• EN

# Computer Graphics 2

## What you Need to Pass

• Attend lessons. One missed +0 points. 2 missed 0 points, 3 missed 0 points, 4 and more is Fx.
• Project and exercise (mandatory, 10+50 points).
• Solve all homework problems (mandatory each one >=30%, 10 points)
• Pass final term (mandatory, 20 points) You will need to solve several problems discussed during lessons.
• Pass oral/written exam: (mandatory, +20 points)
• Summary
• Attendance = 0 or -100 (Fx)
• Exercise = +50..0
• Bonus = +10..0 (optional)
• Homework = +10..4 or +4..0 (Fx)
• Final term = +20..0
• Oral/written exam = +20..0
• A = 92-100
• B = 84-91
• C = 76-83
• D = 68-75
• E = 60-67
• Fx = 0-59
• Schedule
• Mon (8:10) - Room M-I (lecture)
• Mon (11:30) - Room I-H3 (seminar)

### Lecture00 "Introduction to Computer Graphics"

• Computer Graphics Applications

### Lecture01 "Graphics Pipeline"

• What is The Graphics Pipeline
• Primitive Assembly
• Geometry Postprocessing and Rasterization
• Frame Buffer Operations
• http://www.lighthouse3d.com/tutorials/glsl-core-tutorial/pipeline33/
• Lecture notes: lesson00.pdf
• Štátnicová téma: Zobrazovací kanál. Grafická pipeline moderného hardvéru, framebuffer, buffer objekty, používané súradnicové priestory, druhy shader programov, druhy optimalizačných techník (view frustum, occlusion, backface culling), príklad shader programov.

### Lecture04 "Ray Tracing 3."

• Ray Tracing Acceleration
• Data structure: grids, BVH, Kd-tree, Directional Partitioning
• Dynamic Scenes
• Beam and Cone Tracing
• Packet Tracing
• Lecture notes: lesson02.pdf
• Poznámky v Slovenčine k téme Dátové Štruktúry a Kd-tree.
• Štátnicová téma: Kanál metódy sledovania lúča a porovnanie s Radiosity metódou. (definícia lúča, definícia tieňového lúča, popis metódy sledovania lúča, generovanie lúča, pochod po lúči (ray traversal), prienik lúča s trojuholníkom, stromová štruktúra lúčov (ray tree) a jej použitie na výpočet lokálnej farby, problém presnosti priesečníkov). Metóda sledovania lúča na GPU, urýchľovacie techniky.

### Lecture05 "Light Trasport."

• Physics behind ray tracing
• Physical light quantities
• Visual perception of light
• Light sources
• Light transport simulation: Rendering Equation
• Lecture notes: lesson05.pdf
• Štátnicová téma: Fyzikálny osvetlovací model a výpočet farieb renderovacou rovnicou. (definícia radiancie, definícia BRDF a jej vlastnosti, fyzikálne BRDF Cook-Tarrance, definícia priestorového uhlu, napíšte renderovaciu rovnicu a vysvetlite jej členy).

• Diffuse reflectance function
• Radiative equilibrium between emission and absorption, escape
• System of linear equations
• Iterative solution Neuman series
• Lecture notes: lesson05.pdf

### Lecture07 "BRDF."

• Bidirectional Reflectance Distribution Function (BRDF)
• Reflection models
• Projection onto spherical basis functions
• Shading Phong model, Blin-Phong model
• Lecture notes: lesson07.pdf
• Homework:
• 1. Prove that the specular BRDF from slides less07 fulfills the BRDF properties: reciprocity, energy conservation, definit space, value space of BRDF
• 2. Derive the equation for reflected direction Omega_r from shading document.
• Physical BRDF
• Ward Reflection Model
• Cook-Torrance model
• Lecture notes: lesson07Phys.pdf

• Lecture notes: lesson08.pdf
• Štátnicová téma: Tiene, typy tieňov (mäkké, tvrdé, statické, dynamické), typy a popis algoritmov (projekčné, tieňové objemy, tieňové mapy (shadow mapping)), spôsoby implementácie jednotlivých algoritmov, artefakty a ich odstraňovanie, príklad shader programov pre tieňové mapy. Artefakty spôsobené diskretizáciou. Tiene vo Phongovom modeli.

### Lecture09 "Texturing 1, 2."

• Texture parameterization
• Procedural methods
• Procedural textures
• Fractal landscapes
• Lecture notes: lesson09.pdf
• Book chapter (Surface reality techniques): lessonBoook09.pdf
• Štátnicová téma: Lokálne osvetľovacie modely. (tieňovanie, Phongov a Blinn-Phongov osvetlovací model, zložky (ambientna, difúzna, zrkadlová), textúrovanie a druhy textúr, mapovanie a filtrácia textúr, popísať princípy environment, bump, normal mapovania, textúrovací a tangenciálny priestor, príklad shader programov na GPU.

### Lecture10 "Image Based Rendering 1."

• Plenopticfunction
• Panoramas
• Concentric Mosaics
• Light Field Rendering
• The Lumigraph
• Lecture notes: lesson10.pdf
• Homework: Blinn-Phong enumeration.

