and only if
I′ |= f ∗(φ). We must consider all the cases corresponding to
the different forms of φ:

1. φ = C(a), f ∗(φ) = f ∗(C)( f (a)): from (†,1) we have
aI = f (a)I

′

and we have proved above that CI = f ∗(C)I
′

.
Therefore I |= C(a) iff aI ∈ CI iff f (a)I

′

∈ f ∗(C)I
′

iff
I′ |= f ∗(C)( f (a));

2. φ = R(a, b), f ∗(φ) = f (R)( f (a), f (b)): from (†,1) we have
aI = f (a)I

′

, bI = f (b)I
′

and from (†,4) we have RI =

f (R)I
′

. The rest of the proof is analogous to the previous
case;

3. φ = ¬R(a, b), f ∗(φ) = ¬ f (R)( f (a), f (b)): since aI =

f (a)I
′

, bI = f (b)I
′

and RI = f (R)I
′

, we have I |=
¬R(a, b) iff (aI, bI) < RI iff ( f (a)I

′

, f (b)I
′

) < f (R)I
′

iff
I′ |= ¬ f (R)( f (a), f (b));

4. φ = C v D, f ∗(φ) = f ∗(C) v f ∗(D): as we have already
proved CI = f ∗(C)I

′

and DI = f ∗(D)I
′

. Therefore I |=
C v D iff CI ⊆ BI iff f ∗(C)I

′

⊆ f ∗(D)I
′

iff I′ |= f ∗(C) v
f ∗(D);
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5. φ = R v S , f ∗(φ) = f ∗(R) v f (S ): we have proved
that RI = f ∗(R)I

′

. If S ∈ Σc, we have from (†,2) that
S I = f (S )I

′

. The proof of this case is analogous to the
previous case.
If S ∈ Σe then from (†,4) and from (‡) we have S I =

f (S )I
′

∩ ∆I×∆I. For this case, let us first prove the if
part: suppose I′ |= f ∗(R) v f (S ) and therefore f ∗(R)I

′

⊆

f (S )I
′

. Then RI = RI ∩ ∆I×∆I = f ∗(R)I
′

∩ ∆I×∆I ⊆

f (S )I
′

∩ ∆I×∆I = S I. Which amounts to I |= R v S .
The only-if part: Suppose I |= R v S , that is, RI ⊆ S I.
It follows that f ∗(R)I

′

= RI ⊆ S I = f (S )I
′

∩ ∆I×∆I ⊆

f (S )I
′

.
6. φ is a = b, i.e., f ∗(φ) is f (a) = f (b): we know from (†,1)

that aI = f (a)I
′

and bI = f (b)I
′

. Hence I |= a = b iff
aI = bI iff f (a)I

′

= f (b)I
′

iff I′ |= f (a) = f (b);
7. φ is a , b, i.e., f ∗(φ) is f (a) , f (b): as a consequence of

the previous case we have I |= a , b iff I 6|= a = b iff
I′ 6|= f (a) = f (b) iff I′ |= f (a) , f (b).

Appendix A.2. Proof of Theorem 1
Theorem 1 (Soundness and Completeness). For
every CKR K over 〈Γ,Σ〉, for every d ∈ DΓ, and for
every formula φ over Σ, K ` d : φ if and only if K |=
d : φ.

Appendix A.2.1. Soundness.
We ought to prove that if K ` d : φ then also K |= d : φ. We

will prove this by showing that all calculus rules are sound. For
each rule ρ, which in general is of the form:

[Bn+1] [Bn+m]
α1 · · · αn αn+1 · · · αn+m

α
ρ

we have to prove that if K, Bi ` αi holds for each i, n <
i ≤ n + m, then it is also true that K, {α1, . . . , αn+m} |= α. More
formally, we have to prove the implication:

K, Bn+1 ` αn+1 ∧ · · · ∧ K, Bn+m ` αn+m

=⇒ K, {α1, . . . , αn+m} |= α

This has to be proved separately for each of the calculus rules,
as listed in Table 3. Due to the rules with discharges, the proof
is done by structural induction. The base of the induction is
formed by the cases of the rules without discharges. The induc-
tive step comprises the remaining cases, in which the induction
hypothesis allows us to derive K, Bi |= αi from K, Bi ` αi, for
each premise αi with discharges Bi of the rule ρ in question,
because the proof respective to this subproof is a sub-tree of the
overall proof of the conclusion of ρ. The proof for each type of
rule follows:

LReas: let I be a model of K∪{d : φ1, . . . ,d : φn}. This implies
that it also satisfies Id |=DL φi, for every i, 1 ≤ i ≤ n. From
the assumptions of the LReas rule, {φ1, . . . , φn} |=DL φ (i.e.,
the conclusion is only derived by this rule when this en-
tailment universally holds). From monotonicity of DL this
implies Id |=DL φ and hence also I |= d : φ;

Top: this rule has three independent forms. The first form
assumes d � e on the meta knowledge and concludes
f : Ad v >e. Let Cd and Ce be two contexts of K such
that d � e and let I be any model of K. By Condi-
tion 2 of Definition 9 we have AIf

d ⊆ >
If
d . By Condition 1

of the same definition >If
d ⊆ >

If
e . Together this implies

If |=DL Ad v >e and hence I |= f : Ad v >e.

The second form of the Top rule concludes f : ∃Rd.> v >d
without any premises. We therefore have to show that I |=
f : ∃Rd.> v >d, i.e., that the domain of the binary relation
RIf

d is under >If
d , in every model I of every CKR K. This

is a direct consequence of Condition 3 of Definition 9. The
case of the third form of the Top rule is exactly analogous
except it involves the range of RIf

d ;

Bot: there is no model of a CKR K in which d : ⊥(a) the
premise of the Bot rule is true. This is due to the fact that
⊥(a) is not satisfied in any DL-interpretation, not even in
the special one with empty domain. Therefore, trivially,
it is true that the conclusion e : > v ⊥ is satisfied by all
models of K;

Push: let I be any model of K ∪ {e : φ@d, e : >d(a1), . . . , e :
>d(an)} where a1, . . . , an are all constants occurring in φ.
This implies that Ie |=DL >d(ai), for every i, 1 ≤ i ≤ n,
and therefore ai ∈ >

