Line 78: Line 78:
 
** Present a selected research paper or tutorial
 
** Present a selected research paper or tutorial
 
** Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
 
** Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
* Projects with minimal requirements: [[media:project-themes.docx|project-themes.docx]]
+
* Projects with minimal requirements: [[media:project-themes.docx|project.docx]]
  
 
* Teams fill the '''[https://docs.google.com/forms/d/1fqfZ13KDcQMuJSsGLuvK5xAVDjjNWqVIAtCZsgT8R2M/edit form]''' (names and project): <b>deadline 2.10.2017</b> Submit a link to created web page with project description or animation story board where you write your progress, continually.
 
* Teams fill the '''[https://docs.google.com/forms/d/1fqfZ13KDcQMuJSsGLuvK5xAVDjjNWqVIAtCZsgT8R2M/edit form]''' (names and project): <b>deadline 2.10.2017</b> Submit a link to created web page with project description or animation story board where you write your progress, continually.

Revision as of 15:01, 18 September 2018

Ca10 lesson01.png

Physical based Animations and Mathematical Modelling (Course Materials)

This lecture ...

  • Will focus on simulating natural phenomena
  • Will show you what are current topics
  • Will improve your skills in
    • Newtonian physics
    • Computational geometry
    • Algorithms and data structures
  • Hopefully will not be boring
  • List of Open Source Physics Engines

Student Animation Projects

Project Deadlines

  • Animators team (Axx): deadline 17.12.2018 the last lecture
    • Show your animation, how far have you made it. Paste the screen capture with your explanation and demo on the webpage. It should be 30% of the work done, otherwise, your team gets Fx.
  • Coders team (Cxx): deadline 17.12.2018 the last lecture
    • Show the short DEMO of your project, how far have you made it. Paste the screen capture with your explanation and demo on the webpage. It should be 30% of the work done, otherwise, your team gets Fx.
  • Coders team (Cxx): deadline 28.1.2019
    • Create a web page where you write your progress, upload source code, executable, images description of your project and a short manual.
    • Send a link to the finished application (zipped source + executable.)
    • Your code should be well formatted and commented. Titles of functions, classes, variables should be representative for their purpose.
    • If you send it earlier you can get feedback how to improve your application.
  • Animators team (Axx): deadline 28.1.2019
    • Create a web page where you write your progress, upload animation, the source of animation, images description of your project and describe all physical effects to be evaluated.
    • Upload your animation video on youtube (or some alternative online service)
    • Send link to your webpage.
    • If you send it earlier you can get feedback how to improve your animation.
  • Oral/written exam (optional): deadline 14.1.2019, 8:00, classroom A
    • Instead of (optional) oral exam, you can get (0..+20) points due to a written exam.
    • It will be similar to the homework, but less complicated.

What you Need to Pass

  • Attend lessons. All lessons attended is +0 points. Four and more missed you need to pass oral & written exam.
  • Show your project (mandatory, 60 points). See later.
  • Solve all homework problems as a teamwork (mandatory each one >=30%, 40 points)
  • Pass oral/written exam: (optional, +0 .. +20 points) If you feel you are better, convince me ! You can get +20 points max.
  • Summary
    • Attendance = +0 or -100 (or pass oral & written exam)
    • Homework = +40..+12 or 12..0 (Fx)
    • Project = +60..0
    • Optional oral/written exam = +20..0
  • Grades
    • A = 92-100
    • B = 84-91
    • C = 76-83
    • D = 68-75
    • E = 60-67
    • Fx = 0-59

Oral / Written Examination

To the oral examination, all the above requirements must be SATISFACTORILY completed.

How to Arrange your Project

  • Take 1 friend and Team up
  • Role1: The Coder Team
    • Choose a given animation algorithm
    • Code up hot demo app and show it
    • Present a selected research paper or tutorial
    • Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
  • Role2: The Artist Team
    • Choose some authoring tool
    • Create hot physically based demo reel
    • Present a selected research paper or tutorial
    • Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
  • Projects with minimal requirements: project.docx
  • Teams fill the form (names and project): deadline 2.10.2017 Submit a link to created web page with project description or animation story board where you write your progress, continually.


Lesson01 "Introduction to Computer Animation"

Ca10 lesson01.png

  • Introduction to Computer Animation
  • Common animation techniques
  • Cutting edge tools and packages
  • Gurus and the State of the Art
  • Lecture schedule
  • "Terms and conditions" of this lecture
  • Lecture notes: lesson01.pdf


Lesson02 "Basic methods in Computer Animation"

Ca10 lesson02.png

  • Problem definition and motivations
  • Key-framing and parameter interpolation
  • Quternions, orientation
  • Skeleton and skinning animation
  • Forward and inverse kinematics
  • Procedural techniques
  • (Motion capture)
  • Lecture notes: lesson02.pdf
  • Štátnicová téma: S1 Animácie pohybu a orientácie, interpolačný spline na animáciu pohybu, splinu podľa dĺžky krivky, quaternion a orientácia, interpolácie dvoch a viacerých quaternionov.


