(192 intermediate revisions by 2 users not shown)
Riadok 1: Riadok 1:
 
[[File:ca10_lesson01.png|link=#Lectures]]
 
[[File:ca10_lesson01.png|link=#Lectures]]
 +
= Physical based Animations and Mathematical Modelling (Course Materials) =
 +
__TOC__
  
 
This lecture ...
 
This lecture ...
Riadok 9: Riadok 11:
 
** Algorithms and data structures
 
** Algorithms and data structures
 
* Hopefully will not be boring
 
* Hopefully will not be boring
 +
* [https://www.tapirgames.com/blog/open-source-physics-engines List of Open Source Physics Engines]
  
== Student Projects ==
+
== Student Animation Projects ==
* Stránka [http://ukapra.php5.sk/index.php?id=proj-mmca Ráno do práce]
+
* Animácia [https://www.youtube.com/watch?v=j1wR1LN_fU4 Hunger]
* Stránka [http://www.st.fmph.uniba.sk/~palenikova12/gsvm/mmafp.html The_good_the_bad]
+
* Stránka [http://davinci.fmph.uniba.sk/~dobsovicova10/spider/ Catching Spider] Animácia [http://davinci.fmph.uniba.sk/~dobsovicova10/spider/videos/final.mp4 Catching Spider]
* Stránka [http://amigo.sk/www/kiwi/ Kiwi] Animácia [http://www.youtube.com/watch?v=DFqMc8JZPA8 KiWi]
+
* Stránka [http://ukapra.php5.sk/index.php?id=proj-mmca Ráno do práce] Animácia [https://youtu.be/YBBsxdUXDPI Ráno do práce]
* Stránka [http://www.st.fmph.uniba.sk/~vidlickova6/stranka/progres.html Knihy] Animácia [http://www.youtube.com/watch?v=pXXa0C74IJk&feature=youtu.be Knihy]
+
* Animácia [http://www.youtube.com/watch?v=pXXa0C74IJk&feature=youtu.be Knihy]
* Stránka [http://www.st.fmph.uniba.sk/~franta2/ca.html Motorka]
+
* Stránka [http://animation.6f.sk/ Tvrdý Oriešok pre Vranu] Animácia [https://www.youtube.com/watch?v=1AMtjwhLEEg Vrana]
 
+
== D-E-A-D-L-I-N-E-S ==
+
* Written exam (optional): <b>deadline 19.1.2014, 8:00, classroom A</b>
+
** Instead of (optional) oral exam, you can get (-20 ... +20) points due to a written exam.
+
** It will be similar to final term, but less complicated.
+
* Coders (Cxx): <b>deadline 26.1.2015</b>
+
** Create a web page where you write your progress, upload source code, executable, images description of your project and short manual.  
+
**Send link to finished application (zipped source + executable.)
+
** If you send it earlier you can get feedback how to improve your application
+
* Animators (Axx): <b>deadline 26.1.2015</b>
+
** Create a web page where you write your progress, upload animation, source of animation, images description of your project and all physical effects to be evaluated.
+
** Upload your animation video on youtube (or some alternative online service)
+
** Send link to your webpage
+
** If you send it earlier you can get feedback how to improve your animation
+
  
 
== What you Need to Pass ==
 
== What you Need to Pass ==
  
* Attend lessons. All lessons attended is +10 points. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
+
* Attend lessons. All lessons attended is +0 points. Four and more lectures missed you missed the course Fx.
* Show your project (mandatory, 60 points) See later.
+
* Solve all homework problems (mandatory each one >=30%, 60 points). All homework assignments must be solved in Wolfram Mathematica or the online version of Wolfram Cloud. Submit the assignment solutions to MS Teams.
* Solve all homework problems (mandatory each one >=30%, 30 points)
+
* Pass written Final term exam (mandatory each one >=30%, 30 points), no retakes. Realtime problem solution in Wolfram Mathematica or Wolfram Cloud.
* Pass final term (mandatory, 10 points) You will need to solve several problems discussed during lessons.
+
* Pass oral/written exam: (optional, +0 .. +20 points) If you feel you are better, convince me ! You can get +20 points max.
* Pass oral/written exam: (optional, +/-20 points) If you feel you are better, convince me ! You can get +20 points or loose -20 points.
+
 
