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Abstract

Reinforcement learning is a modern method of learning. It helps to solve many problems

which comprise some notion of a short-term or long-term reward. It was successfully applied

in the �elds like robot control, elevator scheduling, problems in telecommunication, and

chess. However, there are tasks involving the concept of reward, that we are not able to

successfully solve. The existing theory provides only a few clues. The goal of this thesis

is to try to solve the problems of only partially observable Markov processes or those that

do not have the Markov property. We focus on tasks where a possibility to derive a world

model brings an advantage.

First, we explain basic concepts of reinforcement learning, together with some other

concepts, which are necessary for comprehension of the following text. We show limitations

of basic methods of reinforcement learning. Then we present our own framework, which

enables the agent to derive a world model using abstraction and use the model for decision

making. Next, we present a prototypical implementation and demonstrate it on practical

examples. Our method, reinforcement learning with abstraction (RLA) was able to solve

a classical maze, a �letter� maze (a maze, where agent sees cells only as arbitrary letters

assigned to them), three dimensional maze, maze with teleports, and was also able to solve

a �protocol discovery� problem.

We have tested the performance on classical maze problems with varying size. Our

method performed better than UDM method [McCallum, 1992]. It performed better in

terms of steps necessary to discover the environment even with generic method, which were

allowed full observation. When deprived of full observation, generic methods are not able

to solve the problem. Thus, for some partial observation tasks, RLA can be one of few

methods available.

We conclude the work with potential contribution and possible improvements.

Keywords: reinforcement learning, abstraction, world model, agent, grammar induction,

automaton inference, model inference, Markov decision process, partial observability
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Foreword

�Thou shalt not make a machine in the likeness of a man's mind� is a chief commandment

from the O. C. Bible � a religious book in a �ctional world from the book Dune by Frank

Herbert. In this world intelligent machines threatened humans and eventually were all

destroyed in a �jihad�. The reconstruction of thinking machines was forbidden forever.

However, we do not live in this �ctional universe. We hope that intelligent machines

could be useful and in fact, we are using a number of quasi-intelligent machines. The whole

�eld of Arti�cial Intelligence is to some extent concerned with the question how to create

machines as intelligent as possible.

Although this work does not attempt to mimic human mind, our brains and minds

are, and always have been, interesting, inspiring, and fascinating. One of the inspiration

is the ability to create abstract concepts, which led us to considerations about minimum

description length principle. The other inspiration is the ability to act and to learn from the

experience, which leads us to reinforcement learning. Combining reinforcement learning

with (at this time, very basic) ability to abstract seems to be a promising way how to solve

simple tasks in partially observable worlds.

1



Introduction and overview

In this work, we rely on two concepts: reinforcement learning and abstraction. The rein-

forcement learning is a well-established paradigm. In Chapter 1 we explain its concepts,

examples, and methods. We also mention standard problems and challenges for reinforce-

ment learning. In Chapter 2 we explain basic concepts from the theory of formal languages.

These concepts are necessary to describe the symbolic operations of the agent.

One of the challenges in the �eld of reinforcement learning is the problem of partially

observable world (Chapter 3), which is the main theme of this work. How can the agent

create a world model from partial observations? Here we connect with the second concept

� abstraction. This notion is not so well-established, the interpretations of this concepts

vary. We have tried to narrow its de�nition in order to be able to work with it and create

an implementation based on this approach .

The goal of this work � to create a reinforcement learning method with the ability of

abstraction � is presented and motivated from the theoretical point of view and also from

the view of biological plausibility. The concept of abstraction is formalized and methods

for its creation are introduced. From these, grammatical induction is a prominent one. It is

an elegant and powerful method. However, its drawback is the computational cost (or even

intractability). The necessity of the computational requirements is debated. The leading

principle here is that it is better to solve the problem correctly at a great computational

cost, than to solve the problem incorrectly or not to solve it at all.

The general framework for solving problems in partially observable world � RL with

Abstraction Framework is presented in Chapter 4. A concept of meta-planning is also

introduced here. Chapter 5 contains a prototypical implementation and in Chapter 6 we

present the results of its testing and comparison to other approaches. The work concludes

with Chapter 7 which recapitulates the results and presents possibilities for future work.

The work also contains two appendices � Appendix A contains an illustration of the

model development. Appendix B contains a documentation for the source code of our

2



3

method.

We would like to make a small language note here. We have chosen to use the animate

pronoun �he� for the rational agent we are speaking about, although the agent is not alive.

We have two reasons for this: First, we think it will help the reader to distinguish between

the �animate� agent and the �inanimate� environment. Second, we are used to refer to the

agent in this way similarly as the sailors are used to proudly call their ship �she�.



Chapter 1

Reinforcement learning

1.1 Introduction

Reinforcement learning is a mode of learning inspired by behaviorism. First notions of

reinforcement were introduced by Skinner [1938]. Reinforcement learning lies in the fact

that the learning agent acts on the basis of inputs (observations) from the environment,

but the feedback � numerical evaluation signal (reward or punishment) � can be arbitrarily

delayed. Therefore, he never sees the correct action in a given situation. Also, the fact

whether the action was correct can only be inferred indirectly from an arbitrarily delayed

reward signal. The agent's goal is to maximize this reward in the long term.

�Reinforcement learning is learning what to do � how to map situations to actions � so

as to maximize a numerical reward signal. The learner is not told which actions to take, as

in supervised forms of machine learning, but instead must discover which actions yield the

largest reward by trying them. In the most interesting and challenging cases, actions may

a�ect not only the immediate reward but also the next situation and, through that, all

subsequent rewards. These two characteristics � trial-and-error search and delayed reward

� are the two most important distinguishing features of reinforcement learning � [Sutton

and Barto, 1998].

An important feature of reinforcement learning paradigm is that the agent has an active

impact on the environment via his actions. Although, in general, several methods are used,

any method that meets the described characteristics could be considered a reinforcement

learning method.

4



CHAPTER 1. REINFORCEMENT LEARNING 5

Figure 1.1: Model of reinforcement learning: agent interacts with the environment

1.2 De�nition of the reinforcement learning problem

1.2.1 Markov property

The Markov property, or Markov assumption (originally formulated by Markov [1906]), is

a useful concept in de�ning a �memoryless� stochastic process, i.e. that the conditional

probability distribution of the next state depends only upon the present state. Knowledge

of the history of the process does not add any new information. Formally:

De�nition 1 (Markov property). Let {X(t), t ≥ 0} be a time continuous stochastic process

which assumes non-negative integer values. The process is called a discrete Markov process

if for every n ≥ 0, time points 0 ≤ t0 < t1 < . . . < tn < tn+1 and states i0, i1, . . . , in+1 it

holds that

P (X(tn+1) = in+1 | X(tn) = in, X(tn−1) = in−1, ..., X(t0) = i0) =

= P (X(tn+1) = in+1 | X(tn = in)).
(1.1)

In the reinforcement learning problem the agent interacts with the environment (see

Figure 1.1). In time intervals t = 0, 1, 2, . . . the agent receives information � observed state

st and chooses, according to his strategy, an action at from a pre-de�ned set A. As a

result of this action, the state of environment changes. The agent again receives the next

observation st+1, and receives also a numeric reward rt+1
1 (which may be zero). This is

1The notation for reward varies in the literature. Some authors choose to denote the reward rt to
emphasize that the reward is given as a response to the action at. It is possible to use the notation
rt, in this case, the series of observations, actions and rewards is s0, a0, r0, s1, a1, r1, s2, . . .. It is also
possible to use the notation rt+1 as we do, in this case the series of observations, actions and rewards
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repeated. The numeric reward is computed according to the agent's performance. Thus,

the reward can be the result of a long-term interaction and is not only an immediate result

of the preceding action.

Usually the environment is seen as a Markovian process. The transitions between

states can be stochastic. This illustrates the fact, that agent's actions may not be perfect

or successful. It can also happen, that the agent has only limited access to the environment

state, for example if his sensors are inaccurate. The access to the environment state can

also be limited by the nature of the task: if the agent plays poker, he does not see into the

cards stack.

