
Chapter 6: Lighting 
The last few years have seen an explosion in the use of computer graphics and realistic 
image synthesis. Realistic image synthesis is the process of creating synthetic images 
that are indistinguishable from images (photographs) of the real world. The rays of light 
or energy coming out of the light sources are bouncing around the room and finally 
reach the eye. To construct a picture of this room via computer graphics, we have to 
simulate this illumination process and be able to calculate the shading at each point of 
each surface in our scene. Calculating accurate values for the correct illumination of 
surfaces is possibly the most difficult task in computer graphics.  
 

6.1 Light Sources 
We can thing of a light source as a surface emitting the light from every point (x, y, z) 
that is characterized by the direction of emission and the intensity of energy emitted at 
each wavelength λ as illustrated in Figure 6.1a. Thus, a general light source is six-
dimensional illumination function I(x, y, z, θ, φ, λ). However, the model of human 
visual system is based on three-color theory, thus we can model the light source as 
having three components red, green, and blue and combine them to obtain the color that 
a human observer sees. Therefore, the light source is a vector I = (Ir, Ig, Ib)

T with 
independent red, green, and blue components. We will introduce four basic types of 
light sources: ambient lighting, point source, spotlight, and distant light.  
 

Is

Ps

θ
I

x

y

z

θ
φ

 
Figure 6.1. Light sources. Left) Illumination function. Right) Spotlight.  

6.1.1 Ambient Light 
The difficulties with accurately calculating interreflection between objects cause 
problems, and computer graphics community avoid them by approximating the total 
interreflection by a constant. In other words, we assume that there is a uniform light 
level, which illuminates each surface in the scene. This uniform lighting is called 
ambient light characterized by an intensity Ia = (Iar, Iag, Iab)

T. 
Global ambient term independent of any of the sources can be defined in OpenGL with 
the code 
 GLfloat global_amb[] = {0.2, 0.2, 0.2, 1.0}; /* gray ambient light */ 
 glLightModelfv(GL_LIGHT_AMBIENT, global_amb);  

6.1.2 Point Light Source 
An ideal point light source located at a position p0 emits light equally in all directions 
with intensity I(p0). The intensity of illumination received from a point source is 
proportional the distance between the source and surface given by a distance-
attenuation function 

 
 
 

where d is the distance between the source and the surface. Hence, the received intensity 
by the surface at point p is I(p, p0) =f(d) I(p0). The constant, linear, and quadratic terms 
characterized by constants a, b, and c are set in OpenGL by 
 glLightf(GL_LIGHT0, GLCONSTANT_ATTENUATION, a); 

Example 6.1: Point Light Source in OpenGL.  
Each light source must have individually defined its position, the amount of ambient, 
diffuse, and specular light in homogeneous coordinates: 
 GLfloat light0_position[] = {2.0, 22.0, 66.0, 1.0}; 
 GLfloat diffuse0[] = {0.0, 1.0, 0.0, 1.0}; /* green diffuse component */ 
 GLfloat ambient0[] = {0.0, 1.0, 0.0, 1.0}; /* green ambient component */ 
 GLfloat specular0[] = {1.0, 1.0, 1.0, 1.0}; /* white specular component */ 
Next we must enable both lighting and the particular source 
 glEnable{GL_LIGHTING}; 
 glEnable{GL_LIGHT0}; 
 glLightf(GL_LIGHT0, GL_POSITION, light0_position); 
 glLightf(GL_LIGHT0, GL_AMBIENT, ambient0); 
 glLightf(GL_LIGHT0, GL_DIFFUSE, diffuse0); 
 glLightf(GL_LIGHT0, GL_SPECULAR, specular0); 

6.1.3 Spotlight 
Spotlights are narrow beams of light rays which can be modeled effectively by a cone 
whose apex is at light position ps, which points in direction ls, and whose width is 
determined by an angle θ, as shown in Figure 6.1b. Note that for θ = 180°, the spotlight 
becomes a point source.  