* Summary
 
* Summary
** Attendance = +10..0 or -100 (Fx)
+
** Attendance = +0 or -100 (or Fx)
** Homework = +30..10 or +10..0 (Fx)
+
** Homework = +60..+18 or 12..0 (or Fx)
** Project = +60..0  
+
** Excercises = +10..0  
** Final term = +10..0 (> 30%)
+
** Final term = (better than Fx) +30..0  
** Oral/written exam = +20..-20
+
** Optional oral exam = +20..0
  
* Grades
+
* Grades '''[https://docs.google.com/spreadsheets/d/1VFDhtsyvrSIyTcAOuQeWbZYVXYTNyPL8GxDf3jQnIwY/edit#gid=0 RESULTS]'''
** A = 92-100
+
** A = 92-100, B = 84-91, C = 76-83, D = 68-75, E = 60-67, Fx = 0-59
** B = 84-91
+
** C = 76-83
+
** D = 68-75
+
** E = 60-67
+
** Fx = 0-59
+
  
* '''[https://docs.google.com/spreadsheet/ccc?key=0AguOJecPQwoSdFhRaXF2Y012SGc4OWZzZDRrWFRzM0E&usp=drive_web#gid=0 VIEW RESULTS]'''
+
* Register online to MS Teams [https://teams.microsoft.com/l/team/19%3a09e9527680ca40ef8a336492c5749111%40thread.tacv2/conversations?groupId=54138d27-ced4-46a6-99cc-cb7510664011&tenantId=ce31478d-6e7a-4ce7-8670-a5b9d51884f9 Teams] Teams code: 1himkdt 
  
== How to Arrange your Project ==
+
=== Oral / Written Examination ===
 +
To the oral examination, all the above requirements must be SATISFACTORILY completed. '''[https://moodle.uniba.sk/course/view.php?id=2165 Moodle ]'''
 +
 
 +
<!--== Project Deadlines ==
 +
* Animators team (Axx): <b>deadline 16.12.2019 the last lecture</b>
 +
** Show your animation, how far have you made it. Paste the screen capture with your explanation and demo on the webpage. It should be 30% of the work done, otherwise, your team gets Fx.
 +
* Coders team (Cxx): <b>deadline 16.12.2019 the last lecture</b>
 +
** Show the short DEMO of your project, how far have you made it. Paste the screen capture with your explanation and demo on the webpage. It should be 30% of the work done, otherwise, your team gets Fx.
 +
-->
 +
<!--== How to Arrange your Project ==
  
 
* Take 1 friend and Team up
 
* Take 1 friend and Team up
* Role1: The Coder
+
* Role1: The Coder Team
 
** Choose a given animation algorithm
 
** Choose a given animation algorithm
 
** Code up hot demo app and show it
 
** Code up hot demo app and show it
* Role2: The Artist
+
** Present a selected research paper or tutorial
** Choose some authoring tool and create hot physically based demo reel
+
** Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
* Projects: [[media:Projects.pdf|Projects.pdf]]
+
* Role2: The Artist Team
 
+
** Choose some authoring tool
 
+
** Create hot physically based demo reel
 +
** Present a selected research paper or tutorial
 +
** Prepare a written report, at least 2 A4 pages, on the topic of state exam question.
 +
* Projects with minimal requirements: [[media:project-list.pdf|project-list.pdf]]
 +
* Teams fill the '''[https://docs.google.com/forms/d/1TWG8CtpKxCbjv88El76J3HzWgVuTal_4r6SH0ez4mCk/edit form]''' (names and project): <b>deadline 1.10.</b> Submit a link to created web page with project description or animation story board where you write your progress, continually.
 +
-->
 
----
 
----
  
  
 