The agent moves and interacts with the environment during some time. The task can

end after a limited, pre-speci�ed time, or after ful�lling a goal, or can continue for an

unlimited amount of time. The goal of the agent is to maximize the reward in this span of

time. This long-term return (beginning at time t) is usually formalized as the sum

R(t) =
T∑
i=t

ri · γi−t, (1.2)

where T is the total time of the task and 0 < γ ≤ 1 is the so called �discount factor�. The

discount factor speci�es, how valuable are rewards in a distant time. If the total time T

is pre-speci�ed and �nite (an episodic task), the case γ = 1 is allowed � here all rewards

are considered equally valuable. In the other case, the inequality must be strict so it is

guaranteed that the sum will not reach an in�nite value.

1.3 Value-function methods of reinforcement learning

The methods for solving the reinforcement learning problem are based on the following:

The agent internally maintains an estimated valuation (assignment of values) of states and

expected outcome of actions. According to a chosen policy he decides which action to

perform.

• The policy π(s, a) denotes the probability that the agent takes the action a in the

state s. It usually depends on the value of s and a (for example, the policy may be

�take the action with the maximum value�, called greedy). It may be deterministic,

in case the notation π(s) = a is used for the action taken in the state s.

is s0, a0, r1, s1, a1, r2, s2, . . .. As the agent receives the resulting state and the reward simultaneously,
swapping them makes no di�erence, neither does shifting the index by one.
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• The state-value function V π(s) denotes the expected (discounted) reward, if he occurs

in state s and follows the policy π.

• The action-value function Qπ(s, a) denotes the expected (discounted) reward, if he

occurs in state s, takes the action a and then follows the policy π.

The action-value function is useful when the agent wants to take an action di�erent

from what will be appropriate according to the policy. For example, he does not want

to execute the action with the best value, but an unknown action in order to explore

the environment. Thanks to the separation of the action-value function and state-value

function this �improvisation� will not in�uence the evaluation of the policy.

1.4 Bellman equation

Richard Bellman has formulated a necessary condition for optimal solution of problems

solved by dynamic programming.

Theorem 1 (Principle of Optimality). [Bellman, 1957] An optimal policy has the prop-

erty that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the �rst decision.

This principle is used to split the problem to small parts, recursively going from the

�rst step to the next. In the problem formalized by a Markov Decision Process (MDP) it

holds:

V π(s) = Eπ{Rt|st = s} = Eπ{rt + γ
∑
s′

P (s′|s, π(s)) · V π(s′)|st = s} (1.3)

This means that a value of a state following some policy is equal to immediate reward and

discounted future rewards obtained when following this policy.

For an optimal valuation and optimal policy it holds, that:

V ∗(s) = max
a
E{rt + γV ∗(st+1)|st = s, at = a} (1.4)
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double ep s i l o n = 1e−3; // s topp ing c r i t e r i o n f o r d i f f e r e n c e
double de l t a ; // ac t ua l d i f f e r e n c e

foreach ( s in Sta te s )
V( s )=0;

do {
de l t a = 0 ;
foreach ( s in Sta te s )
{

VoldValue = V( s ) ;
sum = 0 ;
foreach ( a in Actions )
{

foreach ( s2 in Sta te s )
sum+=Pol i cy ( s , a ) ∗ Probab i l i t y ( s , a , s2 ) ∗ Reward ( s , a , s2 ) +

gamma ∗ V( s2 ) ;
}
V( s )=sum ;
de l t a=max( de l ta , abs (V( s ) − vOldValue ) ) ;

}
} while ( d e l t a > ep s i l o n ) ;

Figure 1.2: The algorithm for dynamic programming

1.5 Algorithms for reinforcement learning

1.5.1 Dynamic programming

Dynamic programming approach is based on a direct iteration of states and actions values

(Fig. 1.2). We can a�ord this if we are not concerned about the computational time, and

if we have the complete world model available (for example, a full Markov decision process

is known, including the transition probabilities).

The equation for updates of the value function in dynamic programming is derived from

Bellman equation (1.3):

Vk+1(s) = Eπ{rt+1 + γVk(st+1)|st = s} =

=
∑
a

π(s, a)
∑
s′

P (st+1 = s′|st = s, at = a) · E{rt|st = s, at = a, st + 1 = s′}

+γVk(s
′) (1.5)
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Dynamic programming is computationally intensive, however, it has been proven to

converge to the optimum [Sutton and Barto, 1998]. This is not guaranteed for other

strategies. As we can see, the program uses the so called �in place� value updates, instead

of updating the whole vector of values at once (using a temporary copy). Both approaches

are possible, the �in-place� approach appears to be faster, as explained by Sutton and Barto

[1998]: �To write a sequential computer program to implement iterative policy evaluation,

as given by (1.5), you would have to use two arrays, one for the old values, and one for

the new values. This way, the new values can be computed one by one from the old values

without the old values being changed. Of course it is easier to use one array and update

the values `in place,' that is, with each new backed-up value immediately overwriting the

old one. Then, depending on the order in which the states are backed up, sometimes new

values are used instead of old ones on the right-hand side of (1.5). This slightly di�erent

algorithm also converges to V π; in fact, it usually converges faster than the two-array

version, as you might expect, since it uses new data as soon as they are available. We

think of the backups as being done in a sweep through the state space. For the in-place

algorithm, the order in which states are backed up during the sweep has a signi�cant

in�uence on the rate of convergence. We usually have the in-place version in mind when

we think of DP algorithms� [Sutton and Barto, 1998].

Other approaches, such as solving the respective linear equations, are possible. How-

ever, they seem to be slow and are not used in practice. �Other ways to �nd Qh include

online, sample-based techniques similar to Q-learning, and directly solving the linear sys-

tem of equations. (...) The main reason for which policy iteration algorithms are attractive

is that the Bellman equation for Qh is linear in the Q-values. This makes policy evaluation

easier to solve than the Bellman optimality equation (1.4), which is highly nonlinear due

to the maximization in the right-hand side� [Babu²ka and Groen, 2010].

1.5.2 Monte Carlo

Monte Carlo method (�rst used for pole balancing by Michie and Chambers [1968]) is based

on experience. The agent learns by averaging the samples from the on-line interaction or

from the simulation. Monte Carlo does not need a given Markov model nor does create

it. It can be used to solve episodic tasks only � it requires the episode to end. After

each episode, the reward is used for updating the estimation of state-action pair value: the

estimation Qπ(s, a) is computed as the average of the returns that have followed visits to

the state s in which the action a was selected. After a su�cient number of episodes the
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average is a good estimation of state-action value function Qπ. This step � computing an

estimation of Qπ for a given policy π � is called policy evaluation.

After we have evaluated the policy π, we can modify it by making the policy greedy

with respect to the current value function. We update π as follows:

π(s) = arg max
a
Q(s, a).

This step is called policy improvement. The steps for policy evaluation and policy im-

provement are repeated. For Monte Carlo it is usual to execute policy improvement after

each episode, i.e. evaluation and improvement alternate on an episode-by-episode basis.

1.5.3 Temporal di�erence learning

Temporal di�erence learning improves the Monte Carlo method. While Monte Carlo waits

with an update until the result of the action is known, TD-learning uses the expected value

(Fig. 1.3). This is similar to the dynamic programming method. TD-learning does not

create a world model as well. Let us suppose that at time t the agent visited state st. To

update state-value function, Monte Carlo needs to know R(t), the actual return following

time t (de�ned in Eq. 1.2), which is known only after the episode ends. TD-learning

instead approximates R(t) using the immediate reward rt, and using the current value of

V (st+1) as an estimation of future returns.