Ie
d . This implies ai ∈ >

Id
d and hence

ai ∈ ∆d (if d ≺ e it follows from Definition 9, if d = e
it is trivial). This assures that φ is defined in Id, as all
constants occurring in it are defined. Since d � e, from
Lemma 2 we know that Id and Ie comply with the embed-
ding respective to @d, and since Ie |=DL φ@d, it follows
from Lemma 1 that Id |=DL φ. Hence I |=: d : φ;

Pop: let I be a model of K ∪ {d : φ}. This implies I |= d : φ,
i.e., Id |=DL φ. From d � e and from Lemmata 1, 2 this
implies Ie |=DL φ@d and hence I |= e : φ@d;

aE: the rule assumes that K,d : >(a) ` d : > v ⊥, for any a
that does not appear in K, and under this assumption we
have to prove that K |= d : > v ⊥. Let us assume the
contrary, i.e., K 6|= d : > v ⊥. In this case, there must
be a model I of K in which >Id * ⊥Id . Then there is
x ∈ >Id (such that x < ⊥Id ). Since a does not appear in
K, if we construct I′ by extending I with the assignment
aIf = x for all f ∈ DΓ such that x ∈ ∆f (i.e., certainly for
f = d), then I′ |= K as it satisfies all axioms thereof. In
addition I′ |= d : >(a) as aId = x ∈ >Id = >I

′
d . From the

assumption of the rule, and from the induction hypothesis
K,d : >(a) |= d : > v ⊥ and since I′ |= K ∪ {d : >(a)}, it
must be the case that >Id = >I

′
d ⊆ ⊥I

′
d = ⊥Id which is a

contradiction;

tE: the rule assumes that K,d : C(x) ` e : φ and K,d :
D(x) ` e : φ. By structural induction we have K,d :
C(x) |= e : φ and K,d : D(x) |= e : φ (from the in-
duction hypothesis). Under these assumptions we need to
prove K,d : C t D(x) |= e : φ. Let I be any model of
K ∪ {d : C t D(x)}. In this model, Id |=DL C t D(x). By
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basic properties of DL-interpretations it must either hold
Id |=DL C(x) or Id |=DL D(x). Let us assume the first case.
Since in this case I is a model of K ∪ {d : C(x)}, from
the fact that K,d : C(x) |= e : φ we get I |= e : φ.
The in the other case analogously I |= e : φ due to
K,d : D(x) |= e : φ;

∃E: the rule assumes K, {d : R(x, y),d : C(y)} ` e : φ. By
induction hypothesis we have K, {d : R(x, y),d : C(y)} |=
e : φ. Under this assumption we ought to prove K,d :
∃R.C(x) |= e : φ. Let I by any model of K∪ {d : ∃R.C(x)}.
This implies that there must be an element x′ ∈ ∆d such
that xId = x′ and x′ ∈ ∃R.CId . From the properties of
DL-interpretations, there must also by y′ ∈ ∆d such that
〈x′, y′〉 ∈ RId and y′ ∈ CId . Since the individual y does not
appear anywhere in K, yId is undefined. Let us construct
I′ by extending I with the assignment yIf = y′ for all
f ∈ DΓ such that y′ ∈ ∆f . Since all axioms of K and also
all conditions of Definition 9 are satisfied by I′, and in
addition also K |= d : R(x, y), and K |= d : C(y), then in
fact I′ |= K∪ {d : R(x, y),d : C(y)}. From the assumptions
we now know that I′ |= e : φ. Since the individual y does
not occur in φ, this implies that I |= e : φ as well, because
the only difference between I and I′ is the interpretation
of y;

(>n)E: the case of this rule is analogous to the previous case.
From the fact that I |= K ∪ {d : >nR.C(x)} we are able
to find n distinct elements y′1, . . . , y

′
n ∈ ∆d with the re-

quired properties. We then extend the model I by as-
signing these elements to the individuals y1, . . . , yn respec-
tively, and prove that the extended model entails e : φ us-
ing the induction hypothesis. As all the constants in ques-
tion are new, this also implies I |= e : φ.

Appendix A.2.2. Completeness.
We now prove the completeness of the axiomatization, i.e.,

that K |= d : φ implies K ` d : φ. Relying on the fact, that for
any DL-formula φ over Σ the problem of entailment is reducible
to (un)satisfiability, it suffices to prove the statement:

If K is unsatisfiable then K ` d : > v ⊥.

This is justified as follows. If K |= d : φ then there exists a
CKR K′ (constructed by the respective reduction). The state-
ment above shows that in this case we are able to prove by the
calculus that K′ is d-inconsistent. Since this holds for any for-
mula φ, the calculus is complete. We give an indirect proof by
proving the contrapositive of the statement:

If K 0 d : > v ⊥ then K is d-satisfiable.

The proof is a variation of the Henkin construction of a model
based on constants (see e.g. [24]). We will show that a model of
K can be constructed by gradually enriching K with additional
assertions that are compatible with it. Once this is exhaustingly
done, the model can be constructed from the enriched version
of K. Since a CKR need not to have a finite model (because

SROIQ knowledge bases need not to have finite models) we
will also enrich the object alphabet Σ with an infinite set of
constants Ξ so that all elements in the interpretation domain of
the model that is being constructed are covered by constants.
Thus the model will be encoded inside the enriched version of
K.

Since in each CKR model, a local modelIf is totally encoded
inside each Ie such that f ≺ e, to construct any model, we need
to pay special attention the so called roof contexts of K, i.e.,
those which have no super-context. We will denote this set of
contexts by E. Finally, in the following definition we construct
the CKR KE by enriching K as discussed above. Later on we
will show how model of K is encoded within it.

Definition 22 (KE). Given a CKR over 〈Γ,Σ〉, let E = {e ∈ DΓ |

(∀f ∈ DΓ) e � f}. Let Ξ =
⋃

e∈E Ξe, where for each e ∈ E,
Ξe = {xe

i |i ≥ 0} is a countably infinite set of new constants not
appearing in Σ. Let us inductively construct KE as follows:

K∅ = K ∪ {d : >(xd
0)};

given F ⊂ E and e ∈ E such that e < F, if KF ` e : > v ⊥ then
KF∪{e} = KF , otherwise KF∪{e} in constructed in two steps:

step 1: we add witnesses for all existential statements. Let
φ1, φ2, . . . be an exhaustive enumeration of all assertions of the
form ∃R.C(a) or >nR.C(a) in the vocabulary Σ extended with
Ξe. Note that R is possibly an inverse role and C is any complex
concept. We inductively construct KF,m for m ≥ 0 as follows:

KF,0 = KF

KF,m+1 =



KF,m ∪ {e : ¬∃R.C t ∃R.({xe
k} uC)(a)}

if φm+1 is of the form ∃R.C(a)

KF,m ∪ {e : ¬>nR.C t>nR.({xe
k, . . . , x

e
k+n−1}uC)(a)}

if φm+1 is of the form >nR.C(a)

where xe
k, . . . , x

e
k+n−1 are constants of Ξe not appearing in KF,m.