6.1.4 Distant Light 
If the source is far from the surface we can replace a point source with a source that 
illuminates objects with parallel rays of light, a parallel source. The definition of 
parallel light in homogeneous coordinates is similar to the point source but the source 
location is replaced with the direction (with the fourth coordinate set to zero):  
 GLfloat light0_direction[] = {2.0, 2.0, 2.0, 0.0}; 
 glLightf(GL_LIGHT0, GL_POSITION, light0_ direction); 
  

6.2 Rendering equation 
Consider a simple scene with a single light source and two surfaces A and B. Some light 
that reaches the surface A is reflected to B where some of it is again reflected to A, and 
so on. This light transport is mathematically an integral equation, the rendering 
equation, which is used to find the shading of all surfaces in a scene. Because rendering 
equation cannot be solved even by numerical methods for a general scene, various 
simplifications and approximations, such as ray tracing and radiosity were discovered.  
Let us try to calculate the amount of light energy that lives from x in direction ωr . The 
quantity that measures the light energy from x in direction ωr  is called radiance, 

),(0 ωrxL  and is illustrated in Figure 6.2. Radiance is a five-dimensional quantity with 

three quantities for position and two for the direction ),( φθω =r

. The direction, ωv , is 
called the reflected direction. Point x could be emitting light energy, when it is a light 
source, in which case, a certain energy ),( ωrxLe  from x is transported in direction ωr . 

,
1

)(
2cdbda

df
++

=



There may be other light sources in the scene, and other reflecting surfaces. The total 
incoming light from these objects at x is scattered by roughness of the surface and a 
certain amount ),( ωrxLr  is reflected in direction ωr . Thus we can write that outgoing 
radiance, L0, is the sum of emitted radiance, Le, and the reflected radiance, Lr: 

).,(),(),(0 ωωω rrr

xLxLxL re +=  

 

),(0 ωrxL
ωr

),( ωrxL
r

Le

),( ωrxL
e

x

n
r

ωr

θ θ′

φ φ′

ω′r

 
Figure 6.2. Emitted and reflected radiance. 

 
Let us examine the reflected component Lr further. We consider any other point D in the 
scene and examine how the light energy coming from D could be reflected in direction 
ωr . If we note the incoming direction from D as direction ),( φθω ′′=′r  then the light 
energy contribution from ω′r to ωr  can be written as  

))(,(),,( nxLxf ir

rrrrv ⋅′′′ ωωωω , 

where ),( ω′rxLi is the incoming (or incident) radiance from direction ω′r to point x and 

),,( ωω rv ′xfr  is fraction of energy arriving at x which is reflected to direction ωr . Here n
r

 

is the surface normal at point x and Ω is the hemisphere of incoming directions at x. 
Note that θω ′=⋅′ cosn

rr

. If we consider all possible incoming direction we see that the 
reflected radiance, Lr, is integral over the hemisphere and ω′rd is a solid angle.  
Substituting this to the outgoing radiance we find that: 

.))(,(),,(),(),(0 ωωωωωωω ′⋅′′′+= ∫
Ω

rrrrrvrr

dnxLxfxLxL ire  

This is the rendering equation used in ray-tracing algorithms.  

6.3 Local Illumination Model 
In this section we will introduce tools for modeling the local light scattering at surfaces. 
We will investigate what happens when a beam of light strikes a given surface. In the 
graphics this is also known as local illumination.  