R(t) =
T∑
i=t

ri · γi−t = rt + γ
T∑

i=t+1

ri · γi−(t+1) = rt + γV (st+1) (1.6)

To incrementally update V (s) in each step, we choose a parameter α. The update can

be then be given as

V (st)← V (st) + α[Rt − V (st)] = V (st) + α[rt + γV (st+1)− V (st)] (1.7)

1.5.4 Q-learning

The Q-learning, proposed by Watkins [1989], uses a similar mechanism to learn the state-

action function Q instead of the value-function V . The update is given by
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const double alpha ; // l e a rn ing ra t e

foreach ( s in Sta te s )
V( s )=0;// anyth ing

foreach ( ep i sode in Episodes )
{

State s = ep i sode . s t a r t S t a t e ( ) ;
for ( t in Time)
{

a = getAct ion ( ) ; // accord ing to the p o l i c y
ExecuteAction ( a ) ;
r = getReward ( ) ;
s2 = getSta t e ( ) ;
V( s )=V( s ) + alpha ∗ ( r + gamma∗V( s2 ) − V( s ) ) ;
s = s2 ;
i f ( ep i sode . end ( s ) )

break ;
}

}

Figure 1.3: TD-learning algorithm
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Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (1.8)

The learned action-value function Q directly approximates optimal Q∗, independent of

the agent's policy π. Sutton and Barto [1998] note, that this dramatically simpli�es the

analysis of the algorithm, and that it was one of the most important breakthroughs in

reinforcement learning.

1.5.5 Q(λ)-learning

Q(λ)-learning (also suggested by Watkins [1989]) uses so called eligibility traces2. The trace

represents how much is a state or action eligible for learning changes. When a reinforcement

event � a di�erence between expected and obtained reward � occurs, only the values for

eligible states and actions are modi�ed. Naturally, only states and actions that were

executed are eligible, and are eligible proportionally to the recency of their occurrence.

Also, Q-learning uses the maxaQ(st+1, a) term, which can be di�erent from the actual

term for the action executed, in case that an exploratory step, and not the greedy one, was

performed. In this case the causal chain must be also interrupted � previous actions and

states are not �responsible� for the future outcome. Formally, eligibility trace et(s, a) has

the following value:

et(s, a) =

1, if s = stand a = at

0, otherwise
+

γλet−1(s, a), if maxaQt−1(st, at) = Qt−1(st, a)

0, otherwise
(1.9)

The update of Q is then de�ned by

Qt+1(st, at)← Qt(st, at) + αet(s, a)[rt+1 + γmax
a
Qt(st+1, a)−Qt(st, at)] (1.10)

1.5.6 SARSA

The problem with Q-learning is, that the update is computed always using the greedy

policy (the maxaQ(st+1, a) term) without taking into aspect the policy which is the agent

2The concept of eligibility traces can be applied also to TD-learning and SARSA, we refer the reader
to Sutton and Barto [1998] for details.
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using for exploration. On the other hand, using always the greedy policy slows down the

learning rate at the beginning, because other actions with lower predicted value may in

fact be better.

The SARSA [Rummery and Niranjan, 1994] uses instead the state-action value associ-

ated with the action chosen by the current policy:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, a)−Q(st, at)] (1.11)

This update is done for every quintuple (st, at, rt+1, st+1, at+1). The letters in the quin-

tuple have given the algorithm its name SARSA.

1.5.7 Actor-Critic methods

Advanced methods separate the action selection from the action evaluation. When choosing

a random action we divert from the policy, which can lead to a di�erent result than we might

get if we follow the policy. Thus, the result of the random action should not be counted

into evaluation of the given state. Instead of this, we will evaluate, if the reward has risen

or fallen in comparison with the expectation. According to this error, the execution of the

action in this state will be reinforced or weakened (Fig. 1.4).

1.5.8 Continuous methods

We can use function approximators, such as neural networks, to build the Actor/Critic

mechanism. The neural network can generalize the experiences by making a good ap-

proximation. An additional bene�t is that a neural network can operate on continuous

input states and action space. This makes them a good candidate where the state space is

continuous. (In order to use a discrete method we would have to arti�cially discretize the

inputs.)

1.6 Human reward system

The concept of RL developed in the machine learning community has biological relevance,

because the system of rewards functions also in animals, including humans. Thus, we

brie�y present also this overview.

The human reward system [Routtenberg, 1978] comprises ventral tegmental area, nu-

cleus accumbens, amygdala, medial septum (clusters of neurons near septum pellucidum,
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Figure 1.4: Actor-Critic
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see Figure 1.5), and possibly hippocampus. The reward system controls our behavior by

providing pleasure or unpleasant feelings. Rewards can stem from actions necessary for

survival, such as obtaining food or sexual activities, or from situations which are somehow

associated with them but do not provide direct survival, e.g. touch, money, art, and so on.

Figure 1.5: An illustration of human reward circuit [Dubuc, 2012], showing ventral tegmen-
tal area (VTA), medial septum, nucleus accumbens, and amygdala. These centers are
tightly connected to hypothalamus, which is responsible for various regulatory functions,
and to prefrontal cortex, which carries out executive functions.

We usually try to maximize our happiness, seeking experiences which are enjoying. The

use of drugs can lead to pleasing experience, thus a person easily becomes addictive. The

addiction is stronger, as the experience is stronger, more �pleasant� (hard drugs such as

cocaine). Since our motivational system works in a similar way, we can say, that we are

�addicted� to happiness.

Dopamine is a neuromodulator, which has many important functions in animal and

human brains. Its roles include �behavior and cognition, voluntary movement, motivation,

punishment and reward, sexual grati�cation, sleep, mood, attention, working memory,

learning, and aggression� [Couppis and Kennedy, 2008]. Some researchers consider the

role of dopamine to be motivation and desire instead of pleasure (�want� versus �like�).

Dopamine may function analogically to temporal di�erence learning, where reward error

is used as a teaching signal [Redgrave and Gurney, 2006]. When we get a greater reward

than expected, this increases �ring of neurons activated by dopamine. This leads to greater
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motivation to repeat the behavior. If the reward is lower than expected, neurons �re less

and our motivation decreases [Arias-Carrión and Pöppel, 2007].

It is interesting, that in insects, dopamine's role is reversed. Here, releasing dopamine

provides a punishment.

Other neuromodulator besides dopamine, which may contribute to the attention and

mood is serotonin, which is also released when a positive event occurs.

It is also possible to induce direct electrical impulse to the septal area, what causes

a rewarding stimulation. In the experiment by Olds and Milner [1954], the stimulation

was linked to lever pressing. The rats pressed the lever as many times as possible, until

exhaustion. After waking up, they began to press again.

1.7 Biological plausibility of RL

As mentioned in Section 1.6, the dopamine neurons appear to function in a similar way as

the error function in temporal di�erence learning. In TD learning, the error function is the

di�erence between estimated and actual reward. Used in the equation it drives the change

necessary to accurately re�ect the stimulus value and adapt to the environment. In an

experiment [Schultz, 1998] the monkeys were trained to associate a stimulus with a liquid

reward. If the liquid reward occurred according to the prediction due to the stimulus,

dopamine neurons did not �re. If the reward occurred although no conditioned stimulus

was present, a positive error occurred and dopamine neurons were activated. If the stimulus

occurred, but the reward was missing, a negative error was re�ected by depression of the

dopamine neurons.

An alternative algorithm to TD learning, based heavily on experimental data from

conditioning, was proposed, called The primary value learned value (PVLV) model [Hazy

et al., 2010].

Dynamic treating regime in medicine

Dynamic treating regime is a treatment method based on optimizing a concrete individual

patient's medical outcome. It is the application of methods analogous to reinforcement

learning. The �reward� can be in�uenced by multiple goals, such as symptoms, time, cost,

risks etc.
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1.8 Standard challenges for reinforcement learning

Reinforcement learning is used to solving various problems. Because of its generality, it

meets various challenges which have to be understood and resolved in order to use the

method to solve the problem.

1.8.1 Curse of dimensionality

This di�culty occurs when a problem is represented exactly in all real-world details. Usu-

ally, all possible actions and all possible states form a huge state space; this means the

agent in the search of optimum must explore the whole vast space.

The solution may be to work with a less-detailed representation (with some parameters

neglected, actions constrained, and so on) or to use a function approximation (such as a

neural network) which generalizes the value function. Then, the agent has to explore only

a smaller fraction of the world.

1.8.2 Temporal credit assignment problem

The Universe has as many di�erent centers as there are living beings in it. Each

of us is a center of the Universe, and that Universe is shattered when they hiss at you:

�You are under arrest.� If you are arrested, can anything else remain unshattered by

this cataclysm? But the darkened mind is incapable of embracing these displacements

in our universe, and both the most sophisticated and the veriest simpleton among

us, drawing on all life's experience, can gasp out only: �Me? What for?� And this is

a question, which, though repeated millions and millions of times before, has yet to

receive an answer. Alexandr Solzhenitsyn: The Gulag Archipelago

The agent in an unknown environment faces a similar, yet probably a less dramatic

problem of assigning the rewards or punishments to his previous actions. To which action

should the agent be thankful for the reward? Which action caused the punishment? Which

action(s) should be assigned a credit for the current good state?