The result of this step is KF,∗ =
⋃

m≥0 K
F,m;

step 2: we saturate KF∪{e} with respect to all atomic assertions
on the constants of Σ extended with with Ξe. Let φ1, φ2, . . . be
a complete enumeration of assertions of the form A(a), R(a, b),
or a = b, where A and R are are atomic concepts and roles of
Σ, and a and b are constants of Σ or Ξe such that KF,∗ ` e : >(a)
and KF,∗ ` e : >(b). We inductively construct KF,∗

m for m ≥ 0, as
follows:

KF,∗
0 = KF,∗

KF,∗
m+1 =

KF,∗
m ∪ {e : φ} if KF,∗

m ∪ {e : φm+1} is e-consistent

KF,∗
m ∪ {e : ¬φm+1} otherwise

where by ¬ a = b we mean the non-equality assertion a , b for
any a and b. The result of this step is KF∪{e} =

⋃
m≥0 K

F,∗
m .

Thus at the end of the construction given in the previous def-
inition we reach the knowledge base KE . The following two
lemmata show that KE is d-consistent. This is an important
step in order to guarantee that the model of K encoded in KE is
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valid. The first lemma shows that adding existential witnesses
in the construction has no influence at the ` consequence at all.
The second lemma then proves that starting from d-consistent
knowledge base K, we end up with a d-consistent knowledge
base KE .

Lemma 5. For every assertion φ in Σ that does not contain
any occurrence of xe

i , for every F ⊆ E, and for every f ∈ DΓ:
KF ` f : φ iff KF,∗ ` f : φ.

Proof. The “only if” direction trivially follows due to mono-
tonicity of the language. As KF ⊆ KF,∗, everything that is
proved from KF is also proved from its superset KF,∗.

The “if” direction. Suppose KF,∗ ` f : φ. We first show, that
there is a finite subset of S of KF,∗ such that S ` f : φ. This
is due to the length of the proof of f : φ from KF,∗ is finite and
in each step we use exactly one inference rule which derives its
conclusion from a finite number of premises. Let us denote the
set of all premises used by all the inference rules in the proof
by P. Obviously the set P is finite and P ` f : φ. The formulae
in P are either from KF,∗ or were derived as the proof goes on.
Let S = {φ ∈ P|φ ∈ KF,∗}. Since all the formulae which we
discarded are consecutively derived as the proof goes on, then
also S ` f : φ, and by construction S ⊆ KF,∗.

Since for every finite subset of KF,∗ there is a KF,m that con-
tains such a subset, we have that KF,m ` f : φ, for some m; let us
denote this deduction by Π. If m = 0 then KF,m = KF and we are
done. If m > 0 we will show that in this case also KF,m−1 ` f : φ.
We distinguish two cases:

case 1: KF,m = KF,m−1 ∪ {e : ¬∃R.C t ∃R.({xe
k} u C)(a)}. Then

starting from Π we construct a deduction of f : φ from KF,m−1:

(1) e : ¬∃R.C t ∃R.C(a) KF,m−1 LReas
(2) e : ¬∃R.C(a) (2) assumption
(3) e : ¬∃R.C t ∃R.({xe

k} uC)(a) (2) from (2) by LReas
(4) f : φ (2),KF,m−1 from (3) by Π

(5) e : ∃R.C(a) (5) assumption
(6) e : R(a, xe

k) (6) assumption
(7) e : C(xe

k) (7) assumption
(8) e : ¬∃R.C t ∃R.({xe

k} uC)(a) (6), (7) from (6,7) by LReas
(9) f : φ (6), (7),KF,m−1 from (8) by Π

(10) f : φ (5),KF,m−1 from (5,9) by ∃E
disc. (6) and (7)

(11) f : φ KF,m−1 from (1,4,10) by tE
disc. (2) and (5)

case 2: KF,m = KF,m−1 ∪ {e : ¬>nR.C t>nR.({xe
k, . . . , x

e
k+n−1} u

C)(a)}. As before, starting from Π, we construct a deduction of

f : φ from KF,m−1:

(1) e : ¬>nR.C t>nR.C(a) KF,m−1 LReas
(2) e : ¬>nR.C(a) (2) assumption
(3) e : ¬>nR.C t>nR.({xe

k , . . . , x
e
k+n−1} uC)(a) (2) from (2) by LReas

(4) f : φ (2),KF,m−1 from (3) by Π

(5) e : >nR.C(a) (5) assumption
(6i) e : R(a, xe

k+i) (6i) assumption
(0 ≤ i < n)

(7i) e : C(xe
k+i) (7i) assumption

(0 ≤ i < n)
(8i j) e : xe

i , xe
j (8i j) assumption

(0 ≤ i < n, i , j)
(9) e : ¬>nR.C t>nR.({xe

k , . . . , x
e
k+n−1} uC)(a)
(6i), (7i), (8i)0≤i, j<n from (6,7) by LReas

(10) f : φ (6i), (7i), (8i)0≤i, j<n,K
F,m−1 from (9) by Π

(11) f : φ (5),KF,m−1 from (5,10) by (>n)E
disc. (6i, 7i, 8i j)

(12) f : φ KF,m−1 from (1,4,11) by tE
disc. (2) and (5)

In both cases KF,m−1 ` f : φ. Since this holds for any m > 0 it
follows by induction that KF ` f : φ.

Lemma 6. For every F ⊆ E, KF is d-consistent.

Proof. The proof is by induction on F. In the base case, F = ∅.
From the construction K∅ = K ∪ {d : >(xd

0)}, where xd
0 does not

appear in K. Suppose the contrary, i.e., K,d : >(xd
0) ` > v ⊥.

As xd
0 does not appear in K, by application of the aE rule we

have K ` > v ⊥ which is a contradicts the assumption that K is
d-consistent. Therefore it must be case that K∅ is d-consistent.