6.3.1 The BRDF 
The Bidirectional Reflectance Distribution Function, BRDF, was introduced as a tool 
for describing reflection of light at a surface. For the BRDF it is assumed that light 
striking a surface location is reflected at the same surface location. Thus BRDF is a 
seven-dimensional function having tree parameters for position, and two for each 
direction.  
The BRDF, fr, defines the relationship between reflected radiance and incident radiance: 

.
))(,(

),(
),,(

ωωω
ωωω

′⋅′′
=′

rrrr

r

rv

dnxL
xL

xf
i

r
r  

An important property of the BRDF is Hlemholtz’s law of reciprocity, which states that 
it is independent of the direction in which light flows: 

).,,(),,( ωωωω ′=′ vrrv

xfxf rr  
Another important property of BRDF is due to the energy conservation. A surface 
cannot reflect more light than it receives: 

.  ,1))(,(),,( ωωωωωω rrrrrrv ∀<′⋅′′′∫
Ω

dnxLxf ir  

6.3.2 Diffuse Reflection 
A surface with diffuse reflection is characterized by light being reflected in all 
directions when it strikes the surface, as shown in Figure 6.3a. A special case of diffuse 
reflection is Lambertian or ideal reflection, in which the reflected direction is perfectly 
random, see Figure 6.3b. As a result the reflected radiance is constant in all directions 
regardless of the incident radiance. This gives the constant BRDF, fr,d(x) and then the 
light energy contribution from ω′r to ωr  can be written as  

).)(()(, nxLxf idr

rr ⋅′ω  

We can simplify the above equation if we consider the reflection coefficient kd that 
represents the fraction of incoming diffuse light that is reflected. Note that the reflection 
coefficient corresponds to the constant BRDF. If Il is the intensity of the point light 
source then the diffuse reflection equation for a point on the surface can be written as 

),(, nlIkI lddiffl

r⋅=  

where l is the unit direction vector to the point light source from a surface position x. 
Note, that we obtain the same value for the illumination, regardless of how we observe 
the point. 

 
Figure 6.3. Diffuse material. Left) General diffuse reflection. Right) Lambertian diffuse 

reflection.  

6.3.3 Specular Reflection  
When we look at an illuminated shiny surface, typically a metallic surface, we see a 
highlight, or bright spot, at certain viewing directions. Most surfaces have some 
imperfections and as a result light is reflected in a small cone around the mirror 
direction as shown in Figure 6.4a. These surfaces are called glossy. For perfectly 
smooth surfaces we have the perfect specular reflection and the light is reflected only in 
the mirror direction, see Figure 6.4b. The mirror direction, sωr , is  

.)(2 ωωω ′−⋅′= rrrrr

nns  

We can express the perfect mirror reflection as a BRDF by using spherical coordinates 
for the directions; 

),()sin(sin2),,( 22 πφφδθθδρωω ±−′−′=′ sr xf
rv

 

where Dirac’s delta function, δ(x), is nonzero only when x = 0. Note that ),( φθω =r

 and 
),( φθω ′′=′r .  

 



Fresnel reflection: Fresnel reflection can be observed on metals and dielectrics. The 
reflected radiance due to specular reflection is 

),,()(),( ωρω ′= rr

xLxxL issr  

where ρs(x) is the fraction of the incident light that is reflected by the surface.  If the 
reflected fraction of light is given by the Fresnel reflection coefficient we will obtain the 
Fresnel reflections. For unpolarized light we can use a good approximation of Fresnel 
reflection coefficient 

,)cos1)(1()()( 5
00 θθρ −−+≈= FFFx rs  

where F0 is the value of the real Fresnel reflection coefficient at normal incidence.  
 
Refraction: For a ray of light in medium with index of refraction η1 that strikes a 
transparent material with index of refraction η2, we can compute the mount of light 
refracted into the object. The geometry of refraction is shown in Figure 6.5. Using the 
Snell’s law, the direction, rωr , of the refracted ray for a smooth surface with normal n

r

 
is computed as: 

.))(1(1))(( 2

2

2

1

2

1 nnnnr

rrrrrrrr














⋅−








−−⋅−−= ω

η
ηωω

η
ηω  

The amount of transmitted light for the refracted ray can be calculated as ρs(x) = 1 - Fr. 
 