The reward can be arbitrarily delayed. The learning signal from the action outcome

becomes weaker with time, so it is necessary to perform more iterations to in�uence and

reinforce the action.
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1.8.3 Partial observability problem

Basic reinforcement algorithms require a fully observable world. Therefore they cannot be

used when the agent cannot observe the state directly. The formalism of Partial observable

Markov decision problems (POMDP) is used to describe approaches which are able to solve

this class of the problems. Existing algorithms try to include an ad-hoc belief state to

supplement missing information. In general, solving POMDP solving can be intractable

and �nding good special cases is a hot research topic [Sutton and Barto, 1998].

1.8.4 Non-stationary environments

Many RL algorithms converge slowly. If a fast changing, dynamic environment is presented,

they fail. Sometimes this cannot be solved at all: In order to learn, something must be

stable to be extracted by the learning algorithm.

1.8.5 Credit structuring problem

In order to run a RL agent, one has to design a reward mechanism. A correctly set reward

may greatly in�uence the time necessary to �nd the solution.

However, one should be careful that the reward does not lead the agent in a trivial way.

Let us suppose we put the agent into a maze and the reward is provided according to the

distance between the agent and the target. The agent has a simple task of following the

gradient. In fact, in order to compute the reward we have already �solved� the problem

(using a typical symbolic algorithm such as Dijkstra) and we just provide the result of the

computation to the agent.

Of course, in real-world situation the symbolic algorithm would be used instead of

RL. However, from a theoretical point of view, one should be aware that the reward can

in�uence the solution and the result of a theoretical experiment can be misleading.

1.8.6 Exploration-exploitation dilemma

After some time, the agent �nds a way to gain reward through a set of actions. However,

a part of the world might still be unexplored. This leaves the possibility of larger rewards

but possibly also greater punishments. The exploration-exploitation dilemma re�ects the

problem whether the agent should use the existing information and execute only rewarding

actions, or try to �nd a more rewarding behavior. In the former case, the agent might be
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stuck in a �local maximum�, in the latter case, he can spend energy uselessly and miss the

known rewarding opportunities.

1.9 Unsolved problems of reinforcement learning

As mentioned in section 1.8.3, general POMDP can be intractable. As put by Sutton and

Barto [1998], �if we are not willing to assume a complete model of a POMDP's dynamics,

then existing theory seems to o�er little guidance.�

The goal of this work is to contribute in this �eld and therefore this problem is presented

in Chapter 3 in more detail.



Chapter 2

Formal languages

To address the challenge of exploring POMDP world and creating its model, we have

decided to use the framework of formal languages. This enables us to describe necessary

symbolic manipulations used by our method.

A formal language is a set of �nite words (i.e. which are of a �nite length) over some

alphabet. Instead of the term �word� sometimes the term �string� is used. Depending

on the context and application, the alphabet can consist of letters, symbols, or tokens.

A formal language is a useful tool to describe a problem of some kind. For example,

the decision whether a number is a prime, is transformed to a decision whether a word

representing the number belongs to the formal language containing all prime numbers.

2.1 De�nitions

De�nition 2 (Alphabet). An alphabet is a �nite, nonempty set of symbols. [Hopcroft

et al., 1979]

De�nition 3 (Word). A word1 is a �nite sequence of symbols chosen from some alphabet

[Hopcroft et al., 1979]. An empty word is denoted by the symbol ε.

De�nition 4 (Powers of an Alphabet). We de�ne Σk to be the set of words of length k,

each of whose symbols is in Σ. Let us also de�ne Σ+ = Σ0 ∪Σ1 ∪Σ2 ∪ . . . and Σ∗ = Σ+ ∪ ε
[Hopcroft et al., 1979].

1Some authors, e.g. Hopcroft et al. [1979], prefer the term string.

20



CHAPTER 2. FORMAL LANGUAGES 21

De�nition 5 (Language). A set of words all of which are chosen from some Σ∗, where Σ

is a particular alphabet, is called a language. If Σ is an alphabet, and L ⊆ Σ∗, then L is a

language over Σ [Hopcroft et al., 1979].

The theory of formal languages studies mostly mathematical � syntactical and struc-

tural properties of formal languages. A formal language can be speci�ed using

• mathematical notation � set speci�cation (e.g. L = {an | n is a prime})

• a (formal) grammar � the set of rules describing, how it is possible to generate words

• an automaton (a theoretical machine), which for a given word decides, whether it

belongs to the language � it is �accepted�

• a regular expression, which matches words of the language

The relation between these speci�cation formalisms is an important part of the theory

of formal languages. In this chapter we will introduce some of these formalisms and some

problems.

2.2 Operations on words and languages

For convenience, we will introduce some operations on words and (almost) analogical op-

erations on languages.

De�nition 6 (Concatenation of Words). Let x and y be words. Then x.y (sometimes

denoted as xy) means word concatenation, i.e. if x is a sequence of symbols a0, a1, . . . , am

and y = b0, b1, . . . , bn, then x.y = a0, a1, . . . , am, b0, b1, . . . , bn.

De�nition 7 (Exponentiation of Words). The word exponentiation is de�ned as x0 =

ε, x(i+1) = x.xi.

De�nition 8 (Iteration of Words). The iteration is de�ned by

x∗ = ∪∞i=0{xi}.

For languages, analogous operations can be de�ned:
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De�nition 9. Let L1 and L2 be two languages. Then L1.L2 (sometimes denoted as L2L2)

is the language consisting of all words of the form vw where v is a word from L1 and w is

a word from L2.

De�nition 10. The exponentiation is de�ned by L0 = {ε}, L(i+1) = L.Li.

De�nition 11 (Kleene iteration and the + operator). The Kleene iteration is de�ned by

L∗ = ∪∞i=0L
i

In addition, let us de�ne

L+ = ∪∞i=1L
i

In addition to these operations it is possible to use the standard set operations ∪,∩,⊂
and others. The negation ¬L is de�ned with respect to all possible words of the given

alphabet. These operators could also be used for alphabets.

2.3 Formal grammar

A formal grammar is a set of rules which describe how to form strings in a formal language.

Usually a formal de�nition is given, which consists of: a �nite set of non-terminal symbols,

a �nite set of terminal symbols (alphabet), a �nite set of production rules, and a starting

symbol; in the formal notation it is a quadruple (N, T, P, S).

De�nition 12. A grammar is a quadruple (N, T, P, σ), where N is a nonempty set of

nonterminals, T is a nonempty set of terminals, P is a set of rules, σ ∈ N is a starting

nonterminal. The rules of P have to be of the form (N ∪ T )∗N(N ∪ T )∗ → (N ∪ T )∗ .

De�nition 13. The relation ⇒G of one-step derivation in G is de�ned by

x⇒G y ⇐⇒def ∃u, v, p, q ∈ (T ∪N)∗ : x = u.p.v ∧ p→ q ∈ P ∧ y = u.q.v

The relation ⇒∗G is the re�exive transitive closure of the relation ⇒G.

De�nition 14. (Language generated by the grammar) The language generated by the

grammar G is denoted L(G) = {w | σ ⇒∗G w}.
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2.4 Grammars of di�erent power

The form of the rule can be further restricted. According to the level of restriction, a

hierarchy of these grammar classes can be built. �Hierarchy� means that each class contains

the preceding classes.

regular grammar (type 3) allows only rules of the form N → T ∗N or N → T ∗,

i.e. the nonterminal can be at most one and must be at the end of the rule �body�

and the �head� is restricted to one nonterminal.

context-free grammar (type 2) allows only rules of the form N → (N ∪ T )∗, i.e.

the head of the rule must be only one nonterminal, without the �context� (what gave

the name to this class).

context-sensitive grammar (type 1) allows only rules of the form xαy → xβy,

where x, y ∈ (N ∪ T )∗, α ∈ N, β ∈ (N ∪ T )+, i.e. the �head� of the rule can specify

context, which must be preserved. Moreover, the nonterminal β must not be erased

and σ must not occur on the right side. As a special exception, the rule σ → ε is

permitted2.

unrestricted grammar (type 0) allows rules of any form, i.e. (N∪T )∗N(N∪T )∗ →
(N ∪ T )∗.