In the induction step, F ⊆ E is nonempty. Hence there is
some e ∈ F. Let us denote by G = F \ {e}. From the induction
hypothesis KG is d-consistent. We first prove by induction on
m that KG,∗

m is d-consistent. For m = 0, KG,∗
0 = KG,∗ which d-

consistent, as follows from Lemma 5: KG 0 > v ⊥, and KG ` φ
iff KG,∗ ` φ, therefore KG,∗ 0 > v ⊥.

Now suppose that KG,∗
m is d-consistent, and let us show that

KG,∗
m+1 is d-consistent. Suppose by contradiction that KG,∗

m+1 is not
d-consistent. By definition this means that both KG,∗

m ∪ {e : φ}
and KG,∗

m ∪ {e : ¬φ} are not d-consistent. Let Π1 and Π2 be two
deductions of d : > v ⊥ from KG,∗

m ∪ {e : φ} and KG,∗
m ∪ {e : ¬φ}

respectively. We will show that there exists also deduction of
d : > v ⊥ from KG,∗

m . We distinguish three cases:
case 1: if φ is A(a)

(1) e : >(a) KG,∗
m by construction, for evey constant x occurring

in φ we have KG,∗
m ` e : >(x)

(2) e : A t ¬A(a) KG,∗
m from (1) by LReas

(3) e : A(a) (3) assumption
(4) d : > v ⊥ (3),KG,∗

m From (3) by Π1
(5) e : ¬A(a) (5) assumption
(6) d : > v ⊥ (5),KG,∗

m From (5) by Π2

(7) d : > v ⊥ KG,∗
m From (2), (4), and (6) by tE, disc. (3) and (5)
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case 2: if φ is R(a, b)

(1) e : >(a) KG,∗
m by construction, for evey constant x

occurring in φ, KG,∗
m ` e : >(x)

(2) e : >(b) KG,∗
m as for (1)

(3) e : (∃R.{b} t ¬∃R.{b})(a) KG,∗
m from (1) and (2) by LReas

(4) e : ∃R.{b}(a) (4) assumption
(5) e : R(a, b) (4) from (4) by LReas
(6) d : > v ⊥ (4),KG,∗

m From (5) by Π1
(7) e : ¬∃R.{b}(a) (7) assumption
(8) e : ¬R(a, b) (7) from (7) by LReas
(9) d : > v ⊥ (7),KG,∗

m From (7) by Π2

(10) d : > v ⊥ KG,∗
m From (3), (6), and (9) by tE,

disc. (4) and (7)

case 3: if φ is a = b

(1) e : >(a) KG,∗
m by construction, for all constants x occurring

in φ we have KG,∗
m ` e : >(x)

(2) e : >(b) KG,∗
m as for (1)

(3) e : {b} t ¬{b}(a) KG,∗
m from (1) and (2) by LReas

(4) e : {b}(a) (4) assumption
(5) e : a = b (4) from (4) by LReas
(6) d : > v ⊥ (4),KG,∗

m From (5) by Π1
(7) e : ¬{b}(a) (7) assumption
(8) e : ¬a = b (7) from (7) by LReas
(9) d : > v ⊥ (7),KG,∗

m From (7) by Π2

(10) d : > v ⊥ KG,∗
m From (3), (6), (9) by tE, disc. (4) and (7)

We therefore conclude that if KG,∗
m+1 ` d : > v ⊥, then KG,∗

m `

d : > v ⊥, which is a contradiction because by the induction
hypothesis KG,∗

m is d-consistent. We have now showed that KG,∗
m

is d-consistent for all m ≥ 0. From the construction KG,∗
m ⊆

KG,∗
m+1, and therefore KF =

⋃
m≥0 K

G,∗
m is d-consistent too.

We have showed that KE is d-consistent. As the next step,
in order to prove that a model of K is encoded within it, we
will show that for any ABox assertion φ of the form C(a) or
R(a, b) we are able to verify by the CKR calculus if φ holds or
if ¬φ holds. Recall that we have assured this by construction
of KE for all atomic assertions. For non-atomic assertions it is
shown in the following lemma. Combined with the fact that KE

contains a constant for every domain element of the model, we
will subsequently be able to retrieve and construct the model.

Lemma 7. Given a CKR K over 〈Γ,Σ〉, and KE constructed as
in Definition 22. Let C and R be a possibly complex concept
and a possibly inverse role over Σ, and let a, b any individuals
of Σ such that KE ` e : >(a) and KE ` e : >(b). Then for any
e ∈ DΓ:

1. if KE ` e : >(x) for all individuals x in C, then either
KE ` e : C(a) or KE ` e : ¬C(a);

2. either KE ` e : R(a, b) or KE ` e : ¬R(a, b).

Proof. The proof is by structural induction C and R:

1. C = A is atomic: then the lemma follows directly from the
construction of KE ;

2. C = ¬D: by induction either KE ` e : D(a) or KE ` e :
¬D(a), which implies either KE ` e : ¬¬D(a) or KE `

e : ¬D(a) by LReas, that is, either KE ` e : ¬C(a) or
KE ` e : C(a);

3. C = F u G: suppose KE 0 e : F u G(a). Then KE 0
e : F(a) or KE 0 e : G(a) due to LReas. By induction
hypothesis KE ` e : ¬F(a) or KE ` e : ¬G(a). Finally
KE ` e : ¬(F uG)(a) by LReas;

4. C = F tG: suppose KE 0 e : F tG(a). This implies that
KE 0 e : F(a) and KE 0 e : G(a) by LReas. By induction
hypothesis we have KE ` e : ¬F(a) and KE ` e : ¬G(a)
which implies KE ` e : ¬(F tG)(a) by LReas;

5. C = ∃R.D: from the construction of KE we have KE ` e :
¬∃R.D t ∃R.({xe} u D)(a) for some xe.
From the construction of KE we know that either KE ` e :
φ or KE ` e : ¬φ for any assertion φ. Since R(a, xe) and
D(xe) are assertions, one of the three cases must occur:

• KE ` e : R(a, xe) and KE ` e : D(xe): in this case
KE ` e : ∃R.D(a) directly by LReas;

• KE ` e : ¬R(a, xe): in this case KE ` ¬∃R.({xe} u

D)(a) and since we have KE ` e : ¬∃R.Dt∃R.({xe}u

D)(a) then KE ` e : ¬∃R.D, both steps by LReas;

• KE ` e : ¬D(xe): in this case again KE ` ¬∃R.({xe} u

D)(a) and hence KE ` e : ¬∃R.D by LReas;

6. C = >nR.D: analogously to the previous case;
7. C = ∀R.D: can be rewritten as ¬∃R.¬D;
8. C = 6nR.D: can be rewritten as ¬>n+1R.D;
9. C = ∃R.Self: by construction we have that KE ` e : R(a, a)

or that KE ` e : ¬R(a, a). By LReas this implies that
KE ` e : ∃R.Self(a) or KE ` e : ¬∃R.Self(a);

10. C = {x} is a nominal: by construction we have KE ` e :
a = x or KE ` e : ¬a = x. By LReas this gives us
KE ` e : {x}(a) or KE ` e : ¬{x}(a);

11. R = S − is an inverse role: by induction we have either
KE ` e : S (b, a) or KE ` e : ¬S (b, a), by LReas we get
either KE ` e : R(a, b) or KE ` e : ¬R(a, b).