=== Lesson01 "Introduction to Computer Animation" ===
 
=== Lesson01 "Introduction to Computer Animation" ===
[[File:ca10_lesson01.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson01.pdf]]
+
[[File:ca10_lesson01.png]]
 
* Introduction to Computer Animation
 
* Introduction to Computer Animation
 
* Common animation techniques
 
* Common animation techniques
Riadok 77: Riadok 74:
 
* Lecture schedule
 
* Lecture schedule
 
* "Terms and conditions" of this lecture
 
* "Terms and conditions" of this lecture
* Lecture notes: [[media:ca10_lesson01.pdf|lesson01.pdf]]
+
* Lecture notes: [[media:ca15_lesson01.pdf|lesson01.pdf]]
  
  
 
=== Lesson02 "Basic methods in Computer Animation" ===
 
=== Lesson02 "Basic methods in Computer Animation" ===
[[File:ca10_lesson02.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson02.pdf]]
+
[[File:ca10_lesson02.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Key-framing and parameter interpolation
 
* Key-framing and parameter interpolation
Riadok 89: Riadok 86:
 
* Procedural techniques
 
* Procedural techniques
 
* (Motion capture)
 
* (Motion capture)
* Lecture notes: [[media:ca10_lesson02.pdf|lesson02.pdf]]
+
* Lecture notes: [[media:ca15_lesson02.pdf|lesson02.pdf]]
* Štátnicová téma: Animácie pohybu a orientácie, interpolačný spline na animáciu pohybu, reparametrizácia splinu podľa dĺžky krivky, quaternion a orientácia, interpolácie dvoch a viacerých quaternionov.
+
* State examination: S1 Animácie pohybu a orientácie, nearest neighbor, lineárna interpolácia, interpolačný spline na animáciu pohybu, Kubická Bézierova interpolačná krivka, C1 spojitosť kompozície kriviek.
 +
* State examination: S2 Quaternion a orientácia, os rotácie a uhol, reprezentácia quaterniónom, rotácia v priestore pomocou quaterniónov, inverzný quaternión, kompozícia rotácie dvoch quaterniónov, interpolácia SLERP (Sférická lineárna interpolácia), interpolácie dvoch a viacerých quaternionov, Catmull-Rom interpolácia.
  
  
 
=== Lesson03 "Particle Systems" ===
 
=== Lesson03 "Particle Systems" ===
[[File:ca10_lesson03.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson03.pdf]]
+
[[File:ca10_lesson03.png]]
 
* Newton dynamics of particles
 
* Newton dynamics of particles
 
* Ordinary differential equation (ODE) solver
 
* Ordinary differential equation (ODE) solver
Riadok 100: Riadok 98:
 
* Practical design of particle system
 
* Practical design of particle system
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson03.pdf|lesson03.pdf]]
+
* Lecture notes: [[media:ca15_lesson03.pdf|lesson03.pdf]]
* Štátnicová téma: Numerické riešenie diferenciálnych rovníc, Eulerova metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku.
+
* State examination: S4 Numerické riešenie diferenciálnych rovníc, ODE prvého rádu separovateľné, Rovnice pohybu prvého rádu rýchlosť, zrýchlenie, Eulerova metóda, MidPoint metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku.
  
  
 
=== Lesson04 "Soft bodies, Cloths and hair” ===
 
=== Lesson04 "Soft bodies, Cloths and hair” ===
[[File:ca10_lesson11.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson11.pdf]]
+
[[File:ca10_lesson11.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Modeling solids with stress and strain
 
* Modeling solids with stress and strain
Riadok 113: Riadok 111:
 
* Modeling solids with infinitely stiff springs
 
* Modeling solids with infinitely stiff springs
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson04.pdf|lesson04.pdf]]
+
* Lecture notes: [[media:ca15_lesson04.pdf|lesson04.pdf]]
* Štátnicová téma (Lesson 3,4): Časticové systémy, rovnice pohybu prvého rádu, integračné metódy na výpočet rýchlosti a pozície, stavový vektor systému, vonkajšie sily, obmedzujúce podmienky – constraints, sily odozvy, kolízie častica - rovina.
+
  