2.5 Chomsky hierarchy

An interesting �nding by Chomsky [1956] is that the hierarchy of grammar classes, which

seems arbitrary at the �rst glance, corresponds to the hierarchy of automaton classes.

The class of regular languages (languages generated by a regular grammar) contains all

�nite languages (�nite sets of words). A regular language can be recognized by a �nite state

automaton. The context-free languages class corresponds to the class of languages accepted

by non-deterministic push-down automaton. A context-sensitive language can be generated

by a context-sensitive grammar or accepted by a linear bounded automaton. The class of

all languages generated by unrestricted grammar corresponds to the languages recognized
2This enables the grammar to generate an empty word ε. This technicality makes context-sensitive

languages a superclass of context-free languages; without this addition only a context-free languages not
containing ε would be contained.
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by a Turing machine; or in other words, to the class of recursively enumerable languages.

For the respective de�nitions of the machines (�nite-state automaton, nondeterministic

push-down automaton, linear bounded automaton, Turing machine) refer to Hopcroft and

Ullman [2001].

Figure 2.1: Chomsky hierarchy of languages

It is necessary to understand the diagram (Fig. 2.1) as a depiction of a series of

theorems: every set is proper; it is possible to prove that the lower class language can be

expressed by the means of the upper class, and that there exist languages in the upper

class that cannot be expressed by the means of the lower class.

In the Chomsky hierarchy of grammars (see Fig. 2.1), regular grammars are in a lowest

position. They are strictly weaker than classes of grammars higher in this position.

2.6 Turing machines and computability

The notion of an algorithm is strongly related to the Turing machines [Turing, 1937, 1938]

� abstract computing machines. Compared to other computational processes (lambda

calculus, recursive functions, and others), Turing machines operate in a very �mechanical�

manner. Independent of the computational process used to describe algorithms, the theory

of computability and undecidable problems shows us what we are or what we are not able

to accomplish through programming. The limitation here is not the large amount time

necessary to solve the problem, but the principal limitations of algorithms. However, one

should always think about possible modi�cation of the problem formulation and about

possible heuristic solutions 3 This is also the way we will take when tackling uncomputable

problems in Chapter 4.
3Take, for example, antivirus software. In its exact formulation, the problem of malware detection is

undecidable. However, antivirus companies are quite successful in selling their products.
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The Turing machine (TM) consists of a �nite-state head and an in�nite tape divided

into cells. Each cell on the tape holds one of a �nite number of symbols. The tape head

is placed at one position on the tape, �above� a cell. The TM makes moves based on its

current state and the tape symbol at the cell scanned by the tape head. In one move, it

changes the state, overwrites the scanned cell with some tape symbol, and moves the head

one cell left or right.

The following formal notation is according to Hopcroft et al. [1979].

2.6.1 Formal notation

Turing machine is a 7-tuple M = (Q,Σ,Γ, δ, qo, B, F ) where

• Q is the �nite set of states,

• Σ is the �nite set of input symbols,

• Γ is the complete set of tape symbols; Σ ⊆ Γ

• δ is the transition function. The arguments of δ(q,X) are a state q and a tape symbol

X. The value of δ(q,X), if it is de�ned, is a triple (p, Y,D), where:

1. p ∈ Q is the next state

2. Y ∈ Γ is the symbol written in the cell being scanned, replacing whatever

symbol was there.

3. D is a direction in which the head moves, either �left� or �right�.

• q0 ∈ Q is the start state, a member of Q, in which the �nite control is found initially.

• B ∈ Γ is the blank symbol. B /∈ Σ � it is not an input symbol. The blank symbol

appears initially in all but the �nite number of initial cells that hold input symbols.

• F ⊂ Q is the set of �nal or accepting states.

We describe moves of a Turing machine by the `M notation. LetM = (Q,Σ,Γ, δ, qo, B, F )

be a Turing machine. De�ne `M as follows:

When the TM M is understood, we shall use just ` to re�ect moves. We also use `∗M ,

or just `∗ to represent zero, one, or more moves of the TM M .

Suppose the next move is to the left: δ(q,Xi) = (p, Y, left) . Then
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X1X2 · · ·Xi−1qXiXi+1 · · ·Xn `M X1X2 · · ·Xi−2pXi−1Y Xi+1 · · ·Xn

with the exceptions of i = 1, where

qX1X2 · · ·Xn `M pBY X2 · · ·Xn

and the case of i = n and Y = B, where

X1X2 · · ·Xn−1qXn `M X1X2Xn−2pXn−1.

An analogic pattern appears for the moves to the right.

2.6.2 Halting

Turing machine accepts its input whenever4 it reaches an accepting state, i.e.

L(M) = {w‖∃u, v ∈ Γ∗, q′ ∈ F : q0w `∗M uq′v}.

2.6.3 Undecidability

It can be demonstrated, that there exist problems that could not be solved by a computer.

An example of such a problem can be the so-called diagonalisation language [Hopcroft

et al., 1979]. To de�ne it, we need to introduce the concept of codes for Turing machines.

To represent a Turing machine we �rst assign integers to the states, tape symbols, and

directions (�left� and �right�). We then encode rules of the transition function δ. Using

a suitable separator, we can then concatenate codes for all rules to form a binary string.

(Refer to Hopcroft et al. [1979] for technical details.) After we have done this, we can use

the notation Mi, the i-th Turing machine. If i is not a valid code for Turing machine, we

assume L(Mi) = ∅.

De�nition 15 (Diagonalization language). The language Ld is the set of strings wi such

that wi is not in L(Mi).

Theorem 2. Ld is not a recursively enumerable language. That is, there is no Turing

machine that accepts Ld.

4There is also another notion of �acceptance� that is commonly used for Turing machines: acceptance
by halting. We say a TM halts if it enters a state q, scanning a tape symbol X, and there is no move in
this situation; i.e., δ(q,X) is unde�ned.
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Proof. Suppose for some TM M , it holds that L(M) = Ld Since Ld is a language over

alphabet {0, 1}, M would be in the list of Turing machines we have constructed, since it

includes all TMs with input alphabet {0, 1}. Thus, there is at least one code for M , say i;

so we have M = Mi. Now let us investigate if wi ∈ Ld.

1. If wi ∈ Ld, then Mi accepts wi. But then, by de�nition of Ld, the word wi is not in

Ld, because Ld contains only those wj such that Mj does not accept wj.

2. Similarly, if wi /∈ Ld, then Mi does not accept wi. Thus, by de�nition of Ld, wi is in

Ld.

Since it is not true that wi ∈ Ld and neither it is true that wi /∈ Ld, there is a

contradiction of our assumption that M exists. Thus, Ld is not a recursively enumerable

language.

The problems that can be solved by a Turing machine are divided into two classes:

• problems that have an algorithm (there is a Turing machine that halts whether or

not it accepts the input)

• problems that are only solved by Turing machines that accept the input (and halt),

but otherwise may run forever on inputs they do not accept.

The latter class of problems is undecidable.

2.7 Grammar induction

Grammatical induction (also called grammar inference) is a process of creating a formal

grammar which produces a given (formal) language. Grammar inference is a special case

of inductive learning, in which the goal is to create a formal grammar from positive and

negative examples of the words of a language. Positive examples should belong to the

language generated by the grammar, while negative should not be found in it.

There is always an in�nite number of grammars satisfying this criterion; we usually

look for the �simplest� grammar (for example a grammar with a minimal number of rules5).

This corresponds to the minimum description length principle [Rissanen, 1978]. However,

as the Kolomogorov complexity is incomputable, usually an approximation su�ces. In the

following text, we present some of the algorithms for grammar induction.
5In general, there can be more than one grammar which satis�es the minimality condition.
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i x+
i P P produces D− ?