The next step of the proof is the construction of a CKR inter-
pretation from KE in that will then be shown to be a model of
K. The basic idea is to take the constants that appear in KE as
the interpretation domain. Relying on the previous lemma, we
would then construct the interpretation of of each concept C in
Ce by querying the calculus whether e : C(a) holds or not for
each constant a, and analogously for roles. A minor problem
with this approach is that in a CKR interpretation, if two con-
stants are equal, they are interpreted by the same element of the
interpretation domain.

Therefore we have to modify the nave construction as out-
lined above, and add just one domain element for all constants
that are equal. We will achieve this by introducing an equiva-
lence relation on constants and use the equivalence classes as
domain elements.

Definition 23 (∼e). Let K be a CKR over 〈Γ,Σ〉 and let E, Ξ,
and KE be as constructed in Definition 22. For each e ∈ DΓ,
the binary relation ∼e on the set of constants of Σ extended with
Ξ is defined as follows:

a ∼e b iff KE ` e : a = b
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The equivalence class of ∼e respective to a constant x will be
denoted by [x]e, i.e., [x]e = {y|KE ` e : x = y}.

We now show that ∼e is defined exactly on the set of con-
stants that are relevant with respect to Ce. And that it is really
an equivalence relation on this set. This will justify the con-
struction of the model that will then follow.

By constants relevant to Ce we mean all constants a such that
the calculus proves KE ` e : >(a). The following lemma shows
that for any such constant there is the respective equivalence
class of ∼e is nonempty. This ensures that we will find a domain
element to interpret each constant when we construct the model
below.

Lemma 8. Given a CKR K over 〈Γ,Σ〉, its extension KE , and
the relation ∼e as defined in Definitions 22 and 23, then for any
constant a of Σ and for any e ∈ DΓ the following holds:

[a]e , ∅ ⇐⇒ KE ` e : >(a)

Proof. If [a]d , ∅ then there is a b such that KE ` e : a = b,
which implies that KE ` e : >(a). Vice versa, if KE ` e : >(a)
then by LReas we have KE ` e : a = a. Therefore by definition
a ∈ [a]e, which implies [a]e , ∅.

To justify the existence of equivalence classes we must also
show that ∼e is an equivalence relation.

Lemma 9. The relation ∼e is an equivalence relation on the set
{a | KE ` e : >(a)} .

Proof. Equivalence is defined as a reflexive, symmetric, and
transitive binary relation. Let us show that ∼e has all these prop-
erties:

• reflexivity: KE ` e : >(a) implies KE ` e : a = a, which
implies that a ∼e a;

• symmetry: a ∼e b implies KE ` e : a = b, by LReas this
implies that KE ` e : b = a, and therefore b ∼e a;

• transitivity: a ∼e b and b ∼e c imply KE ` e : a = b and
KE ` e : b = c. By LReas we have that KE ` e : a = c,
and therefore also a ∼e c.

Finally we construct a model I of K, using the equivalence
classes of ∼e as domain elements for each local interpretation
and retrieving the interpretation of concepts and roles from KE

by the CKR calculus.

Definition 24 (Model construction). Given a CKR K over
〈Γ,Σ〉, given KE , and the equivalence relations ∼e for each
e ∈ DΓ as defined in Definitions 22 and 23, let us construct
an interpretation I = {Ie}e∈DΓ

where for each e ∈ DΓ, the local
interpretation Ie =

〈
∆e, ·

Ie
〉

is defined as follows:

∆e = {[x]e | K
E ` e : >(x)}

aIe =

 [a]e if KE ` e : >(a)

undefined otherwise

AIe = {[x]e | K
E ` e : A(x)}

RIe = {〈[x]e, [y]e〉 | K
E ` e : R(x, y)}

for any constant, atomic concept, and atomic role a, A, R. For
complex concepts and roles the interpretation is inductively de-
fined as given in Table 1.

We first prove that complex concepts and roles are well de-
fined with respect to the CKR calculus, that is, any ABox as-
sertion is satisfied by the constructed model if and only if it is
proved by the calculus.

Lemma 10. Given a CKR K over 〈Γ,Σ〉, and given KE and I
as constructed in Definitions 22 and 24, then for all e ∈ DΓ, all
constants a, b, all complex concepts C, and all possibly inverse
roles R of Σ the following holds:

• [a]e ∈ CIe iff KE ` e : C(a);

• 〈[a]e, [b]e〉 ∈ RIe iff KE ` e : R(a, b).

Proof. By structural induction:

1. C = A is atomic: this case follows directly from the con-
struction;

2. C = ¬D: [a]e ∈ (¬D)Ie iff [a]e ∈ ∆e \DIe iff KE ` e : >(a)
and KE 0 e : D(a) (first from the construction, second
from the induction hypothesis) iff KE ` e : >(a) and KE `

e : ¬D(a) (from Lemma 7) iff KE ` e : ¬D(a) (by LReas);
3. C = FuG: [a]e ∈ (FuG)Ie iff [a]e ∈ FIe and [a]e ∈ GIe iff

KE ` e : F(a) and KE ` e : G(a) (by induction hypothesis)
if KE ` e : F uG(a) (by LReas);

4. C = F tG: [a]e ∈ (F tG)Ie iff [a]e ∈ FIe or [a]e ∈ GIe iff
KE ` e : F(a) or KE ` e : G(a) (by induction hypothesis)
iff KE ` e : F tG(a) (by LReas);

5. C = ∃R.D: [a]e ∈ (∃R.D)Ie iff for some [b]e 〈[a]e, [b]e〉 ∈

RIe and [b]e ∈ DIe iff for some b we have KE ` e : R(a, b)
and KE ` e : D(b) (by the construction and induction hy-
pothesis) iff KE ` e : ∃R.D(a) (by LReas);