  
 
=== Lesson05 "Broad Phase Collision Detection" ===
 
=== Lesson05 "Broad Phase Collision Detection" ===
[[File:ca10_lesson04.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson04.pdf]]
+
[[File:ca10_lesson04.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Hierarchical grids and spatial hashing
 
* Hierarchical grids and spatial hashing
Riadok 124: Riadok 121:
 
* Pair management – a practical guide
 
* Pair management – a practical guide
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson05.pdf|lesson05.pdf]]
+
* Lecture notes: [[media:ca15_lesson05.pdf|lesson05.pdf]]
* Assigment 3: [[media:ca10_assigmentlesson05.pdf|assigment3.pdf]]
+
<!--* Assigment 3: [[media:ca10_assigmentlesson05.pdf|assigment3.pdf]]-->
 +
 
 +
=== Lesson "All Saints' Day (no lesson)" ===
 +
[[File:ca10_lesson07.png]]
 +
* No lesson
 +
 
  
 
=== Lesson06 "Mid Phase Collision Detection" ===
 
=== Lesson06 "Mid Phase Collision Detection" ===
[[File:ca10_lesson05.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson05.pdf]]
+
[[File:ca10_lesson05.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Generic Bounding Volume Hierarchy (BVH)
 
* Generic Bounding Volume Hierarchy (BVH)
Riadok 136: Riadok 138:
 
** Sphere x Capsule x Box x triangle collisions
 
** Sphere x Capsule x Box x triangle collisions
 
* Approximate convex decomposition
 
* Approximate convex decomposition
* Lecture notes: [[media:ca10_lesson06.pdf|lesson06.pdf]]
+
* Lecture notes: [[media:ca15_lesson06.pdf|lesson06.pdf]]
* Assigment 4: [[media:ca10_assigmentlesson06.pdf|assigment4.pdf]]
+
<!--* Assigment 4: [[media:ca10_assigmentlesson06.pdf|assigment4.pdf]]-->
 +
 
  
 
=== Lesson07 "Narrow Phase Collision Detection" ===
 
=== Lesson07 "Narrow Phase Collision Detection" ===
[[File:ca10_lesson06.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson06.pdf]]
+
[[File:ca10_lesson06.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Proximity queries for convex objects (Minkowski space)
 
* Proximity queries for convex objects (Minkowski space)
Riadok 147: Riadok 150:
 
* Signed Distance Maps for collision detection
 
* Signed Distance Maps for collision detection
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson07.pdf|lesson07.pdf]]
+
* Lecture notes: [[media:ca15_lesson07.pdf|lesson07.pdf]]
* Štátnicová téma (Lesson 5,6,7): Detekcie kolízie, Z buffer algoritmus, nutná a postačujúca podmienka kedy nie sú dve telesá v kolízii, deliaca rovina, hierarchie obálok, sily odozvy (response forces).
+
* State examination (Lesson 5,6,7): S3 Detekcie kolízie, nutná a postačujúca podmienka kedy nie sú dve telesá v kolízii, deliaca rovina, broad phase (hierachycká mriežka), mid phase (hierarchie obálok, Voronoiove oblasti v kolízii, vysvetlujte na príklade kolízie gula x kapsula, dekompozícia telesa na konvexné časti), narrow phase (Minkowskeho priestor a blízkosť konvexných telies).
 
+
=== Lesson08 "All Saints' Day (no lesson)" ===
+
[[File:ca10_lesson07.png]]
+
* No lesson
+
  
  
=== Lesson09 "Rigid body Dynamics” ===
+
=== Lesson08 "Rigid body Dynamics” ===
[[File:ca10_lesson08.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson08.pdf]]
+
[[File:ca10_lesson08.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Dynamics of rigid bodies
 
* Dynamics of rigid bodies
Riadok 163: Riadok 162:
 
* Mass properties of polyhedral objects
 
* Mass properties of polyhedral objects
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson08.pdf|lesson08.pdf]]
+
* Lecture notes: [[media:ca15_lesson08.pdf|lesson08.pdf]]
* Štátnicová téma (Lesson 9): Dynamika tuhých telies, rovnice pohybu, rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica inercie.
+
* State examination (Lesson 9): S5 Dynamika tuhých telies, definícia problému, Pozícia, ťažisko a orientácia telesa, rovnice pohybu (4 ODE), rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica hybnosti (matica inercie) matica hybnosti pre guľu, pevný kváder, posunutý kváder.
  