1 a S → A No
A→ a

2 aaa S → A No
A→ a
A→ aA

3 aaab S → A Yes: ab ∈ D−
A→ a
A→ aA
A→ ab

3 aaab S → A No
A→ a
A→ aA
A→ aab

4 aab S → A No
A→ a
A→ aA
A→ aab

Table 2.1: An illustration of the progress of the trial and error algorithm.

2.7.1 Basic trial and error algorithm

The basic algorithm can be described as follows. The input is a set of positive examples

D+, set of negative examples D−, and a speci�cation of grammar type (1, 2, 3). The

grammar type restricts the forms of the candidate rewrite rules. An initial grammar G0 is

guessed, G0 is usually as simple as possible. The algorithm gradually expands the set of

production rules as needed. Positive training sentences x+ are selected from D+ one by

one. If x+ cannot be parsed by the grammar, then new rewrite rules are proposed for P .

A new rule is accepted if and only if it is used for a successful parse of x+ and does not

allow any negative samples to be parsed [Duda et al., 2001].

Example 1. (from Duda et al. [2001])

Consider inferring a grammar G from the following positive and negative examples:

D+ = {a, aaa, aaab, aab}, and D− = {ab, abc, abb, aabb}. Clearly the alphabet of G is

A = {a, b}. We posit a single internal symbol for G0, and the simplest rewrite rule

P = S → A.

The Table 2.1 shows the progress of the algorithm. The �rst positive instance, a,

demands a rewrite rule A → a. This rule does not allow any sentences in D− to be
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derived, and thus it is accepted for P . When i = 3, the proposed rule A → ab indeed

allows x+
3 to be derived, but the rule is rejected because it also derives a sentence in D−.

Instead, the next proposed rule, A→ aab is accepted. The �nal grammar inferred has four

rewrite rules shown at the bottom of the table.

2.7.2 Sequitur algorithm

The Sequitur algorithm [Nevill-Manning and Witten, 1997] infers a context-free grammar

from a sequence of symbols. It replaces repeated string (of two symbols) occurrence with

a grammatical rule that generates the string. In the new rule, a new nonterminal symbol

is used. This process is repeated recursively, forming a hierarchical structure. At the end,

each nonterminal used only once is replaced by its expansion. It can be used for lossless

data compression.

Example 2. Take the decimal expansion of the fraction 22/7 to 48 decimal places:

�3.142857142857142857142857142857142857142857142857�. The Sequitur will generate the

following grammar:

S → 3.αα

α→ ββ

β → γγ

γ → 142857

We can see that the algorithm successfully identi�ed the repeating pattern �142857�.

However, it does not generalize � it produces the exact 48-decimal expansion, it does not

try to approximate.

For example, having a 1536-digit expansion would need one starting nonterminal and

8 additional nonterminals (1536 = 28 ∗ 6). A more e�ective way could be to encode the

in�nite expansion of 22/7, requiring only 2 nonterminals, and then limit the output in

an ad-hoc way to 1536 digits. However, the ad-hoc limitation must be either outside the

context-free grammar, or a grammar of higher power (e.g. context-sensitive) could be used.

2.7.3 Myhill-Nerode equivalence

In the previous work [Malý, 2011] we developed an algorithm to create a regular deter-

ministic grammar by using a Myhill-Nerode equivalence and used it for inferring simple
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morphological properties of Slovak words. In principle, the algorithm could be applied to

any in�ecting language. A stemming dictionary can be created from a simple list of words

of the language, without previous knowledge of the language and without speci�c rules for

the language.

Principle of operation

Nerode [1958] proved the relation R de�ned on words u, v from the alphabet Σ by

u R v ⇐⇒def ∀x ∈ Σ∗(ux ∈ L⇔ vx ∈ L)

is a relation of equivalence. If the language L is regular, there is a �nite number of

equivalence classes. Our algorithm uses the relation R to �nd the equivalence classes and

to infer the automaton. When applied to a su�ciently large and (at least to some extent)

complete dictionary, one can observe repeating occurrence of the morphological su�xes.

These occurrences turn out to be the frequently used states of the automaton. The su�xes

generated by often-used states can be marked di�erently as the stem of the word. The

whole process can be described as follows:

1. Create a list of all pre�xes of all words.

2. For each pre�x, create a set of su�xes that can be attached to it so we get a word

in the dictionary.

3. Pre�xes with the same set of su�xes belong to the same equivalence class.

4. For each equivalence class, assign a nonterminal. For each equivalence class and a

su�x, assign a grammatical rule.

5. Reduce each nonterminal, which contains only one rule, by this rule in every occur-

rence of the nonterminal.

6. Count the number of uses of each nonterminal.

7. Mark the nonterminals with the count greater than or equal to the given threshold.

8. Generate the words from the grammar using recursion. If you reach a marked termi-

nal, create a new group and add there all words from all children calls.

9. Output the groups.
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rules for the nonterminal #uses
0 → . . . | mesta 56 | meste | mesteck 61 | mesto 48 | mestsk 455 | . . . (start)
3 → i | ε 111

15 → ho | j | ε 179
48 → m | ε 101
49 → ch | m | ε 111
56 → ch | m 3 | ε 121
61 → a | o | u 7
83 → m | u 35

455 → a | e 15 | i | o 83 | u | y 49 2

Table 2.2: Excerpt of the resulting grammar

Results

We have run the algorithm on a dictionary of Slovak words occurring in the Slovak Na-

tional Corpus [Jazykovedný ústav �. �túra SAV, 2009]. Table 2.2 presents an excerpt of

the resulting grammar related to the words beginning with �mest�. Numbers denote non-

terminals. Each nonterminal (except the starting nonterminal 0) is assigned a count of

uses.

Limitations

Our algorithm has a similar disadvantage as mentioned in the example for the Sequitur

algorithm: it does not try to generalize the input data.

Possible extension for in�nite languages

The input in the described algorithm is always �nite. For some purposes, this is enough.

However, we can pose a question, if a similar algorithm could be created for an in�nite

language. The following steps would be necessary to accomplish this:

1. De�ne the input format of the language (�nite automaton, grammar, regular expres-

sion).

2. If necessary, convert the input to a convenient internal representation (in the following

text to an automaton).

3. It is not possible to enumerate sets of pre�xes and su�xes � they can be in�nite.
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4. The representation of pre�xes using equivalence sets. One set will represent all pre-

�xes, which end in the same automaton state. (The number of sets is equal to the

number of states of the automaton)

5. Comparison of the su�x sets using an temporary automaton. The comparison is

converted to the problem of language di�erence. The automaton, accepting set of

su�xes is the same as the original automaton, except its start state is the state, in

which the pre�x ends. The language di�erence is created using a standard automata

construction, creating a temporary automaton. Then the temporary automaton is

tested for the existence of a reachable end state.



Chapter 3

Reinforcement learning in a partially

observable world

3.1 Introduction

Using reinforcement learning in non-Markovian worlds is a di�cult task. As put in Sut-

ton and Barto [1998], �if we are not willing to assume a complete model of a POMDP's

dynamics, then existing theory seems to o�er little guidance.�

These limitations have been known for a long time. In Lin and Mitchell [1992], this

problem was illustrated in the following task: �Consider a packing task which involves 4

steps: open a box, put a gift into it, close it, and seal it. An agent driven only by its

current visual percepts cannot accomplish this task, because when facing a closed box the

agent does not know if the gift is already in the box and therefore cannot decide whether

to seal or open the box.�

The authors also analyze three connectionist memory architectures, which extract at-

tributes from the history, and so complete the agent's state information.

3.1.1 Partially observable Markov decision process

De�nition 16 (Partially observable Markov decision process). Partially observable Markov

decision process is a 6-tuple (S,A,O, T,Ω, R), where S is a set of states, A is a set of actions,

O is a set of observations, T is the transition function, Ω is the observation function, R is

the reward function.

33
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In each step the agent executes the action a which causes the environment to change

the (unobservable) state from s to s′ with probability T (s, a, s′) and the agent observes o

with probability Ω(a, s′) and receives a reward R(s, a).

Algorithms for solving POMDPs usually suppose a known model structure with un-

known transitions probabilities. The probabilities and the states are derived during the

search.

