
Merge, Explain, Iterate: A Combination of MHS

and MXP in an ABox Abduction Solver⋆

Martin Homola�, Júlia Pukancová, Janka Boborová, and Iveta Balintová

Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia
{homola,pukancova}@fmph.uniba.sk, boborova3@uniba.sk,

ivbalintova@gmail.com

Abstract. Minimal Hitting Set (MHS) is a well-known and complete
method to compute all minimal explanations of an ABox abduction
problem in Description Logics (DL). MHS is NP-complete and gener-
ally recognized as ine�cient. We leverage on MergeXplain (MXP) which
is fast but incomplete � by combining it with MHS in a hybrid algorithm
MHS-MXP to regain completeness. In this paper, we describe: (a) the
underlying theory to establish the completeness of MHS-MXP and show
its relevant properties; (b) a class of inputs on which MHS-MXP has the
greatest advantage; (c) an experimental implementation; (d) an empirical
evaluation on both favourable and unfavourable inputs.

Keywords: Abduction · Description logics · Ontologies.

1 Introduction

ABox abduction [7] assumes a DL knowledge base (KB) K and an extensional
observation O (in form of an ABox assertion). Explanations (also extensional)
are sets of ABox assertions E such that K together with E entails O.

The MHS algorithm [15] is the classic method to �nd all minimal explana-
tions of an ABox abduction problem. MHS systematically searches through all
possible explanations, from the smallest (in terms of cardinality) towards the
largest � thus it ensures completeness. It has a good chance to discover smaller
explanations quite quickly, however if explanations of interest are larger, it is
rather ine�cient. Notably, the MHS problem itself is NP-complete [11] and con-
sistency checking of DL KBs repeatedly called by MHS depends on the particular
DL, but for many DLs it may be exponential or worse.

Alternatively QuickXplain (QXP) [10] and more recently its extension Merge-
Xplain [17] employ a divide and conquer strategy to �nd one (QXP) or even
multiple explanations (MXP) e�ciently. But they are incomplete, i.e., there is
no warranty that all explanations will be found. However, when MXP is run re-
peatedly, on slightly modi�ed inputs, it divides the search space di�erently and
it may return a di�erent set of explanations. In fact, it is possible to regain com-
pleteness by using MHS on the background to track the search space exploration.
We formally develop such a combined algorithm, that we call MHS-MXP. We
study its relevant properties that allow us not only to establish its correctness

⋆
Published on 23 Sep 2023 as: Homola, M., Pukancová, J., Boborová, J., Balintová, I. (2023).
Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox Abduction Solver. In:
Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Arti�cial Intelligence. JELIA 2023. LNCS,
vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_24

https://orcid.org/0000-0001-6384-9771
https://doi.org/10.1007/978-3-031-43619-2_24

2 M. Homola et al.

but also to characterize inputs on which it may have an advantage over MHS:
inputs with smaller explanations or with smaller number of explanations.

Our experimental implementation allows to switch between both algorithms.
It integrates the JFact reasoner as a black box. MHS (and thus also MHS-MXP)
requires not only to verify KB consistency but also to extract relevant informa-
tion about the model. Not all DL reasoners can be used for this, but tableau
reasoners such as JFact internally construct a su�cient part of the model � al-
beit it is not usual to output it. We were able to employ experimental features
of OWL API to extract relevant model information from JFact. We then con-
ducted an empirical evaluation on a favourable but also on an unfavourable class
of inputs. MHS-MXP did not perform as well as MHS on the unfavourable class,
however on the favourable class it outperformed MHS to a much larger extent.

Compared to other promising approaches in ABox abduction [5, 6, 4, 13], the
main advantage of our work is that as a black-box approach and thus it may be
paired with any DL reasoner (if it allows for model extraction). Tableau-based
reasoners such as Pellet and JFact can handle DL expressivity up to SROIQ [9],
i.e. up to OWL 2 [3]. Indeed, the other approaches may be more tractable, but
they are limited in DL expressivity. Du et al. [5] rely on a translation to Prolog
and is complete up to Horn-SHIQ; Du et al. [6] focus on strong tractability
for very large ABoxes with a limitation to �rst-order rewritable TBoxes. Both
Del-Pinto and Schmidt [4] and Koopmann et al. [13] support DL expressivity up
to ALC. In theory, MHS-MXP is not limited to the DL setting. It can be applied
in any case in which MHS is applicable.

2 Preliminaries

We assume familiarity with the basics of DL [1, 2], including vocabulary consist-
ing of individuals NI = {a, b, . . .}, roles NR = {P,Q,R, . . .}, and atomic concepts
NC = {A,B, . . .}; complex concepts C,D, . . . built by constructors (e.g. ¬, ⊓, ⊔,
∃, ∀, in case of ALC [16]); a KB K = T ∪ A composed of a TBox T (with sub-
sumption axioms of the form C ⊑ D) and an ABox A (with concept assertions
of the form C(a) and (possibly negated [9]) role assertions of the form R(a, b)
and ¬R(a, b)). We also remind about the semantics that relies on models M of a
KB K, that satisfy all axioms or assertions ϕ in K (M |= ϕ); and the reasoning
tasks of checking the consistency of K (if it has a model) and entailment (K |= ϕ
if M |= ϕ for all its models M).