=== Lesson10 "Rigid body Collisions and Joints” ===
+
 
[[File:ca10_lesson09.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson09.pdf]]
+
=== Lesson09 "Rigid body Collisions and Joints” ===
 +
[[File:ca10_lesson09.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Simplified collision model
 
* Simplified collision model
Riadok 175: Riadok 175:
 
* Linear and angular joint formulations
 
* Linear and angular joint formulations
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes:[[media:ca10_lesson09.pdf|lesson09.pdf]]
+
* Lecture notes:[[media:ca15_lesson09.pdf|lesson09.pdf]]
  
  
=== Lesson11 "Fluid, Fire and Smoke” ===
+
=== Lesson10 "Fluid, Fire and Smoke” ===
[[File:ca10_lesson10.png|link=http://www.sccg.sk/~onderik/phd/ca2010/ca10_lesson10.pdf]]
+
[[File:ca10_lesson10.png]]
 
* Problem definition and motivations
 
* Problem definition and motivations
 
* Navier-Stokes equations for fluid dynamics
 
* Navier-Stokes equations for fluid dynamics
Riadok 187: Riadok 187:
 
* Modeling smoke and fire with fluid
 
* Modeling smoke and fire with fluid
 
* Demos / tools / libs
 
* Demos / tools / libs
* Lecture notes: [[media:ca10_lesson10.pdf|lesson10.pdf]]
+
* Lecture notes: [[media:ca16_lesson10.pdf|lesson10.pdf]]
  
=== Lesson12 "Final term" ===
+
 
 +
=== Lesson11 "Final term" ===
 
[[File:ca10_lesson12.png]]
 
[[File:ca10_lesson12.png]]
 