The Phong specular model: Phong proposed on approximate model that can be 
computed with only a slight increase over the work done for diffuse surfaces. The 
Phong specular model uses the equation  

,  ,)(
vl

vl
hnhLkI sn

sss +
+=⋅=

r

r

r

 

where v is the unit viewing direction. The ks (0 ≤ ks ≤ 1) is the fraction of the incoming 
specular light that is reflected and the exponent ns is a shininess coefficient. Values in 
range 100 to 500 correspond to most metallic surfaces, and infinity gives the mirror 
reflection.  

n
r

n
r

θ θ

 
Figure 6.4. Specular surface. Left) Glossy specular reflection (i.e. a rough mirror). 

Right) Perfect specular reflection. 

n
r

θ1 θ1η1

η2 θ2

ωr
s

ωr

r
ωr

 
Figure 6.5. The geometry of reflection and refraction.  

6.3.4 Putting the Ambient, Diffuse and Specular Components 
Together 
The Phong reflection model is a phenomological model with no physical basis. 
However, it is simple and it is implemented in OpenGL.  
For a single point light source, we can combine the ambient, diffuse and specular 
reflections from a point on a surface. The contribution of each component is controlled 
by ambient, ka, diffuse, kd, and specular, ks, coefficients. Therefore the Phong model is 
written as: 

.)()( sn
lsldaaspecdiffambient nhIknlIkIkIIII

r

r

r ⋅+⋅+=++=  

Figure 6.6. illustrates the results of illumination with ambient light for different 
constants ka in top row, the bottom row illustrates the specular reflection for different 
constants ks. For an RGB color representation we can set surface color by specifying the 
ambient, diffuse, and specular coefficients as three-element vectors. The diffuse vector, 
for example, would then have RGB components (kdR, kdG, kdB). The intensity calculation 
for multiple light sources, Ili, and distance attenuation function, fi(d), assigned for each 
light source can be expressed for each color component separately. To use multiple light 
sources in a scene we must sum the contributions from individual light sources. We 
write the Phong model for a B color component as 

[ ].)()()(
1
∑

=

⋅+⋅+=
n

i

n
isBidBlBiiaBaBB

snhknlkIdfIkI
r

r

r

 

OpenGl uses three-element vectors to set surface color, for example, we might define 
ambient, diffuse, and specular coefficients (ka, kd, ks) for each primary color RGB 
through arrays: 

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};  
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};  
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};  
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);  
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse); 
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular); 

The shiness exponent in the specular reflection term is specified as 
 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 100.0); 
 



  

  
Figure 6.6. Top row: Sphere illuminated with different ambient light. Bottom row: 

Result of increasing the specular parameters. 

6.4 Global Illumination Model 
The local illumination model has limitations. For example all objects are shaded 
separately not taking into account inter-reflections with other objects in the scene. It is 
the responsibility of the global illumination algorithm to calculate how light leaving the 
light source interacts with the scene.  
 

6.4.1 Neumann Series Solution to Rendering Equation 
If we look at the rendering equation closely we see that the radiance is on both sides of 
the equation, which prevents us to solve the equation directly. Consider again our 
simple scene with a single light source and two surfaces A and B. Some light that 
reaches the surface A is reflected to B and again reflected to A. In such case the quantity 
that we wish to calculate will appear on both sides of equation and thus makes it very 
difficult to solve. One way to get around this problem is to recursively replace the 
incident radiance on the right side with the expression for the radiance. It is more 
convenient to write the rendering equation expressed in terms of an integral operator, K: 

L0 = Le + KL0, 
Here L0 corresponds to the radiance term, Le corresponds the emitted radiance, and the 
integral operator K applied on a function g is defined by: 

.))(,(),,( ωωωωω ′⋅′′′= ∫
Ω

rrrrrv

dnxgxfKg r  

Thus, by recursive evaluation the solution of the rendering equation is the Neumann 
series: 

∑
∞

=

=++++=
0

32
0 ....

m
e

m
eeee LKLKLKKLLL  

Each application of the operator, K, corresponds to an additional light-surface 
interaction along a ray path from light source to the eye. The Neuman series is the basis 
for several ray-tracing algorithms.  