6. C = >nR.D: analogously to the previous case;
7. C = ∀R.D: can be rewritten as ¬∃R.¬D;
8. C = 6nR.D: can be rewritten as ¬>n+1R.D;
9. C = ∃R.Self: [a]e ∈ (∃R.Self)Ie iff 〈[a]e, [a]e〉 ∈ RIe

iff KE ` e : R(a, a) (from the construction) iff KE ` e :
∃R.Self(a) (by LReas);

10. C = {b}: [a]e ∈ {b}Ie iff [a]e = [b]e iff a ∼e b iff KE ` e :
a = b (by definition of ∼e) iff KE ` e : {b}(a);

11. R is atomic: this case follows directly from the construc-
tion;

12. R = S − is an inverse role: 〈[a]e, [b]e〉 ∈ RIe iff 〈[b]e, [e]e〉 ∈

S Ie iff KE ` e : S (b, a) (by induction hypothesis) iff KE `

e : R(a, b) (by LReas).

The last lemma that we need before we prove that I is a
model of K is the following one which shows that the inter-
pretation of constants match between Ie and If for constants
defined in ∆d.

Lemma 11. If [a]e , ∅ and e ≺ f, then [a]e = [a]f .
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Proof. Let us prove that [a]e ⊆ [a]f : if b ∈ [a]e then KE ` e :
a = b (by the construction), then also KE ` f : a = b (by Pop),
which finally gives us b ∈ [a]f (again by the construction).

Vice versa, let us prove that [a]f ⊆ [a]e: if b ∈ [a]f then
KE ` f : a = b from the construction of ∼f . We have assumed
[a]e , ∅, hence by Lemma 8 we get K ` e : >(a), which gives
us K ` f : >e(a) by Pop. Since KE ` f : a = b, we get
K ` f : >e(b) by LReas, which finally allows us to apply Push
at KE ` f : a = b and thus derive KE ` e : a = b and hence from
the construction of ∼e we have b ∈ [a]e.

We will now prove that I is a CKR model for KE , by showing
that all conditions of Definition 9 are satisfied. Note that for
sake of clarity in the following enumeration we will keep the
same notation as in Definition 9 (i.e., the previously bound d is
now any d ∈ DΓ):

1. (>d)If ⊆ (>e)If if d ≺ e: [x]f ∈ (>d)If iff KE ` f : >d(x).
Since KE ` f : >d v >e by LReas, we have that KE ` f :
>e(x), which implies that [x]f ∈ (>e)If

2. (Cf)Id ⊆ (>f)Id : [x]d ∈ (Cf)Id iff KE ` d : Cf(x). Since
KE ` d : Cf v >f by LReas, we have that KE ` d : >f(x),
which implies that [x]d ∈ (>f)Id .

3. (Rf)Id ⊆ (>f)Id × (>f)Id : If 〈[x]d, [y]d〉 ∈ (Rf)Id , then
KE ` d : Rf(x, y). Furthermore we have that KE ` d :
> v ∀Rf .>f , and KE ` d : ∃Rf .> v >f , which implies
that KE ` d : >f(x) and KE ` d : >f(y). This implies that
〈[x]d, [y]d〉 ∈ (>f)Id .

4. if d ≺ e, and aIe ∈ ∆d then aIe = aId . [a]e ∈ ∆d iff
there is a b, such that [b]d = [a]e, and [b]d ∈ ∆d. By
Lemma 11 we have that [b]d = [b]e which implies that
[b]e = [a]e. This implies that KE ` e : a = b, and therefore
that KE ` d : a = b, which implies [b]d = [a]d. Summing
up, aIe = [a]e = [b]d = [a]d = aId .

5. (XdB )Ie = (XdB+e)Ie : Let X be a concept C. [x]e ∈ CdB , iff
KE ` e : CdB (x). Since KE ` e : CdB ≡ CdB+e, we have
that KE ` e : CdB (x) iff KE ` e : CdB+e(x), which holds iff
[x]e ∈ CdB+e. An analogous argument can be done if X is
a role symbol.

6. (Xd)Ie = (Xd)Id if d ≺ e. Let X be a concept symbol C.
[x]e ∈ (Cd)Ie iff KE ` e : Cd(x) iff KE ` d : Cd(x) iff
[x]e ∈ (Cd)Id . An analogous argument can be done if X is
a role symbol.

7. (Cf)Id = (Cf)Ie ∩ ∆d, if d ≺ e: [x]d ∈ (Cf)Id iff KE `

d : Cf(x) iff KE ` e : >d u Cf(x) iff KE ` e : >d and
KE ` e : Cf(x) iff [x]e ∈ (Cf)Id and [x]e ∈ (>d)Id iff
[x]e ∈ (Cf)Id ∩ ∆d iff [x]d ∈ (Cf)Id ∩ ∆d.

8. (Rf)Id = (Rf)Ie ∩ (∆d × ∆d), if d ≺ e The same argument
as the previous point.

9. Id |= φ for all d : φ ∈ KE . Consider the four different
axioms:

(a) φ is C(a): in this case KE ` d : C(a), therefore [a]d ∈

CId follows from Lemma 10;
(b) φ is R(a, b) and φ is ¬R(a, b): by construction
〈[a]d, [b]d〉 ∈ RId or 〈[a]d, [b]d〉 < RId ;

(c) φ is C v D: if [x]d ∈ CId , then KE ` d : C(x) by
Lemma 10. Since in this case KE ` d : C v D by
LReas we have that KE ` d : D(x) and therefore that
[x]d ∈ DId again by Lemma 10;

(d) φ is R1 ◦ · · · ◦ Rn v R: if 〈[x]d, [y]d〉 ∈ (R1 ◦

· · · ◦ Rn)Id then there must be [z1]d, . . . , [zn−1]d such
that 〈[x]d, [z1]d〉 ∈ RId

1 , 〈[z1]d, [z2]d〉 ∈ RId
2 , . . . ,

〈[zn−1]d, [y]d〉 ∈ RId
n . From the construction we

have KE ` d : R1(x, z1), KE ` d : R2(z1, z2),
. . . , KE ` d : Rn(zn−1, y). Since in this case also
KE ` d : R1 ◦ · · · ◦ Rn v R than by LReas we
have KE ` R(x, y) and therefore 〈[x]d, [y]d〉 ∈ R.
Please note that this holds also in case that any of
R,R1, . . . ,Rn is an inverse role.