In ABox abduction [7], we are given a KB K and an observation O consisting
of an ABox assertion. The task is to �nd an explanation E , again, consisting of
ABox assertions, such that K ∪ E |= O. Explanations are drawn from some set
of abducibles Abd.

De�nition 1 (ABox Abduction Problem). Let Abd be a �nite set of ABox
assertions. An ABox abduction problem is a pair P = (K, O) such that K is a
knowledge base in DL and O is an ABox assertion. An explanation of P (on
Abd) is any �nite set of ABox assertions E ⊆ Abd such that K ∪ E |= O.

Merge, Explain, Iterate 3

We limit the explanations to atomic and negated atomic concept and role
assertions; hence Abd ⊆ {A(a),¬A(a) | A ∈ NC, a ∈ NI} ∪ {R(a, b),¬R(a, b) |
R ∈ NR, a, b ∈ NI}. Note that we do not limit the observations, apart from
allowing only one (possibly complex) ABox assertion.

According to Elsenbroich et al. [7] it is reasonable to require from each ex-
planation E of P = (K, O) to be: (a) consistent (K∪E is consistent); (b) relevant
(E ̸|= O); and (c) explanatory (K ̸|= O). Explanations that satisfy these three
conditions will be called desired. In addition, in order to avoid excess hypothe-
sizing, minimality is required.

De�nition 2 (Minimality). Assume an ABox abduction problem P = (K, O).
Given explanations E and E ′ of P, E is (syntactically) smaller than E ′ if E ⊆
E ′.An explanation E of P is (syntactically) minimal if there is no other expla-
nation E ′ of P that is smaller than E.

3 Computing Explanations

We �rst review the complete MHS algorithm and then the faster but approxi-
mative MXP algorithm. The hybrid approach that tries to combine �the best of
both worlds� is then introduced in Section 4.

3.1 Minimal Hitting Set

Adopting the well-known result of Reiter [15], computing all minimal explana-
tions of (K, O) reduces to �nding all minimal hitting sets of the set of models of
K∪{¬O} in the following sense. Also, if some of the models contain no abducibles
then there are no explanations.

Observation 1. The minimal explanations of (K, O) on Abd directly corre-
spond to the minimal hitting sets of {Abd(M) | M |= K∪{¬O}} where Abd(M) =
{ϕ ∈ Abd | M ̸|= ϕ}.

Observation 2. If Abd(M) = ∅ for some M |= K ∪ {¬O}, then (K, O) has no
explanations on Abd.

In a labelled tree T = (V,E,L) with root r ∈ V , let H(n) denote the union
of edge-labels on the path from r to n, for any node n ∈ V . If a node n1 ∈ V
has a successor n2 ∈ V such that L(⟨n1, n2⟩) = σ then n2 is a σ-successor of n1.

MHS (Algorithm 1) works by constructing an HS-tree. An HS-tree for P =
(K, O) is a labelled tree T = (V,E, L) where (a) each node n ∈ V is labelled by
L(n) = Abd(M) for a model M of K∪{¬O} s.t. L(n)∩H(n) = ∅ or by L(n) = ∅
if such a model does not exist; (b) and for any n ∈ V there is a σ-successor of n
for every σ ∈ L(n).

Each label L(n) can be found as Abd(M) of some model of K∪{¬O}∪H(n),
by one call to an external DL reasoner. If no such model M exists then H(n)
corresponds to a hitting set. Note that if M exists but Abd(M) = ∅, then in
accord with Observation 2 H(n) cannot be extended to a hitting set.

4 M. Homola et al.

Algorithm 1 MHS(K,O,Abd)

Input: Knowledge base K, observation O, ab-
ducibles Abd
Output: SE all explanations of P = (K, O)
w.r.t. Abd

1: M ← a model M of K ∪ {¬O}
2: if M = null then

3: return "nothing to explain"
4: end if

5: T ← (V = {r}, E = ∅, L = {r 7→ Abd(M)})

6: for each σ ∈ L(r) create new σ-successor nσ

of r
7: SE ← {}

8: while exists next node n in T w.r.t. BFS do

9: if n can be pruned then

10: prune n
11: else if exists model M of K ∪ {¬O} ∪

H(n) then
12: label n by L(n)← Abd(M)
13: else if H(n) is desired then

14: SE ← SE ∪ {H(n)}
15: end if

16: for each σ∈L(n) create new σ-successor
nσ of n

17: end while

18: return SE

We apply �rst two of Reiter's pruning conditions: (1) subset pruning elimi-
nates non-minimal hitting sets: given a hitting set H(n), nodes n′ with H(n) ⊆
H(n′) are pruned; (2) equal-paths pruning prunes also nodes n′ with H(n) =
H(n′), even if H(n) is not a hitting set. Once completed, a pruned HS-tree
contains all minimal hitting sets [15]. MHS is sound and complete [15, 14].