6.4.2 Ray Tracing 
Ray tracing is an extension of the local illumination approach. In ray tracing method the 
light rays are processed in inverse direction. It is assumed that all rays start at the eye of 
an observer (the center of projection), pass through the image plane toward objects in a 
scene, and finally reach the light sources. This approach reduces the number of cast rays. 
Knowing that we must assign a color to every pixel, we must cast at least one ray 
through each pixel and compute the color (the average radiance).  
 

Definition 6.1: A ray, r, has the form 
,),( ωω rr

dxxr +=  
where x is the origin of the ray, ωr  is the direction of the ray, and d is the distance 
moved along the ray. The rays from observer through the pixels are called the primary 
rays. 
 
To compute the radiance we must find the nearest object intersected by the ray (smallest 
d). For every intersection point reflected ray in direction sωv  and refracted ray in 

direction rωv  are generated. These rays can hit the other objects along their path as 
illustrated in Figure 6.7a. Therefore, ray tracing is perceived as a binary tree parsing 
process. Nodes of the ray tree are intersection points and edges are the rays as shown in 
Figure 6.7b. The recursive nature of the algorithm can be used in implementation by the 
recursive calls of a ray tracing procedure for every node of the ray tree.  
Given an intersection point, p, we need to find the outgoing radiance, L0, in the 
direction of the ray.  The local illumination models are used to calculate the radiance at 
p, for example the Phong model (used by OpenGL) or the rendering equation. For this 
purpose we need to know the surface normal, n

r

, at p as well as the BRDF, fr or the 
specular coefficients ka, kd, ks. With this information we can compute the illumination 
from each light source by estimating the incident radiance at p.  
Finally, the color of a pixel is the sum of all local radiances calculated for every 
intersection point of a primary ray along its path. The radiance is summed up starting 
from leaves of the tree toward its root.   

r2

r1
t1

t2r3 r4

p
S1

S3S2 S1

S2

S3

S1

r2

r1 t1

t2r3

r4

 
Figure 6.7. Recursive ray tracing. Left) Reflected and refracted ray paths through a 

scene. Right) Binary ray tree for the paths shown. Nodes are the intersected points of 
objects and edges are rays. 

 
Unfortunately, ray tracing is not a full global illumination process. It cannot compute 
the indirect illumination on the diffuse surfaces. In the light transport notation using the 
regular expression we find that ray tracing can compute light path of the form: 

LD?S*E 
where L is the light source, E is the eye, S is a specular reflection, and D is a diffuse 
reflection. Any particular type of ray path can be represented by a string of symbols 
from the alphabet {L, D, S, E}. The symbol ‘*’ indicates any number of repetitions of 
term, and the symbol ‘?’ indicates zero or one repetition. For example S* is a set {0, S, 
SS, SSS, …} indicating the infinite number of ray bounces via specular reflection. 
Notice that the ray tracing cannot handle the ray paths containing the sequence DSD or 
DD. We can conclude that ray tracing works well for highly specular surfaces and 
translucent objects, such as glass.  