We have just showed that I is a model of K. During the
construction of KE (Definition 22) we have added the formula
d : >(xd

0) into KE , therefore by LReas we have KE ` d : >(xd
0).

By the construction of the model I (Definition 24), this implies
[xd

0] ∈ ∆d. Therefore K is d-consistent.

Appendix A.3. Proof of Lemma 3
Lemma 3. If K is d-satisfiable then #(K) is satisfi-
able.

As K is d-satisfiable, there exists a model I be a model of K
with ∆d , ∅. Let us construct a DL interpretation I =

〈
∆, ·I

〉
over #(Γ,Σ) as follows:

1. ∆ =
⋃

d∈DΓ
∆d ∪ {xundef} where xundef is a new element not

occurring in ∆d for all d ∈ DΓ;
2. (ad)I = aId if aId is defined otherwise (ad)I = xundef for

every individual a and for every d ∈ DΓ;
undefI = xundef;

3. (Ad
e )I = CId

e for every atomic concept C of Σ and for every
d, e ∈ DΓ;

4. (Rd
e )I = RId

e for every atomic role R of Σ and for every
d, e ∈ DΓ;
(S d,e,f

R )I = (Id
d )I ◦ (Re

f )I for every role R and for all d, e, f ∈
DΓ;

First of all it is apparent from the construction that ∆ , ∅.
It remains to prove that I satisfies all axioms of #(K) as given
in Definition 21. The satisfaction of the axioms introduced in
items 1–3 and 5–7 follows directly from the construction and
from the corresponding condition of I being a CKR-model
(Definition 9). Let us now show the satisfaction of the remain-
ing axioms (items 4, 8, and 9).

The first type of axioms added in item 4 is>d
du{a

e} v {ad} for
any individual a and for any two d, e ∈ DΓ. Let x ∈ (>d

du{a
e})I,

that is, x ∈ (>d
d)I and x = (ae)I. Notice that x , xundef because

x ∈ (>d
d)I = >

Id
d = ∆d and the construction implies xundef < ∆d.

Altogether this implies that aIe = (ae)I is defined in I and also
aIe ∈ ∆d = (>d

d)I. From Condition 4 of the CKR model this
implies that x = aIe = aId and therefore x ∈ ({ad})I and hence
the axiom is satisfied.

The second type of axioms added in item 4 is {ad} v

{ae, undef} for any individual a and for any two d, e ∈ DΓ. That

25



is, we have to show that either (ad)I = (ae)I of (ad)I = undefI.
If aId is defined, then from Condition 4 of CKR models we
have aId = aIe and hence from the construction (ad)I = (ae)I.
If aId is undefined, then directly from the construction (ad)I =

undefI.
The last type of axioms added in item 4 is ¬>d

d(undef) for
any d ∈ DΓ. This follows directly from the construction of I as
undefI = xundef < (>d

d)I = ∆d.
The first type of axioms introduced in item 8 is Id

d ◦Re
f ◦ Id

d v

Rd
f for any role R and for any d, e, f ∈ DΓ with d ≺ e. Let us

first realize that (Id
d )I = IId

d , that is, it is the identity relation
on ∆d. Hence (Id

d ◦ Re
f ◦ Id

d )I = (Re
f )I ∩ (∆d × ∆d). The fact

that this set is a subset of (Rd
f )I follows as a consequence of the

construction of I and Condition 8 of CKR models.
The second type of axioms introduced in item 8 is Rd

f v Re
f

for any role R and for any d, e, f ∈ DΓ with d ≺ e. Similarly to
the previous case, Condition 8 of CKR models gives us RId

f =

RIe
f ∩ (∆d × ∆d) and from the construction of I it follows that

(Rd
f )I = RId

f = RIe
f ∩ (∆d × ∆d) ⊆ RIe

f = (Re
f )I.

In addition, step 8 (b) introduces two new axioms of thew
form Id

d ◦ Re
f v S d,e,f

R and S d,e,f
R ◦ Id

d v Rd
f for each role R

and for any d, e, f ∈ DΓ with d ≺ e. The first axiom is triv-
ially satisfied due to the construction of I which implies that
(S d,e,f

R )I = (Id
d )I ◦ (Re

f )I. Similarly for the second axiom, if
x ∈ (S d,e,f

R ◦ Id
d )I then x ∈ (Id

d ◦ Re
f ◦ Id

d )I and since we have
already proven that I |= Id

d ◦ Re
f ◦ Id

d v Rd
f then x ∈ (Rd

f )I.
Finally item 9, that is, the fact that I satisfies also the axioms

φ#d, φ ∈ K(Cd), is a consequence of the fact that (·)#d is defined
on the basis of an embedding of Σ into #(Γ,Σ), and that each pair
of interpretations Id of Σ and I of #(Γ,Σ) complies with this
embedding. Then this item is a direct consequence of Lemma 1.

Appendix A.4. Proof of Lemma 4
Lemma 4. If there is a d such that #(K) 6|= >d

d v ⊥,
then K is d-satisfiable.

Given a CKR K let I be a model of #(K) such that >d
d is not

empty. This model exists since by hypothesis #(K) 6|= >d
d v ⊥.

Let us construct the CKR model I = {Id}d∈DΓ
, where for every

d ∈ DΓ, Id = 〈∆d,Id〉 is defined as follows:

1. ∆d = (>d
d)I;

2. aId = (ad)I if (ad)I , undefI otherwise aId is undefined
for every individual a;

3. (Xd′B )Id = (Xd
d′B+d)I for every atomic concept/role Xd′B .

We show that I is a model of K. By construction we have
that there is a d such that ∆d is not empty. Let us show that all
the conditions of Definition 9 are satisfied by I.

1. If d ≺ e, then I |= >f
d v >

f
e. This implies that (>f

d)I ⊆
(>f

e)I, which implies (>d)If ⊆ (>e)If .
2. I |= Cd

e v >
d
e implies that (Cd

e )I ⊆ (>d
e )I, which implies

(Ce)Id ⊆ (>e)Id .
3. I |= ∃Rd

e .> v >
d
e and I |= > v ∀Rd

e .>
d
e implies that

(Rd
e )I ⊆ (>d

e )I × (>d
e )I, which implies (Re)Id ⊆ (>e)Id ×

(>e)Id .