* Don't panic - just few simple questions
 
* Don't panic - just few simple questions
 +
 +
 +
=EXCERCISES=
 +
*Your presence at the seminar is optional.
 +
*On every seminar we will focus on the selected problems from lessons. We will use the numerical methods to solve specific problems.
 +
 +
<!--
 +
=== Excercise00 "Key Framing” ===
 +
* '''[https://www.youtube.com/watch?v=CFFhgutjZQk Blender demo]'''
 +
* Blender https://www.blender.org/
 +
 +
**resources:
 +
** Blender tutorial for skeleton modelling http://blender.freemovies.co.uk/stickman/
 +
** rigging https://www.youtube.com/watch?v=mJwWTKt12ak
 +
** motion capture database https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/daz-friendly-release
 +
-->
 +
 +
=== Excercise01 "Introductions” ===
 +
* Vectors
 +
** https://reference.wolfram.com/language/tutorial/Lists.html#2534
 +
* Matrices
 +
* Linear interpolation
 +
<!--*WOLFRAM DEVELOPMENT PLATFORM [https://develop.open.wolframcloud.com/app/]-->
 +
*WOLFRAM NOTEBOOK [https://www.wolfram.com/notebooks/]
 +
* https://www.wolfram.com/language/fast-introduction-for-programmers/en/interactive-usage/
 +
 +
*resources:
 +
***[[media:uvod.pdf|uvod.pdf]]
 +
***[[media:catmull-rom.pdf|catmull-rom.pdf]]
 +
 +
=== Excercise02 "Quaternion Interpolation” ===
 +
<!--
 +
* Assigment
 +
**[[media:uloha1C.pdf|uloha1.pdf]] (deadline see Attendance table)
 +
-->
 +
* Euler angles
 +
* Complex numbers and rotations
 +
**resources:
 +
***[[media:quaternions.pdf|quaternion1.pdf]]
 +
***[[media:kvaternion.pdf|kvaternion2.pdf]]
 +
***http://run.usc.edu/cs520-s15/quaternions/quaternions-cs520.pdf
 +
***[[media:priklad.pdf|example.pdf]]
 +
***http://www.academia.edu/4095904/Quaternion_calculus_as_a_basic_tool_in_computer_graphics
 +
***https://www.youtube.com/watch?v=d4EgbgTm0Bg
 +
***https://reference.wolfram.com/language/Quaternions/tutorial/Quaternions.html
 +
 +
=== Excercise03 "Differential Equations” ===
 +
* Analitical solution of ODE
 +
* Runge-Kuta method
 +
<!--
 +
* Assigment
 +
**[[media:uloha_dif_rov.pdf|uloha_dif_rov.pdf]] (deadline see Attendance table)
 +
**resources:
 +
-->
 +
***https://www.youtube.com/watch?v=p_di4Zn4wz4
 +
***https://emboliform.wordpress.com/test-page/solving-differential-equations-numerically-with-octave/
 +
***[[Media:Derivative.pdf|derivative.pdf]]
 +
***[[Media:Diferencialne rovnice.pdf|diferencialne_rovnice.pdf]]
 +
***[[Media:explicit_midpoint.pdf|explicit_midpoint.pdf]]
 +
***[[Media:system_ode.pdf|system_ode.pdf]]
 +
***http://terpconnect.umd.edu/~petersd/246/matlabode.html
 +
***https://computing.llnl.gov/casc/nsde/pubs/u113855.pdf
 +
* Wolfram Mathematica https://reference.wolfram.com/language/ref/NDSolve.html
 +
* FreeMat http://freemat.sourceforge.net/index.html
 +
* Matlab tutorial http://www.tutorialspoint.com/matlab/index.htm
 +
* Online Octave https://octave-online.net/
 +
 +
=== Excercise04 "Position based Dynamics” ===
 +
* proving the distance constraint formulae
 +
**resources
 +
***[[media:Position based Dynamics.pdf|Position based Dynamics.pdf]]
 +
***https://www.cs.toronto.edu/~jacobson/seminar/mueller-et-al-2007.pdf
 +
<!--
 +
* Assigment
 +
**prepare presentation (deadline see Attendance table)
 +
-->
 +
 +
=== Excercise05 "Particles” ===
 +
*modeling particles
 +
**resources
 +
***https://www.youtube.com/watch?v=azXFwQWXjyQ
 +
 +
<!--
 +
=== Excercise06 "STAR reports” ===
 +
*STAR reports and paper presentations
 +
**animation resources
 +
***[[media:production.pdf|production.pdf]]
 +
***https://www.youtube.com/playlist?list=PL-bOh8btec4CXd2ya1NmSKpi92U_l6ZJd
 +
-->
 +
=== Excercise06 "Collision Detection" ===
 +
*GJK Algorithm https://www.youtube.com/watch?v=ajv46BSqcK4
 +
*https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects
 +
 +
=== Excercise07 "Separating Axis Theorem” ===
 +
*Principal Components Analysis
 +
* Assigment
 +
**Uloha_SAT on MS Teams (deadline see Attendance table)
 +
**resources:
 +
***[[media:principal_components.pdf|principal_components.pdf]]
 +
***[[media:sat.pdf|sat.pdf]]
 +
***http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
 +
***http://www.sosmath.com/matrix/eigen2/eigen2.html
 +
***https://www.scss.tcd.ie/Rozenn.Dahyot/CS1BA1/SolutionEigen.pdf
 +
 +
=== Excercise08 "Rigid body Dynamics” ===
 +
*Rigid body Dynamics
 +
<!--
 +
* Assigment
 +
**[[media:domaca-uloha-4.pdf|domaca-uloha.pdf]] (deadline see Attendance table)
 +
-->
 +
 +
===RESOURCES===
 +
*Roman Ďurikovič, Vladimír Ďurikovič. Numerical Mathematics for Computer Science (in Slovak Numerická matematika pre informatika, Riešené príklady v programe MATHEMATICA).  ISBN 978-80-8105-271-2, University of Saint Cyril and Metod Press, Trnava, Slovakia, pages 162, 2011. https://www.researchgate.net/publication/256681458_Numerick_matematika_pre_informatika_Rieen_prklady_v_programe_MATHEMATICA

Aktuálna revízia z 21:03, 26. november 2023

Ca10 lesson01.png

Physical based Animations and Mathematical Modelling (Course Materials)

This lecture ...