Theorem 1. The MHS algorithm is sound and complete (i.e., it returns the set
SE of all minimal desired explanations of K and O on Abd).

The fact that MHS explores the search space using breadth-�rst search (BFS)
allows to limit the search for explanations by maximum size. The algorithm is
still complete w.r.t. any given target size [14].

3.2 MergeXplain

Both QXP [10] and MXP [17] were originally designed to �nd minimal inconsis-
tent subsets (dubbed con�icts) of an over-constrained knowledge base K = B∪C,
where B is the consistent background theory and C is the �suspicious� part from
which the con�icts are drawn. The algorithm is listed in Algorithm 2.

The essence of QXP is captured in the function GetConflict(B, D, C),
where the inputs B and C are as explained above, and D is an auxiliary control
parameter. GetConflict cleverly decomposes C by splitting it into smaller and
smaller subsets such that it is always able to reconstruct one minimal con�ict,
if it only exists. The auxiliary function isConsistent(K) encapsulates calls to
an external reasoner; it returns true if K is consistent and false otherwise. Thus,
if we just need to �nd one minimal explanation of an ABox abduction problem,
adopting a result of Junker [10] we may use GetConflict in the following way.

Theorem 2. Assume an ABox abduction problem P = (K, O) and a set of
abducibles Abd. If there is at least one explanation γ ⊆ Abd of P then calling
GetConflict(K ∪ {¬O},K ∪ {¬O},Abd) returns some minimal explanation
δ ⊆ Abd of P.

Merge, Explain, Iterate 5

Algorithm 2 MXP(B,C)
Input: background theory B, set of possibly
faulty constraints C
Output: a set of minimal con�icts Γ

1: if ¬isConsistent(B) then

2: return "no explanation"
3: else if isConsistent(B ∪ C) then

4: return ∅
5: end if

6: ⟨ , Γ ⟩ ← FindConflicts(B, C)
7: return Γ

8: function FindConflicts(B, C)
9: if isConsistent(B ∪ C) then

10: return ⟨C, ∅⟩
11: else if |C| = 1 then

12: return ⟨∅, {C}⟩
13: end if

14: Split C into disjoint, non-empty sets C1
and C2

15: ⟨C′1, Γ1⟩ ← FindConflicts(B, C1)
16: ⟨C′2, Γ2⟩ ← FindConflicts(B, C2)
17: Γ ← Γ1 ∪ Γ2

18: while ¬isConsistent(C′1 ∪ C
′
2 ∪ B) do

19: X ← GetConflict(B ∪ C′2, C
′
2, C

′
1)

20: γ ← X ∪GetConflict(B∪X,X, C′2)

21: C′1 ← C
′
1\{σ} where σ ∈ X

22: Γ ← Γ ∪ {γ}
23: end while

24: return ⟨C′1 ∪ C
′
2, Γ ⟩

25: end function

26: function GetConflict(B, D, C)
27: if D ̸= ∅ ∧ ¬isConsistent(B) then
28: return ∅
29: else if |C| = 1 then

30: return C
31: end if

32: Split C into disjoint, non-empty sets C1
and C2

33: D2 ← GetConflict(B ∪ C1, C1, C2)
34: D1 ← GetConflict(B ∪D2, D2, C1)
35: return D1 ∪D2

36: end function

The MXP algorithm is captured in the function FindConflicts(B, C), where
again B is the consistent background theory and C is the set of con�icts inconsis-
tent with it. It returns a pair ⟨C′, Γ ⟩, where Γ contains as many con�icts γ ⊆ C
as it is possible to reconstruct from one way in which C can be split, and C′ ⊆ C
is maximal set consistent with B that can be reconstructed from this split. MXP
relies on GetConflict to recover some of the con�icts that would be lost due
to splitting. This ensures that it keeps the important property of QXP that at
least one minimal is found in each run, if it exists.

This approach can be immediately adopted for ABox abduction: in order to
�nd explanations for an abduction problem P = (K, O) on Abd one needs to
call MXP(K ∪ {¬O},Abd). This observation allows us to adopt the following
result from Shchekotykhin et al. [17]:

Theorem 3. Assume an ABox abduction problem P = (K, O) and a set of
abducibles Abd. If there is at least one explanation γ ⊆ Abd of P then calling
MXP(K∪{¬O},Abd) returns a nonempty set Γ of minimal explanations of P.

In fact, MXP is thorough in its decomposition of C, which is broken to smaller
and smaller subsets until they are consistent with B or until only sets of size 1
remain. This directly implies that all con�icts of size 1 will always be found and
returned by a single run of MXP. This observation will prove to be useful for
our hybrid algorithm.

Observation 3. Given an ABox abduction problem P = (K, O), a set of ab-
ducibles Abd, and any γ ⊆ Abd s.t. |γ| = 1, if K ∪ γ |= O then γ ∈ MXP(K ∪
{¬O},Abd).

Thus MXP is sound and it always �nds at least one minimal explanation
(Theorem 3), and it �nds all explanations of size one (Observation 3). Still,

6 M. Homola et al.

MXP is not complete. Some explanations may be lost, especially in cases with
multiple partially overlapping explanations.