3.1.2 Perceptual aliasing

The problem of perceptual aliasing � the fact that in di�erent states of environment the

agent can have the same perception � was observed already by Whitehead and Ballard

[1991], who proposed the Lion algorithm (see below).

3.2 Existing solutions and approaches for POMDP

3.2.1 The Lion algorithm

The Lion algorithm [Whitehead and Ballard, 1991] tries to maintain an internal state which

is consistent with the observations. Where the confusion of the estimated and the real state

occurs as the result of incomplete observation, Lion solves this unexpected situation by

identifying the action, which leads to the inconsistent state. The algorithm resets the

valuation of the action to zero and so prevents executing it and enables the agent to select

another action.

3.2.2 State splitting: Utile distinction memory

An interesting work of McCallum [1993] is based on a statistical state splitting. The key

is the utility of the state: if the world satis�es the Markov property, the rewards in a

perceived state must be similar. If they are di�erent, there must be a signi�cant di�erence

and splitting the state will help the agent to better predict rewards.

We consider this method interesting also from a biological point of view. Although not

presented in the original paper, an analogy to a human (or animal) brain can be drawn.

The human brain reacts di�erently in a situation where predicted reward is di�erent from

the actual reward (see section 1.7). It is possible that the brain makes the necessary steps

to achieve a similar �state split� in order to capture the new situation.
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3.3 Approaches to the space explosion problem

Unlike the algorithms in the previous section, the following algorithms attempt to solve a

�dual� problem: how to cope with too-�ne grained state space, i.e. having a very precise

and detailed observation. A large state space means that it would take a long time until the

agent visits all states. These algorithms try to generalize the experience and extrapolate

it to the unvisited spaces.

3.3.1 G-algorithm

Chapman and Kaelbling [1991] proposed G-algorithm, which divides the world recursively

to �ner parts, and creates a tree structure for the action-value function. At the beginning it

supposes that all bits from the input vector are irrelevant. The entire table is thus collapsed

into a single block. The algorithm then collects Q-values and statistical evidence for the

relevance of individual bits within this block. When it discovers that a bit is relevant, it

splits the state space, with respect to the relevant bit. This is repeated � the blocks can

in turn be split again.

3.3.2 State aggregation

In work by Singh et al. [1995] an approach was proposed based on soft aggregation of states.

Each state can belong to several clusters with some probability. The agent can observe

individual states, but can update the value function of the whole cluster only. The value

of the cluster is then applied to its states according to their probabilities of belonging to

this cluster. A heuristic algorithm is used to �nd good clustering probabilities for a �xed

number of clusters.

3.3.3 Hybrid Probabilistic Logic Programs

An approach combining reinforcement learning and Answer set programming (ASP)1 logic

programming was proposed by Saad [2010]. A special action language was devised to

represent agent's observations and actions. The logical program is then solved to yield

valid probable trajectory in the world. However, this method requires that we know the

model of the environment (the states are not completely known).

1Answer set programming paradigm uses stable model semantics for problem solving. See e.g. Baral
[2003] for details.
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3.4 Other general approaches: Cognitive architectures

A general approach is to create a complex system which is capable of solving general

problems. This system is usually called a cognitive architecture.

3.4.1 What is a cognitive architecture?

A cognitive architecture is a prototype for intelligent agents, which attempts to simulate the

behavior of a cognitive system (usually that of a human), or to act intelligently. Cognitive

architectures attempt to model the internal properties of the cognitive system and not only

to mimic the external behavior [Langley et al., 2009].

A good cognitive architecture should incorporate learning, generalization, concepts of

creation and knowledge representation.

Our framework (described in the Chapter 4) does not have this ambition, however, we

consider it interesting and useful do describe some of the cognitive architectures.

3.4.2 What is a rational agent?

Russell et al. [2010] mention that �an agent's choice of an action at any given instant

can depend on the entire percept sequence observed to date� and that �for each possible

percept sequence, a rational agent should select an action that is expected to maximize its

performance measure, given the evidence provided by the percept sequence and whatever

built-in knowledge the agent has�.

Vernon et al. [2007] outline di�erent paradigms for cognitive systems (see Table 3.1).

Task nonspeci�city

According to Weng [2012], an agent is task nonspeci�c if: �1) during the programming

phase, its programmer is not given the set of tasks that the agent will end up learning;

2) during the learning phase, the agent incrementally learns various task execution skills

from interactions with the environment using its sensors and e�ectors; and 3) during the

task execution phase, at any time the agent autonomously �gures out what tasks should

be executed from the cues available from the environment.�
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Characteristic Cognitivist Emergent
Computational Operation Syntactic manipulation Concurrent self-organization

of symbols of a network
Representational Framework Patterns of symbol tokens Global system states
Semantic Grounding Percept-symbol Skill construction

association
Temporal Constraints Not entrained Synchronous real-time

entrainment
Inter-agent epistemology Agent-independent Agent-dependent
Embodiment Not implied Cognition implies embodiment
Perception Abstract symbolic Response to perturbation

representations
Action Causal consequence Perturbation of the environment

of symbol manipulation by the system
Anticipation Procedural or probabilistic Self-e�ected traverse

reasoning typically using of perception-action
a priori models state space

Adaptation Learn new knowledge Develop new dynamics
Motivation Resolve impasse Increase space of interaction
Relevance of Autonomy Not necessarily implied Cognition implies autonomy

Table 3.1: A comparison of cognitivist and emergent paradigms of cognition [Vernon et al.,
2007].

3.4.3 Overview of some cognitive architectures

We have chosen a few cognitive architectures which we consider most interesting from the

computational or cognitive point of view.

CLARION

CLARION (Connectionist Learning with Adaptive Rule Induction ON-line) created by

the Sun [2003, 2007] focuses on interaction between implicit and explicit processes and

incorporates action-centered and non-action centered subsystems.

It comprises a number of separate subsystems: action control subsystem; general knowl-

edge subsystem; motivational subsystem, which provides necessary motivation for percep-

tion, action and cognition; and metacognitive subsystem, which monitors and manages

other subsystems. Each subsystem is dual with respect to implicit and explicit represen-

tations.
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COGITOID

Cogitoid [Wiedermann, 1998b; Beran and Wiedermann, 2002] models �mental events� on a

level of concepts formation, and excitatory and inhibitory links between them, abstracting

from biological details. Concepts are represented as lattices2 � sets of elementary properties

of an object or an event. �Related concepts are connected using associations. During the

computation, �rst the input concepts are activated and eventually those concepts are linked

to the active concepts by excitatory associations� [Wiedermann, 1998a]. Active concepts

are then sent to the output and the cycle is repeated again.

The author maintains that the Cogitoid, if connected to the �similar inputs and acting

on similar peripheries as the human brain, could form the behavior similar to that of the

human mind. It could also explain the concept of �self �, mental �ow, introspection, problems

of free will, language learning, speech generation and emergence of consciousness.

One of works implementing and testing the properties of Cogitoid by A£ová [2002]

states that the main disadvantage is the great computational complexity � cubical with

respect to the large concept universe (usually the complete lattice, being 2number of features).

ACT-R

The ACT-R architecture [Anderson, 1996; Anderson et al., 1997] supposes, that human

knowledge can be divided to two groups: declarative and procedural. Declarative knowl-

edge is represented in a form of vector representation of the properties. These vectors are

accessible via the interface for the modules. The modules are of two types, perceptual-

motoric and memory. Perceptual-motoric modules provide connection with the outer world.

The memory modules save declarative facts (�Bratislava is the capital of Slovakia�) or pro-

cedural knowledge (how to make a step).

AIXI

The AIXI model [Hutter, 2007] is the most ambitious one. It uses Solomono�'s theory

of universal induction and the author formally proved the general optimality. AIXI is

uncomputable, but the author has proposed a restricted version AIXItl bounded by time t

and length l. However, it was still unclear, whether the AIXI can be practically feasible.

Recently, a Monte Carlo approximation of AIXI model was proposed in Veness et al.

[2009] and re�ned in Veness et al. [2010]. This approximation might be computationally

2The model of Cogitoid has been evolving, the most recent version of the model uses the lattices.
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feasible.