### Lecture11 "Image Based Rendering 2."

• Layered Depth Images
• View-dependent Texture Mapping
• Surface Light Fields
• View Morphing
• Lecture notes: lesson10.pdf
• Štátnicová téma: Metódy zobrazenia scény množinou obrázkov. Definícia plenoptickej funkcie a jej tvorba, popis IBR (Image Based Rendering) metód ako sú Svetelné polia (Light Field), geometrické IBR metódy, aliasing a výpočet hustoty obrázkov, metóda svetelných polí na ploche objektu (Surface Light Fields)).

• Test problem introduction

# Seminars on Advanced Computer Graphics

## Rules / Info

• On every seminar we will implement selected problems/algorithms related to lessons. We will usually - not necessary start with a prearranged template downloadable from this site.
• As a programming language we will use C#. We will use Visual C# 2010 as development environment. Alternatively you can use MonoDevelop (Linux / Mac OSX) on your own machine.

## Homeworks

• You can get max 100% per homework. Submission after deadline is for 0%.
• There is a min 60% of your final evaluation required for admission to final term.
• Additional activity can be awarder by max 10% of your final evaluation.
• Don't cheat - create instead. Any kind of cheating is punished by withholding 30% of your final evaluation for all involved students.
• As a homework, you will program what we could not finish during the exercise. Assignment and template will be downloadable from this site. See exercises.

## Exercises

### Exercise01 "Ray Casting"

• Seminar slides
• Implement a camera class suitable for the ray casting method. As usual you should use a similar functionality as in the sample application. Application should specifically be able to:
• Render the scene (objects are movable).
• Move the camera in a 3D space.
• Change the camera's field of view (larger angle = more space to render), see Blender camera.
• Try to change the color of the intersected object due to distance from the camera
• [2 bonus %]:
• Create a camera which will rotate around defined point P (target) along a sphere with r = 1. You can use ideas from the Blender camera system and / or two-angle camera in openGL. Camera should use some sort of interactivity (2 angles) and targeted point P should be movable. Bonus camera can be created in a separated solution or you can change the structure in the template to implement two different cameras.
• Example Camera Movement
• Sample | Template
• Deadline: 4. 3. - 16:30

### Exercise02 [4.03.2015] "Primitives"

• Seminar slides
• Improve your tracer by adding a few primitives (ring, sphere, AABB box, triangle) [1] [2] [3] [4]. Each object should be movable. As usual you should use a similar functionality as in the sample application.
• [1 bonus %]:
• Create also a cylinder and a cone primitives
• Sample | Template
• Deadline: 11. 3. - 16:30

• Seminar slides
• Improve your tracer by adding shaders, shadows and lights. Implement checker and phong shader, sun light and hard shadows. Compute normals to each primitive in the point of intersection. As usual you should use a similar functionality as in the sample application.
• Sample | Template
• Deadline: 18. 3. - 16:30

### Exercise04 [18.03.2015] "Lights & Shadows"

• Seminar slides
• Improve your tracer by adding a point light, spot light [5] and an area light. In the case of point and spot light, define the light as a point with hard shadows and linear/quadratic light attenuation [6]. Area light could be defined by Lights x Lights point lights. Area light should also be able to produce soft shadows.
• [1 bonus %]:
• Write equation for illumination computed by sample code from seminar slides
• Sample | Template
• Deadline: 25. 3. - 16:25

### ExerciseLab [25.03.2015] "Laboratory Experiment"

• Could we imitate materials from the real world?
• Yes we can and we will. Choose a sample paint and
• Measure its color in Lab and Convert to RGB - Easy RGB (use illuminant D50)
• Measure gloss value in different conditions
• Fill out online form with selected results (during the seminar)
• Guidelines are in the template
• Submit your results as a regular submission by mail

• Seminar slides
• Improve your tracer by adding a few more shaders: Toon / Cell, Cook-Torrance, Oren-Nayar, Gradient. As usual you should use a similar functionality as in the sample application.
• Set Cook-Torrance color to match your measurements from Laboratory exercise.
• [2 bonus %]:
• Implement Ward Shader [ Example ]
• You should generate tangent space for each point on the sphere
• Remember to keep the same orientation of tangent space at each point
• You can replace Phong sphere with a Ward sphere
• Sample | Template
• Deadline: 15. 4. - 16:25

### FreeTime [08.04.2015] There is no seminar this week

• Seminar slides
• Improve your tracer by adding reflections and refractions to render mirror and glass objects. As usual you should use a similar functionality as in the sample application.
• '[1 bonus %]:
• Implement fresnel effect
• Sample | Template
• Deadline: 29. 4. - 16:25

### Exercise08 [29.04.2015] "Postprocessing"

• Seminar slides
• Implement blur. User can scale the intensity of blur [8]
• [2 bonus %]:
• Implement DOF. You can use definition from blur to create a fake DOF. User can define a point of sharpness and the intensity of the effect.
• Sample | Template
• Deadline: 6. 5. - 16:25

### Exercise09 [06.05.2015] "Textures"

• Seminar slides
• Deadline for laboratory exercise: 13. 5. - 16:30
• No other assignment this week