Example 1. Let K = {A ⊓ B ⊑ D,A ⊓ C ⊑ D} and let O = D(a). Let us ig-
nore negated ABox expressions and start with Abd = {A(a), B(a), C(a)}. There
are two minimal explanations of P = (K, O): {A(a), B(a)}, and {A(a), C(a)}.
Calling MXP(K ∪ {¬O},Abd), it passes the initial tests and calls FindCon-
flicts(K ∪ {¬O},Abd).

FindConflicts needs to decide how to split C = Abd into C1 and C2. Let us
assume the split was C1 = {A(a)} and C2 = {B(a), C(a)}. Since both C1 and C2
are now con�ict-free w.r.t. K ∪ {¬O}, the two consecutive recursive calls return
⟨C′1, ∅⟩ and ⟨C′2, ∅⟩ where C′1 = {A(a)} and C′2 = {B(a), C(a)}.

In the while loop, GetConflict(K ∪ {¬O} ∪ {B(a), C(a)}, {B(a), C(a)},
{A(a)}) returns X = {A(a)} while GetConflict(K∪ {¬O} ∪ {A(a)}, {A(a)},
{B(a), C(a)}) returns B(a), and hence the �rst con�ict γ = {A(a), B(a)} is
found and added into Γ .

However, consecutively A(a) is removed from C′1 leaving it empty, and thus
the other con�ict is not found and Γ = {{A(a), B(a)}} is returned.

Finally, not only MXP �nds all explanations of size 1; it also has the prop-
erty that if no larger explanations are returned in a given run then in fact this
is because there are none. In such a case we are sure that we have found all
explanations in a single run and we do not have to search any further.

Lemma 1. Given an ABox abduction problem P = (K, O), a set of abducibles
Abd, let Γ = MXP(K ∪ {¬O},Abd). If there is no γ ∈ Γ s.t. |γ| > 1, then for
all minimal δ ⊆ Abd s.t. K ∪ δ |= O we have that δ ∈ Γ .

4 Combined MHS-MXP Algorithm

The idea to use MXP to �nd all explanations is based on the observation that
running it multiple times in a row may result in a consecutive extension of the
overall set of con�icts found so far. A naïve, and possibly to a large extent
successful idea, would be to randomize the set splits MXP does in each recursive
call. We would likely �nd di�erent con�icts each time, however it would not be
clear when to stop.

We will instead explore a hybrid approach, and we will show that by mod-
ifying MXP's inputs in its consecutive iterations, the search space exploration
can be guided by the construction of an HS-tree from the obtained outputs, and
thus completeness will be achieved.

The combined MHS-MXP algorithm, listed as Algorithm 3, therefore con-
structs the HS-tree T as usual, but in each node n, instead of simply retrieving
one model of K ∪ {¬O} ∪H(n), it launches MXP by calling FindConflicts.

It starts by checking the consistency of K∪{¬O}. We use a modi�ed isCon-
sistent function which stores all previously found models in the model cache

Merge, Explain, Iterate 7

Algorithm 3 MHS-MXP(K,O,Abd)
Input: knowledge base K, observation O, set of abducibles Abd
Output: set SE of all explanations of P = (K, O) of the class Abd

1: Con← {} ▷ Set of con�icts
2: Mod← {} ▷ Set of cached models
3: if ¬isConsistent(K ∪ {¬O}) then

4: return "nothing to explain"
5: else if Abd(M) = ∅ where Mod = {M} then

6: return SE = ∅
7: end if

8: T ← (V = {r}, E = ∅, L = ∅) ▷ Init. HS-Tree
9: while there is next node n in T w.r.t. BFS do

10: if n can be pruned then

11: prune n
12: else

13: ⟨ , Γ ⟩ ← FindConflicts(K ∪ {¬O} ∪H(n),Abd \H(n))
14: Con← Con ∪ {H(n) ∪ γ | γ ∈ Γ}
15: if ∃γ ∈ Γ : |γ| > 1 then ▷ Extend HS-tree under n
16: L(n)← Abd(M) \H(n) for some M ∈ Mod s.t. M |= H(n)
17: for each σ ∈ L(n) create new σ-successor nσ of n
18: end if

19: end if

20: end while

21: return SE ← {γ ∈ Con | γ is desired}
22: function isConsistent(K)
23: if there is M |= K then

24: Mod← Mod ∪ {M}
25: return true
26: else

27: return false
28: end if

29: end function

Mod. The stored models are later used to construct the HS-tree and label its
nodes. Also FindConflicts will use this modi�ed isConsistent function.

Then the main loop is initiated. For the root node r, pruning is never applied.
Then FindConflicts is simply called passing K ∪ {¬O} as the background
theory and Abd as the set of con�icts (as H(n) = ∅ at this point). The obtained
con�icts Γ are stored in Con. We then verify if all con�icts were already found
or if the search needs to go on (line 15). From Theorem 3 we know that if no
con�icts were returned in Γ , it means there are no con�icts whatsoever. Also
from Observation 3 we know that all con�icts of size 1 are always found and
returned in Γ . Finally, by Lemma 1 we have that if any larger con�icts remain,
at least one is also present in Γ . Hence, if there is no γ ∈ Γ with |γ| > 1 there
are no other explanations to be found and the search can be terminated.