6.5.3 Radiosity 
If we make the assumption that all surfaces are perfectly diffuse, we can simplify the 
rendering equation such that the numerical solution can be found by a radiosity method. 
Radiosity is best suited for scenes with perfectly diffuse surfaces, such as interiors of 
buildings. 
The basic method brakes up the scene into small flat polygons, or patches, each of 
which can be assumed to be perfectly diffuse and renders in constant shade. The 
problem is to find these shades. We can find them in two steps. In the first step, we 
consider patches pairwise to determine form factors that describe how the light energy 
leaving one patch affects the other. Once the form factors are determined, the rendering 
equation can be reduced to a set of linear equations for the radiosities of patches. Once 
we solve these equations, we can render the scene using any renderer with flat shading. 
Form factor Fjk is the fractional amount of outgoing radiance from surface j that 
reaches surface k. Note that Fkk = 0. A form factor is a dimensionless quantity. The 
accurate calculation of the form factor, Fjk, involves placing a hemisphere, with unit 
radius, at a point on a surface j. The second surface, k, is projected on to the hemisphere, 
and then projected onto the base of the hemisphere. The form factor is then the area 
projected on the base of the hemisphere divided by the area of the base of the 
hemisphere, as illustrated in Figure 6.8.   
Radiosity equation is derived from rendering equation assuming N diffuse surfaces in 
the scene. The outgoing energy is expressed with 

∑
=

+=
N

j
jkjkkk FBEB

1

,ρ  

where radiosity parameter Bk is the total rate of energy leaving the surface k per unit 
area, Ek is the emitted radiance (nonzero for light sources), parameter ρk is the 
reflectivity factor for surface k. For a given Ek, ρk, and Fjk we must find unknown Bk. 
We can rewrite the radiance equation into the system of linear equations with unknowns 
on the left side 

.,...,3,2,1      ,)1( NkEFBBF k
kj

jkkkkkkk ==−− ∑
≠

ρρ  

k

Ajk

j
1

Fjk = Ajk/π

 
Figure 6.8. Form factor calculation. 

6.5.4 Stochastic Methods 
Photon mapping is an efficient global illumination technique for realistic image 
synthesis that has been developed in computer graphics in the last few years. With 
photon mapping it is easy to simulate caustics (for example, the light focused through a 
glass onto a table), color bleeding (such as the soft rendering of white wall due to an 

adjacent red carpet), participating media (for example, a room filled with smoke), and 
subsurface scattering (noticeable for example on plant leaves).  
The first step is building a photon map using photon tracing and counting the photons. 
This photon can then be visualized directly by using a simplified ray tracer. This ray 
tracer uses the radiance estimate from the photon map to compute the reflected radiance 
from all diffuse materials and standard recursive ray tracing for specular materials. The 
paths traced by photons are L(S|D)*D and the paths traced by the ray tracer are 
(LS*E)|(DS*E), where symbol ‘|’ indicates the logical OR operation. The combination 
of those paths shows that the method does indeed trace all paths between the eye and 
the light source.  

6.6 Program: Lighting with OpenGL 
 

Exercises 
6.1 Show that the halfway vector h

r

 is at the angle at which a surface must be oriented 
so that the maximum amount of reflected light reaches the viewer. 
6.2 Write a pseudocode routine ray that recursively traces a cast ray. You can assume 
that you have a function available that will intersect a ray with an object. Consider how 
to limit how far the original ray will be traced. 
6.3 Write a program in OpenGl to use Phong illumination method using a single point 
light source, ambient light, and specular surfaces. Try to create light sources that move 
in the scene. 
6.4 Calculate the intersection point of a ray with sphere and ray with polygon. 
6.5 Discuss the acceleration techniques for ray intersection with objects in a scene. 
6.6 Show that the halfway vector h

r

is in the same plane as v, l, and n
r

. 
6.7 Proof the equations for reflected direction, sωr , and refracted direction, rωr  using 

Snell’s law .sinsin 2211 θηθη =  
 
 

References 
Angel A. 2000. Interactive Computer Graphics a Top Down Approach with OpenGL, 
Addison-Wesley, Reading, Massachusetts, 2nd edition. 
 
Hearn D. and Baker M.P. 1994. Computer Graphics, Prentice Hall, New Jersey, 2nd 
edition. 
 
Jensen H. W. 2001. Realistic Image Synthesis Using Photon Mapping, A K Peters, 
Natick, Massachusetts. 
 
Cohen M.F. and Wallace J.R. Radiosity and Realistic Image Synthesis, … 
 
 