  • Will focus on simulating natural phenomena
  • Will show you what are current topics
  • Will improve your skills in
    • Newtonian physics
    • Computational geometry
    • Algorithms and data structures
  • Hopefully will not be boring
  • List of Open Source Physics Engines

Student Animation Projects

What you Need to Pass

  • Attend lessons. All lessons attended is +0 points. Four and more lectures missed you missed the course Fx.
  • Solve all homework problems (mandatory each one >=30%, 60 points). All homework assignments must be solved in Wolfram Mathematica or the online version of Wolfram Cloud. Submit the assignment solutions to MS Teams.
  • Pass written Final term exam (mandatory each one >=30%, 30 points), no retakes. Realtime problem solution in Wolfram Mathematica or Wolfram Cloud.
  • Pass oral/written exam: (optional, +0 .. +20 points) If you feel you are better, convince me ! You can get +20 points max.
  • Summary
    • Attendance = +0 or -100 (or Fx)
    • Homework = +60..+18 or 12..0 (or Fx)
    • Excercises = +10..0
    • Final term = (better than Fx) +30..0
    • Optional oral exam = +20..0
  • Grades RESULTS
    • A = 92-100, B = 84-91, C = 76-83, D = 68-75, E = 60-67, Fx = 0-59
  • Register online to MS Teams Teams Teams code: 1himkdt

Oral / Written Examination

To the oral examination, all the above requirements must be SATISFACTORILY completed. Moodle



Lesson01 "Introduction to Computer Animation"

Ca10 lesson01.png

  • Introduction to Computer Animation
  • Common animation techniques
  • Cutting edge tools and packages
  • Gurus and the State of the Art
  • Lecture schedule
  • "Terms and conditions" of this lecture
  • Lecture notes: lesson01.pdf


Lesson02 "Basic methods in Computer Animation"

Ca10 lesson02.png

  • Problem definition and motivations
  • Key-framing and parameter interpolation
  • Quternions, orientation
  • Skeleton and skinning animation
  • Forward and inverse kinematics
  • Procedural techniques
  • (Motion capture)
  • Lecture notes: lesson02.pdf
  • State examination: S1 Animácie pohybu a orientácie, nearest neighbor, lineárna interpolácia, interpolačný spline na animáciu pohybu, Kubická Bézierova interpolačná krivka, C1 spojitosť kompozície kriviek.
  • State examination: S2 Quaternion a orientácia, os rotácie a uhol, reprezentácia quaterniónom, rotácia v priestore pomocou quaterniónov, inverzný quaternión, kompozícia rotácie dvoch quaterniónov, interpolácia SLERP (Sférická lineárna interpolácia), interpolácie dvoch a viacerých quaternionov, Catmull-Rom interpolácia.


Lesson03 "Particle Systems"

Ca10 lesson03.png

  • Newton dynamics of particles
  • Ordinary differential equation (ODE) solver
  • Particle - obstacle collision detection
  • Practical design of particle system
  • Demos / tools / libs
  • Lecture notes: lesson03.pdf
  • State examination: S4 Numerické riešenie diferenciálnych rovníc, ODE prvého rádu separovateľné, Rovnice pohybu prvého rádu rýchlosť, zrýchlenie, Eulerova metóda, MidPoint metóda, Runge-Kuta metóda, podmienka stability na voľbu časového kroku.