If however at least one such γ was returned in Γ then the HS-tree is extended
under r using the model M that was previously found and stored in Mod.

When consecutively any other node n ̸= r is visited by the main loop, we �rst
check if it can be pruned (line 10): n is pruned (1) either if there is a previously
stored con�ict γ ∈ Con s.t. γ ⊆ H(n), (2) or if there is another n′ ∈ V (that is
not pruned) with H(n′) = H(n). This corresponds to Reiter's �rst two pruning
conditions with condition (1) being modi�ed to make use of con�icts cached in
Con. If n is not pruned, we now want to use MXP with the goal to explore as
much as possible of that part of the space of explanations that extends H(n).

8 M. Homola et al.

Therefore we call FindConflicts passing K∪{¬O} ∪H(n) as the background
theory and Abd \H(n) as the set of con�icts.

If we are lucky, we might cut o� this branch completely in line 15, that is, if
no extension of H(n) of size greater than 1 is found (by Lemma 1). Otherwise
we extend the HS-tree below n.

To be able to do that, we need a model of K∪{¬O}∪H(n). However, we do
not need to run another consistency check here, as by design of our algorithm
at this point such a model is already cached in Mod.

Lemma 2. For each node n of the HS-tree visited by the main loop of MHS-

MXP(K, O,Abd) either H(n) ∈ Con or K ∪ {¬O} ∪H(n) is consistent and at
least for one M ∈ Mod, M |= K ∪ {¬O} ∪H(n).

Finally, by the time a complete HS-tree is constructed, all explanations are ac-
cumulated in Con. However, due to calls to FindConflicts where (nonempty)
H(n) was passed together with K as the consistent background theory, some of
these con�icts in Con may be non-minimal and they have to be �ltered out. At
this point we also �lter out any other undesired explanations. Then the remain-
ing minimal and desired explanations are returned as SE .

Theorem 4. The MHS-MXP algorithm is sound and complete (i.e., it returns
the set SE of all minimal desired explanations of K and O on Abd).

This follows from the fact that the algorithm correctly reconstructs the HS-
tree to a su�cient extent. The parts which are cut o� in comparison to a complete
HS-tree (line 15) can be omitted thanks to Observation 3 and Lemma 1.

5 Advantages and Limitations

Apparently MHS-MXP absolutely crushes MHS in cases when all explanations
are of size one. By Observation 3 and Lemma 1, the search may immediately
stop after one call to MXP in the root node of the HS-tree. Without this �look
ahead� capability provided to the hybrid algorithm by MXP, pure MHS has no
way of knowing it could stop and has to generate the HS-tree completely. Let us
now consider some cases when bigger explanations come into play.

Example 2. Let K = {A⊓B ⊑ F,D⊓¬C(a), E(b)}, let O = F (a), and let Abd =
{A(a), B(a), C(a), D(a)}. There is exactly one explanation E1 = {A(a), B(a)}.

If we run MHS-MXP, it �rst checks K∪{¬F (a)} for consistency and it obtains
a model M thereof, say one with Abd(M) = {A(a), C(a)}.

The call to FindConflicts in the root does not allow to terminate the
search, since E1 was returned and |E1| > 1. Therefore n1 and n2 are added to
the HS-tree with H(n1) = {A(a)} and H(n2) = {C(a)}.

Calling FindConflicts n1 returns one con�ict {B(a)} which together with
H(n1)makes up for the explanation E1. This branch is consecutively cut o�, as no
greater con�icts were found. Notably, further exploration of branches extending
H(n1) with C(a) and D(a) is avoided (in comparison with MHS).

Merge, Explain, Iterate 9

Then FindConflicts is called in n2 returning one con�ict {A(a), B(a)}, cor-
responding to the non-minimal explanation {C(a), A(a), B(a)}. However, since
there was a con�ict extending H(n1) by a size greater than one, we may not
terminate yet and must explore this branch in the HS-tree further, until only
extensions of size one are returned by MXP in each path.

Cases similar to Example 2 with a small overall number of explanations can
be handled rather e�ciently, compared to MHS, as signi�cant part of the search
space is cut o�. However consider the following modi�cation of the inputs.

Example 3. Given K and O as in Example 2, let Abd = {A(a), B(a), C(a), D(a),
E(a),¬E(a)}. The abduction problem (K, O) has two explanations E1 = {A(a),
B(a)} and E2 = {E(a),¬E(a)}, the second undesired (inconsistent). FindCon-
flicts called in the root r now returns con�icts {{A(a), B(a)}, {E(a),¬E(a)}}.
W.l.o.g. we may assume that the same model M was used to label r and that
M ̸|= E(a). This time Abd(M) = {A(a), C(a), E(a)} and in addition to n1 and
n2 as above also n3 is generated with H(n3) = {E(a)}.