4. Suppose d ≺ e and aId is defined. From the construction
of #(K) we have I |= {ad} v {ae, undef}, that is, either
(ad)I = (ae)I or (ad)I = undefI. However, since aId is
defined, due to the construction of I it must be the case
that (ad)I , undefI and hence (ad)I = (ae)I. From the
construction of I we have aId = (ad)I = (ae)I = aIe .
Suppose the other case, i.e., d ≺ e and aIe is defined and
aIe ∈ ∆d. From the construction of #(K) we have I |=
>d

d u {a
e} v {ad}, that is, (>d

d)I ∩ {(ae)I} ⊆ {(ad)I}. We
have assumed aIe ∈ ∆d and hence the construction of I
this implies (ae)I ∈ (>d

d)I and hence the above inclusion
reduces into {(ae)I} ⊆ {(ad)I} which implies (ae)I = (ad)I

and from construction of I also aId = aIe .
5. By construction of I, we have that (XdB )Ie = (Xe

dB+e)I =

(XdB+e)Ie

6. We have that I |= Xd
d ≡ Xe

d. This implies that (Xd)Ie =

(Xe
d)I = (Xd

d)I = (Xd)Id ;
7. If d ≺ e, we have that I |= Cd

f ≡ Ce
f u>

d
d. This implies that

(Cd
f )I = (Ce

f )I∩(>d
d)I, which implies (Cf)Id = (Cf)Ie∩∆d;

8. I |= Id
d◦R

e
f◦I

d
d v Rd

f implies that (Rf)Id ⊇ (Rf)Ie∩∆d
2. The

fact that I |= Rd
f v Re

f , implies that (Rf)Id ⊆ (Rf)Ie ∩ ∆d
2.

9. Let d = dim(C), if φ ∈ K(C), then we have that I |=
φ#d. Similarly to the previous lemma, this again follows
from the fact that Id and I comply with the embedding
respective to the operator (·)#d, and hence we obtain this
condition by Lemma 1.

Appendix A.5. Proof of Theorem 2
Theorem 2. If K is --stratified, then checking if K |=
d : φ is decidable with the complexity upper-bound of
2NExpTime.

The decidability follows from Lemmata 3 and 4, as the prob-
lem of checking K |= e : φ can be rewritten into the problem
of checking if #(K) |= φ]d and #(K) is --stratified. We will
show that the transformation #(·) is polynomial. Since #(K)
is SROIQ knowledge base and deciding entailment id 2NExp-
Time-hard forSROIQ [35] it follows that checking if K |= d : φ
is possible within the upper bound of 2NExpTime worst case
complexity.

Without loss of generality, we will consider the size of the in-
put to be the total number of occurrences of all symbols from Σ

and Γ in both K and φ summed together with the total number of
all DL constructors in K and φ and with the number of formulae
in K and φ. We will denote this number by m. The real size of
input to be processed depends on the encoding of symbols. As
the number of symbols used in any particular knowledge base is
always finite, suitable encoding can always be found such that
the real size of input is c × m for some constant c [36].

As explained before, the number of contextual dimensions
is assumed to be a fixed constant k. While in theory the num-
ber of possible dimensional values may be large, in practise the
number of contexts n is always smaller than m. This is because
whenever a new context C is initialized, also k new formulae are
added in the meta knowledge, by which the dimensional values
are associated with C.
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Let us now determine the size of #(K). We will go through
the construction in Definition 21 point by point:

1. one axiom >f
d v >

f
e for any three initialized contexts Cd,

Ce and Cf , with d ≺ e. These are maximum n3 of axioms
of size 3, i.e., with total size bounded with 3 × n3;

2. one axiom Ad
e v >

d
e for any two initialized contexts Cd,

Ce and for any Ae occurring in K. Note that Ae occurs
in K whenever AeB occurs in Cg with e = eB+g (below
this sense will be also used w.r.t. roles). This means that
for each such occurrence of Ae in K there is at least one
actual occurrence of some AeB with possibly incomplete
dimensional vector. Therefore at most m atomic symbols
(concepts, roles and individuals) in total occur in K in this
sense. This implies that most m × n2 axioms of size 3 are
added in this step, with total size bounded with 3×m× n2;

3. a pair of axioms ∃Rd
e .> v >

d
e and > v ∀Rd

e .>
d
e ; for any

two initialized contexts Cd, Ce and for any Re occurring
in K. Similarly to the previous step this yields at most
2 × m × n2 axioms of size 5, i.e., with total size bounded
with 10 × m × n2;

4. two axioms >d
d u {a

e} v {ad} and {ad} v {ae, undef} for
any two initialized contexts Cd, Ce with d ≺ e and for any
constant a, and one axiom ¬>d

d(undef) for any initialized
context Cd This leads to maximum of m×n2 axioms of size
7, maximum of m × n2 axioms of size 8, and maximum of
n axioms of size 3. The total sum of all these axioms is
bounded under 15 × m × n2 + 3 × n;

6. one axiom Xd
d ≡ Xe

d for any two initialized contexts Cd, Ce
with d � e and for any atomic concept or role Xd occurring
in K. This again leads to the maximum of m × n2 axioms
of size 3 with total size bounded with 3 × m × n2;

7. Ad
f ≡ Ae

f u >
d
d for any two initialized contexts Cd, Ce with

d � e and for any atomic concept Af occurring in K. This
leads to the maximum of m×n2 axioms of size 5, i.e., with
total size bounded with 5 × m × n2;

8. four axioms Id
d ◦ Re

f ◦ Id
d v Rd

f , Rd
f v Re

f , Id
d ◦ Re

f v S d,e,f
R ,

and S d,e,f
R ◦ Id

d v Rd
f for any two initialized contexts Cd, Ce

with d ≺ e and for any Rf occurring in K. This leads to the
maximum of m × n2 axioms of size 7, m × n2 axioms of
size 3, and twice m × n2 axioms size 5. Total size of both
these sets together is therefore bounded with 20 × m × n2;

9. one axiom φ#d for every axiom φ occurring in any context
K(C) of K. In this step less than m axioms are added. All
of these axioms are transformed by the #(·) operator which
yields to a blow up in the axiom size because each symbol
may be replaced by up to 5 new symbols (i.e., the trans-
formation is linear). Therefore the total size of the axioms
added in this step is bounded with 5 × m.

Summing up, the transformed knowledge base #(K) is
bounded in size with 59×m× n2 + 8×m which is under O(m3)
since n ≤ m.
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