Lesson03 "Particle Systems"

Ca10 lesson03.png

  • Newton dynamics of particles
  • Ordinary differential equation (ODE) solver
  • Particle - obstacle collision detection
  • Practical design of particle system
  • Demos / tools / libs
  • Lecture notes: lesson03.pdf
  • Štátnicová téma: S2 Numerické riešenie diferenciálnych rovníc, Eulerova metóda, MidPoint metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku, sily odozvy (response forces).


Lesson04 "Soft bodies, Cloths and hair”

Ca10 lesson11.png

  • Problem definition and motivations
  • Modeling solids with stress and strain
  • Extending Mass-spring model for cloth and ropes
  • Massive (self) collision and resolution for cloths
  • Mesh-less deformations
  • Modeling solids with infinitely stiff springs
  • Demos / tools / libs
  • Lecture notes: lesson04.pdf
  • Štátnicová téma (Lesson 3,4): S3 Časticové systémy, rovnice pohybu prvého rádu, integračné metódy na výpočet rýchlosti a pozície, stavový vektor systému, vonkajšie sily, obmedzujúce podmienky – constraints, sily odozvy, kolízie častica - rovina.


Lesson05 "Broad Phase Collision Detection"

Ca10 lesson04.png

  • Problem definition and motivations
  • Hierarchical grids and spatial hashing
  • Sweep and prune and radix sort
  • Pair management – a practical guide
  • Demos / tools / libs
  • Lecture notes: lesson05.pdf


Lesson "All Saints' Day (no lesson)"

Ca10 lesson07.png

  • No lesson


Lesson06 "Mid Phase Collision Detection"

Ca10 lesson05.png

  • Problem definition and motivations
  • Generic Bounding Volume Hierarchy (BVH)
  • Tandem BVH traversal
  • Proximity evaluation of primitive geometries
    • External Voronoi regions
    • Sphere x Capsule x Box x triangle collisions
  • Approximate convex decomposition
  • Lecture notes: lesson06.pdf


Lesson07 "Narrow Phase Collision Detection"

Ca10 lesson06.png

  • Problem definition and motivations
  • Proximity queries for convex objects (Minkowski space)
  • GJK based algorithms (GJK, EPA, ISA-GJK)
  • Voronoi-Clip (V-Clip) Algorithm
  • Signed Distance Maps for collision detection
  • Demos / tools / libs
  • Lecture notes: lesson07.pdf
  • Štátnicová téma (Lesson 5,6,7): S4 Detekcie kolízie, nutná a postačujúca podmienka kedy nie sú dve telesá v rovina, broad phase (hierachycká mriežka), mid phase (hierarchie obálok, Voronoiove oblasti v kolízii, vysvetlujte na príklade kolízie gula x kapsula, dekompozícia telesa na konvexné časti), narrow phase (Minkowskeho priestor a blízkosť konvexných telies).


Lesson08 "Rigid body Dynamics”

Ca10 lesson08.png

  • Problem definition and motivations
  • Dynamics of rigid bodies
  • The equation of unconstrained motion (ODE)
  • User and time control
  • Mass properties of polyhedral objects
  • Demos / tools / libs
  • Lecture notes: lesson08.pdf
  • Štátnicová téma (Lesson 9): S5 Dynamika tuhých telies, definícia problému, rovnice pohybu (4 ODE), rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica hybnosti (matica inercie).


Lesson09 "Rigid body Collisions and Joints”

Ca10 lesson09.png

  • Problem definition and motivations
  • Simplified collision model
  • Impulse based collision equation
  • Friction-less collision resolution
  • Algebraic collision resolution for Coulomb friction
  • Linear and angular joint formulations
  • Demos / tools / libs
  • Lecture notes:lesson09.pdf


Lesson10 "Fluid, Fire and Smoke”

Ca10 lesson10.png

  • Problem definition and motivations
  • Navier-Stokes equations for fluid dynamics
  • Grid based MAC method
  • Particle based SPH method
  • Neighbor search for coupled particles
  • Modeling smoke and fire with fluid
  • Demos / tools / libs
  • Lecture notes: lesson10.pdf


Lesson11 "Final term"

Ca10 lesson12.png

  • Don't panic - just few simple questions


Lesson12 "Animation Show"

  • Show your animation to your colleagues

EXCERCISES

  • Your presence at the seminar is optional.
  • On every seminar we will focus on the selected problems from lessons. We will use the numerical methods to solve specific problems.

Excercise01 "Key Framing”

Excercise02 "Quaternion Interpolation”


Excercise03 "Differential Equations”

Excercise04 "Position based Dynamics”

Excercise05 "Particles”

Excercise06 "STAR reports”

Excercise07 "Separating Axis Theorem”

Excercise08 "Rigid body Dynamics”

RESOURCES