Now the search cannot be immediately cut o� after MXP is called in any of
the three nodes n1, n2, or n3. E.g., in n1 FindConflicts returns {{B(a)}, {E(a),
¬E(a)}}. Only branches where all but one element from each explanation is al-
ready present can be cut o� safely.

Example 3 shows that the larger the overall amount of explanations and the
greater their size, the less advantage MHS-MXP is likely to retain. While adding
complementary assertions to abducibles does not make a di�erence for MHS, it
does for MHS-MXP (for the worse), as it generates more explanations (even if
they are inconsistent and thus undesired). Similarly for mutually inconsistent
abducibles (due to the background ontology) yielding irrelevant explanations.

Thus while MHS-MXP provides an advantage on certain inputs we have no
reason to suppose it is substantially better in the worst case. It is di�cult to
estimate to which extent the problem of con�icting abducibles demonstrated in
Example 3 would a�ect real world use, especially if users (knowledgable about
the domain) would be able to specify abducibles suitable enough to contain all
explanations they are interested in. There are no known real-world use cases
to evaluate abductive reasoning with ontologies that would specify inputs with
observations and respective sets of abducibles. Even works that conducted ex-
tensive empirical evaluations used arti�cially generated inputs [6, 4, 13].

To understand how MHS-MXP compares to MHS on unfavourable inputs
with large amounts of con�icting abducibles, and jointly to which extent it is
faster than MHS on favourable inputs without con�icting abducibles, we con-
ducted an evaluation on which we report in the following.

10 M. Homola et al.

6 Implementation

An implementation1 of MHS-MXP was developed in Java. The black box im-
plementation calls an external DL reasoner for consistency checks and extracts
model information necessary to steer the HS-tree construction by both MHS and
MHS-MXP. The latter is nontrivial as it is fairly nonstandard for any DL rea-
soner to make model data accessible to the user. In fact, some DL reasoners (e.g.
consequence-based [12]) may not even construct any model-related structures,
but tableau-based reasoners do construct a completion graph which is a �nite
representation of a model.

We are concerned with exploring all possible explanations that one can con-
struct as (sets of) atomic and negated atomic concept and role assertions involv-
ing the named individuals from the ABox and from the input observation. Note
that the corresponding part of the completion graph is always fully constructed
by tableau-based DL reasoners and is not a�ected by blocking [1, 2, 9].

We rely on the reasoner.knowledgeexploration package2 � an experimen-
tal package of OWL API � and its interface OWLKnowledgeExplorerReasoner.
The interface is not commonly implemented by reasoners, however it is imple-
mented by JFact3, which we were hence able to use in our implementation.

It allows to read out information about the completion graph: nodes are ac-
cessed via the getRoot(e) method where e is the OWLClassExpression (nomi-
nal) corresponding to a given ABox individual. The getObjectLabel() method
is then used to extract all atomic and negated atomic concepts to which the
individual belongs (the latter is obtained as the complement of the former). The
neighbouring nodes and the respective role assertions are then obtained using
the getObjectNeighbors() method.

7 Evaluation

The experiments were executed on a virtual machine with 8 cores (16 threads) of
Intel Xeon CPU E5-2695 v4, 2.10GHz, with 32GB RAM, running Ubuntu 20.04
and Oracle Java SE Runtime Environment v1.8.0_201. Execution times were
measured using ThreadMXBean from the java.lang.management package. We
measured user time � the actual time without system overhead. The maximum
Java heap size to 4GB.

Using the implementation, we ran tests in order to understand how MHS-
MXP compares to plain MHS (a) in the general case, and (b) in case of inputs
that we identi�ed as favourable. We have used the LUBM ontology [8] and the
solver's abducibles settings to generate suitable inputs to verify both cases.

1 The implementation and the evaluation datasets are available at https://github.
com/boborova3/MHS-MXP-algorithm.

2 http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/
knowledgeexploration/package-summary.html

3 https://github.com/owlcs/jfact

https://github.com/boborova3/MHS-MXP-algorithm
https://github.com/boborova3/MHS-MXP-algorithm
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/knowledgeexploration/package-summary.html
http://owlcs.github.io/owlapi/apidocs_5/org/semanticweb/owlapi/reasoner/knowledgeexploration/package-summary.html
https://github.com/owlcs/jfact

Merge, Explain, Iterate 11

Table 1. Statistics for input groups: #: number of inputs; Cm, Ca, CM: min, average,
and max count of explanations; Sm, Sa, SM: min, average, and max size of the largest
explanation

Set # Cm Ca CM Sm Sa SM

S1 10 1 7 20 1 1 1
S2 10 8 69.5 159 2 2 2
S3 10 47 212.4 479 3 3 3
S4 10 251 417.8 839 4 4 4
S5 10 503 2627 6719 5 5 5

Set # Cm Ca CM Sm Sa SM

C1 9 1 4.8 9 1 1.11 2
C2 11 14 51 99 1 2 3
C3 13 111 212.92 299 2 3.15 4
C4 8 359 524.75 839 3 4 5
C5 9 1175 2863 6719 5 5 5

In order to generate inputs with explanations of size up to n, we used a
fresh individual a and composed observations in the form A1⊓· · ·⊓An(a) where
A1, . . . , An were randomly drawn from LUBM concept names. If all A1, . . . , An

have mutually independent proper subconcepts then there is at least one expla-
nation of size n. If some of them have more subconcepts then the input will have
more explanations. If some Ai, Aj have shared subconcepts then (some of) the
explanations will be shorter.