Lesson04 "Soft bodies, Cloths and hair”

Ca10 lesson11.png

  • Problem definition and motivations
  • Modeling solids with stress and strain
  • Extending Mass-spring model for cloth and ropes
  • Massive (self) collision and resolution for cloths
  • Mesh-less deformations
  • Modeling solids with infinitely stiff springs
  • Demos / tools / libs
  • Lecture notes: lesson04.pdf


Lesson05 "Broad Phase Collision Detection"

Ca10 lesson04.png

  • Problem definition and motivations
  • Hierarchical grids and spatial hashing
  • Sweep and prune and radix sort
  • Pair management – a practical guide
  • Demos / tools / libs
  • Lecture notes: lesson05.pdf

Lesson "All Saints' Day (no lesson)"

Ca10 lesson07.png

  • No lesson


Lesson06 "Mid Phase Collision Detection"

Ca10 lesson05.png

  • Problem definition and motivations
  • Generic Bounding Volume Hierarchy (BVH)
  • Tandem BVH traversal
  • Proximity evaluation of primitive geometries
    • External Voronoi regions
    • Sphere x Capsule x Box x triangle collisions
  • Approximate convex decomposition
  • Lecture notes: lesson06.pdf


Lesson07 "Narrow Phase Collision Detection"

Ca10 lesson06.png

  • Problem definition and motivations
  • Proximity queries for convex objects (Minkowski space)
  • GJK based algorithms (GJK, EPA, ISA-GJK)
  • Voronoi-Clip (V-Clip) Algorithm
  • Signed Distance Maps for collision detection
  • Demos / tools / libs
  • Lecture notes: lesson07.pdf
  • State examination (Lesson 5,6,7): S3 Detekcie kolízie, nutná a postačujúca podmienka kedy nie sú dve telesá v kolízii, deliaca rovina, broad phase (hierachycká mriežka), mid phase (hierarchie obálok, Voronoiove oblasti v kolízii, vysvetlujte na príklade kolízie gula x kapsula, dekompozícia telesa na konvexné časti), narrow phase (Minkowskeho priestor a blízkosť konvexných telies).


Lesson08 "Rigid body Dynamics”

Ca10 lesson08.png

  • Problem definition and motivations
  • Dynamics of rigid bodies
  • The equation of unconstrained motion (ODE)
  • User and time control
  • Mass properties of polyhedral objects
  • Demos / tools / libs
  • Lecture notes: lesson08.pdf
  • State examination (Lesson 9): S5 Dynamika tuhých telies, definícia problému, Pozícia, ťažisko a orientácia telesa, rovnice pohybu (4 ODE), rýchlosť, zrýchlenie, uhľová rýchlosť a uhľové zrýchlenie, matica hybnosti (matica inercie) matica hybnosti pre guľu, pevný kváder, posunutý kváder.


Lesson09 "Rigid body Collisions and Joints”

Ca10 lesson09.png

  • Problem definition and motivations
  • Simplified collision model
  • Impulse based collision equation
  • Friction-less collision resolution
  • Algebraic collision resolution for Coulomb friction
  • Linear and angular joint formulations
  • Demos / tools / libs
  • Lecture notes:lesson09.pdf


Lesson10 "Fluid, Fire and Smoke”

Ca10 lesson10.png

  • Problem definition and motivations
  • Navier-Stokes equations for fluid dynamics
  • Grid based MAC method
  • Particle based SPH method
  • Neighbor search for coupled particles
  • Modeling smoke and fire with fluid
  • Demos / tools / libs
  • Lecture notes: lesson10.pdf


Lesson11 "Final term"

Ca10 lesson12.png

  • Don't panic - just few simple questions


EXCERCISES

  • Your presence at the seminar is optional.
  • On every seminar we will focus on the selected problems from lessons. We will use the numerical methods to solve specific problems.


Excercise01 "Introductions”

Excercise02 "Quaternion Interpolation”

Excercise03 "Differential Equations”

Excercise04 "Position based Dynamics”

Excercise05 "Particles”

Excercise06 "Collision Detection"

Excercise07 "Separating Axis Theorem”

Excercise08 "Rigid body Dynamics”

  • Rigid body Dynamics

RESOURCES