Targeting explanations of size up to 5, we generated inputs for n ∈ [1..5] � 50
inputs altogether. We have aggregated the inputs into �ve groups S1�S5 based on
the size of the largest explanation. The inputs were generated randomly (however
LUBM concepts with subconcepts were drawn twice as often to ensure higher
number of explanations). The number of generated samples was consecutively
reduced in order to obtain balanced groups S1�S5, each with 10 inputs.

To verify the second part of our conjecture, i.e. that MHS-MXP may perform
better on inputs with smaller number of explanations, we also aggregated the
same 50 inputs di�erently, into groups C1�C5 accordingly. Basic characteristics
of groups S1�S5 and C1�C5 are given in Table 1.

Our implementation supports atomic and negated atomic concept assertions
as abducibles, where the latter may be suppressed by a switch. In accordance
with our observations from Section 5, we have used this feature to obtain an
unfavourable case for MHS-MXP (both atomic and negated atomic concepts
allowed) and a favourable case (negated atomic concepts suppressed). Notably,
all generated inputs only have explanations involving atomic concept assertions,
hence each input has exactly the same number of explanations in either case
(favourable and unfavourable) � only the search space in the unfavourable case
(and the inherent di�culty for MHS-MXP to handle it) is larger.

Each individual input was run �ve times and the results were averaged. The
timeout was set to 4 hours (=14,440 seconds).

The results for the unfavourable and favourable case are shown in Figures 1
and 2, respectively. For each case the charts analogously plot the average time per
group (y-axis) in which all explanations of a given size (x-axis) are guaranteed
to be found. Input groups S1�S5 are shown on the left (a), and input groups
C1�C5 in the right (b). Note that for MHS this equates to the time by which
it fully explores the HS-tree down to depth x, however, by Observation 3, for
MHS-MXP this is the time by which it fully explores the HS-tree down to depth

12 M. Homola et al.

1 2 3 4 5 6
100

101

102

103

104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6
100

101

102

103

104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

(a) (b)

Fig. 1. Unfavourable inputs: Average time in seconds (y-axis) for fully exploring the
search space up to the particular explanation size (x-axis) for input groups (a) S1�S5,
(b) C1�C5

x− 1. Also note that once the respective group terminated it has fully explored
the search space up to any size, hence the line is constantly extended towards
the right; in contrast, if more than one third of inputs in the group reached the
timeout before reaching the x-value, the y-value was omitted from the plot.

Looking �rst at the unfavourable inputs (Figure 1) we observe that both
algorithms exhibit steep exponential growth. Both managed to compute all ex-
planations of size 3 within the timeout, but MHS reached this point faster.
Notably, there is little di�erence among the groups S1�S5 and C1�C5. This case
is strongly unfavourable for MSH-MXP, attacking its main weakness by swamp-
ing the search space with the highest possible amount of mutually inconsistent
abducibles. The observed result is consistent with this setting.

In the favourable case (Figure 2) the advantage of MHS-MXP over MHS is
way more signi�cant; e.g. while MHS again did only fully explore the search
space up to the size 3 within the 4 hour timeout, MHS-MXP managed to reach
this point with the average time of 26 seconds. Also our conjecture of MHS-
MXP having the greatest advantage on inputs with smaller count and/or smaller
maximal size of explanations veri�ed very clearly. We observe a clear correlation
in the increase of computation time and the greatest size of an explanation
(groups S) and likewise for the count of explanations (groups C). All groups
except for S5 and C5 terminated within the timeout, while in S5 and C5 approx.
half of the inputs reached the timeout. (Note that even in such cases, MHS-MXP
found all explanations, the search continued and the timeout was reached due
to the presence of irrelevant explanations of size greater than 5).

8 Conclusions

We have designed and implemented a hybrid combination of MHS and MXP
algorithms and formally proved its correctness. One of the main disadvantages
of MHS is that it always needs to tediously inspect each candidate solution in the

Merge, Explain, Iterate 13

1 2 3 4 5 6
100

101

102

103

104

MHS

all

S5

S4

S3

S2

S1

1 2 3 4 5 6

MHS-MXP

1 2 3 4 5 6
100

101

102

103

104

MHS

all

C5

C4

C3

C2

C1

1 2 3 4 5 6

MHS-MXP

(a) (b)

Fig. 2. Favourable inputs: Average time in seconds (y-axis) for fully exploring the
search space up to the particular explanation size (x-axis) for input groups (a) S1�S5,
(b) C1�C5

whole search space � even in cases when there is just small number of solutions,
and even after all of them have been already found. In such cases the advantage
of the combination with MXP shows to be the most promising.

The empirical evaluation supports this conjecture. While on favourable inputs
MHS-MXP signi�cantly outperformed MHS, we have also found unfavourable
cases on which MHS-MXP performs somewhat worse than MHS. Improving
such cases is part of our ongoing work: for instance, we did not yet modify
the inner working of the MXP called in each HS-tree node. This o�ers space for
optimization, e.g. to exploit the cached con�icts Con from the previous runs when
MXP splits the set of con�icts C. We also want to characterize the performance
on a wider scale of input classes to better understand the trade-o�.

While there are currently approaches in ABox abduction [5, 6, 4, 13] which
are more tractable, they are also limited in supported DL expressivity, in our
solver we were able to achieve black-box integration with JFact which supports
DL expressivity up to SROIQ (i.e. OWL 2).

Even for tableau-based reasoners, model extraction is not a standard. So far,
we were able to plug-in JFact exploiting the OWLKnowledgeExplorerReasoner
extension of OWL API. In the future, we would like to integrate more tableau
reasoners into our solver and allow for modular switching.

In the future, we would also like to look into a possible upgrade of the MHS
part of the algorithm by some of its known more e�ective versions, e.g. by
Wotawa [18].

While in this work we have studies and applied the MHS-MXP algorithm on
the problem of ABox abduction in DL, it is worth noting that it is also applicable
in other cases, more precisely in any case in which MHS is applicable. It can be
applied in other languages (e.g. in propositional abduction, in which models can
be extracted from a SAT solver) and even on other problems (e.g. computing
justi�cations and maximally consistent subsets).

14 M. Homola et al.

Acknowledgments. We would like to express our thanks to anonymous re-
viewers for their valuable feedback on this and also on the previous version
of this report. This research was sponsored by the Slovak Republic under the
grant APVV-19-0220 (ORBIS) and by the EU under the H2020 grant no. 952215
(TAILOR) and under Horizon Europe grant no. 101079338 (TERAIS).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: OWL 2: The next step for OWL. J. Web Semant. 6(4), 309�322 (2008)

4. Del-Pinto, W., Schmidt, R.A.: Abox abduction via forgetting in ALC. In: The
Thirty-Third AAAI Conference on Arti�cial Intelligence, AAAI 2019, Honolulu,
Hawaii, USA, pp. 2768�2775, AAAI Press (2019)

5. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical ABox abduction in large
description logic ontologies. Int. J. Semantic Web Inf. Syst. 8(2), 1�33 (2012)

6. Du, J., Wang, K., Shen, Y.: A tractable approach to ABox abduction over de-
scription logic ontologies. In: Proceedings of the Twenty-Eighth AAAI Conference
on Arti�cial Intelligence, July 27-31, 2014, Québec City, Québec, Canada., pp.
1034�1040 (2014)

7. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over on-
tologies. In: Proceedings of the OWLED*06 Workshop on OWL: Experiences and
Directions, Athens, GA, US, CEUR-WS, vol. 216 (2006)

8. Guo, Y., Pan, Z., He�in, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3(2-3), 158�182 (2005)

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceed-
ings, Tenth International Conference on Principles of Knowledge Representation
and Reasoning, Lake District of the United Kingdom, pp. 57�67, AAAI (2006)

10. Junker, U.: QuickXplain: Preferred explanations and relaxations for over-
constrained problems. In: Proceedings of the Nineteenth National Conference on
Arti�cial Intelligence, Sixteenth Conference on Innovative Applications of Arti�cial
Intelligence, San Jose, California, US, pp. 167�172, AAAI Press (2004)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a sym-
posium on the Complexity of Computer Computations, March 20�22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York., pp. 85�
103 (1972)

12. Kazakov, Y., Krötzsch, M., Siman£ík, F.: The incredible ELK. Journal of Auto-
mated Reasoning 53(1), 1�61 (2014)

13. Koopmann, P., Del-Pinto, W., Tourret, S., Schmidt, R.A.: Signature-based ab-
duction for expressive description logics. In: Proceedings of the 17th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2020,
Rhodes, Greece, pp. 592�602 (2020)

14. Pukancová, J., Homola, M.: ABox abduction for description logics: The case of
multiple observations. In: Proceedings of the 31st International Workshop on De-
scription Logics, Tempe, Arizona, US, CEUR-WS, vol. 2211 (2018)

Merge, Explain, Iterate 15

15. Reiter, R.: A theory of diagnosis from �rst principles. Arti�cial intelligence 32(1),
57�95 (1987)

16. Schmidt-Schauÿ, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Arti�cial intelligence 48(1), 1�26 (1991)

17. Shchekotykhin, K.M., Jannach, D., Schmitz, T.: MergeXplain: Fast computation of
multiple con�icts for diagnosis. In: Proceedings of the Twenty-Fourth International
Joint Conference on Arti�cial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
AAAI Press (2015)

18. Wotawa, F.: A variant of reiter's hitting-set algorithm. Inf. Process. Lett. 79(1),
45�51 (2001)

	Merge, Explain, Iterate: A Combination of MHS and MXP in an ABox Abduction Solver