3.5 Implications for autonomous rational agents

Vernon et al. [2007] conclude their report with the following design principles for systems

that are capable of development, based also on studies Krichmar and Edelman [2006, 2005];

Krichmar and Reeke [2005]:

1. The architecture should address the dynamics of the neural element in di�erent re-

gions of the brain, the structure of these regions, and especially the connectivity and

interaction between these regions

2. The system should be able to e�ect perceptual categorization: i.e. to organize un-

labeled sensory signals of all modalities into categories without a priori knowledge

or external instruction. In e�ect, this means that the system should be autonomous

and, as noted by Weng [2004], a developmental system should be a model generator,

rather than a model �tter (e.g. see Olsson et al. [2006]).

3. The system should have a physical instantiation, i.e. it should be embodied, so that it

is tightly coupled with its own morphology and so that it can explore its environment

4. The system should engage in some behavioral task and, consequently, it should have

some minimal set of innate behaviors or re�exes in order to explore and survive in its

initial environmental niche. From this minimum set, the system can learn and adapt

so that it improves its behavior over time.

5. The system should have a means to adapt. This implies the presence of a value

system (i.e. a set of motivations that guide or govern its development). These should

be nonspeci�c modulatory signals that bias the dynamics of the system so that the

global needs of the system are satis�ed: in e�ect, so that its autonomy is preserved

or enhanced. Such value systems might possibly be modelled on the value system

of the brain: dopaminergic, cholinergic, and noradrenergic systems signalling, on the

basis of sensory stimuli, reward prediction, uncertainty, and novelty.

6. The brain-based devices should lend themselves to comparison with biological sys-

tems.
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Our system aspires to satisfy four of these six principles (all except the �rst and the

last one). Let us discuss this in more detail with respect to principles 2-5:

2. Our agent has no a priori knowledge and creates a world model from scratch. The

survey [Vernon et al., 2007] also mentions Weng [2004] in support of the claim that

the the system should be a model generator, rather than a model �tter.

3. Although simulated, a robotic agent can be physically constructed so it can explore

a real environment.

4. The space of actions and observations is speci�ed, according to the environment, at

the compilation time. We have implemented also a simple exploration preference.

Other re�exes can be readily implemented.

5. The reinforcement learning framework provides an excellent way how to implement a

value system. The system should have means for adaptation. As mentioned before,

it has a close relation to the dopaminergic signalling system in the human reward

system.



Chapter 4

A framework for reinforcement learning

with abstraction

In this chapter we present our proposal of a framework for reinforcement learning, which

is capable of generalization, based on principles outlined in the previous chapter. In the

�rst half of this chapter we will present theoretical arguments for this construction, which

guided us in the framework design. Then we will present the framework and discuss possible

instantiations of its underlying components.

4.1 Theoretical principles for a rational agent

construction

4.1.1 Sensory preprocessing and �ltering, sensory uncertainty

In any physical agent, sensors are not perfect. Various factors contribute to the noise which

in�uences the outcome of the sensor measurement. The sensory input can be preprocessed

and �ltered to some extent. The main algorithmic core of the agent can be saved from many

technical details of preprocessing, for example, the algorithm can directly get coordinates of

some detected object from the graphic module which specializes at the low-level detection.

Then, the main algorithm does not have to include graphic processing. Nevertheless, if

the actions in environment are stochastic, it is necessary to incorporate the notion of

uncertainty to the core algorithm, because the uncertainty cannot be removed by technical

means.
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4.1.2 Kolmogorov complexity

De�nition 17. Let M be a Turing machine. If running M with input w produces the

output x, then the concatenation of the machine code and the input string 〈M〉 · w is the

description of the string x. If this description has minimal length, then the length of this

description is called the Kolmogorov complexity of string x:

K(x) = min
M(w)=x

|〈M〉 · w|

The Kolmogorov complexity does not depend on a speci�c computation mechanism, up

to a constant:

Theorem 3. If K1 and K2 are the complexity functions relative to description languages

L1 and L2, then there is a constant c such that

∀s |K1(s)−K2(s)| ≤ c.

The Kolmogorov complexity is a uncomputable function.

Incompressible strings

From the Dirichlet principle, incompressible strings s such that K(s) ≥ |s|− c exist. These
correspond to the intuitive concept of �randomness�.

4.1.3 Hutter Prize: Compressing Wikipedia

The Hutter Prize has been awarded by the scientist Marcus Hutter since 2006. The prize

is awarded to a scientist who submits a compression and decompression program for a

speci�c version of English Wikipedia text dump. The sum of the sizes of compressed �le

and decompressor must be less than 99% of the previous compression record, yielding 500

euro for each 1%. The decompression must run less than 10 hours on a 2 GHz Pentium 4

requiring at most 1 GB memory.

The organizers hope to motivate research in the �eld of data compression, because

they are convinced that the data compression and arti�cial intelligence are connected, and

that the compression of the natural language (of which the dump consists) is equivalent to

passing the Turing test: Understanding the text obviously can help its compression.
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4.1.4 Algorithmic (Solomono�) probability

Algorithmic probability is based on the following two principles:

• Epicurus' principle: keep all hypotheses that are consistent with the data

• Occam's razor: entities should not be multiplied beyond necessity

We may reformulate the Occam's razor in more formal terms using Universal Turing

machines.

m(x) :=
∑

p : U(p)=x

2−|p|

The sum goes over all halting programs p for which a Universal Turing machine U

outputs the string x.

One can see that the maximum term in the summation is the term for the minimal

program 2−K(x). Levin proved, that the other direction also holds: − log m(x) = K(x) +

O(1) and thus m(x) = Θ(2−K(x)).

Example 3. How to determine the Kolmogorov complexity of a language, accepted by a

�nal automaton? A Turing machine, which has the head equivalent with the automaton

� with the addition of head movement to the right after each step � accepts the same

language. Thus, the Kolmogorov complexity is equal to or less than the description length

of this Turing machine.

It can be lower, though: Let us suppose that we have a �nite automaton accepting all

prime numbers smaller than 10100; this is a �nite set. This set cannot be encoded more

e�ciently, than by enumerating all numbers � the automata will be similar to a so-called

�trie� � pre�x tree. However, it is possible to write a short program, which accepts these

prime numbers. If we wanted to write it in Turing machine (instead of using some high-

level programming language), we would need to implement mathematic operations (which

can be a little cumbersome). Even then, this program would be much smaller than the

description length of the automaton.

This example shows that a stronger formalism can yield a better result from the de-

scription length point of view.
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4.1.5 Minimum description length principle

The minimum description length (MDL) principle was introduced by Rissanen [1978].

Unlike Kolmogorov complexity, it restricts the set of allowed codes in order to make it

possible (computable) to �nd the shortest codelength of the data. It also chooses a code

that is reasonably e�cient with respect to the data available.

The philosophy is based on two-part encoding: First, we encode the hypothesis H,

using L(H) bits. Second, we encode the data D using the assumption of hypothesis H,

using L(D|H) bits. The best model is the one which minimizes the sum

L(H) + L(D|H). (4.1)

One can view H as the useful information, and L(D|H) as an �accidental� information

� for example, noise. If we decide to code only H without encoding the �corrections�

necessary to fully describe D, we have the lossy compression. The MDL approach is that

we take the hypothesis for which the sum is the lowest, but that does not guarantee, that

there is no other hypothesis which could be a better explanation � we are only unable to

�nd with available resources. For example, take a stream of cryptographically generated

sequence. It appears random, therefore, any practically feasible approach would consider

it as noise. However, if we are somehow able to guess (or are given) the cryptographic key,

we may switch to a better hypothesis which fully explains the stream as not a random, but

deterministic and predictable stream of data.

For the purpose of this work, we assume that there is no noise in observation and no

stochastic results of actions. Therefore we can take a simpler approach, requiring that the

model fully and completely explain the accumulated experience.

4.2 Inductive bias

A typical task of machine learning is to �nd a regularity from the supplied data, to �nd

out how the data relate to one another and to predict future data, even in situations that

previously have not been observed.

It is necessary to make further assumptions about the data. Otherwise, the unobserved

situations could be arbitrary. The choice of which prior knowledge is speci�ed is called the

inductive bias, �rst coined by Mitchell [1980]. The designer decides about the constraints

which are used during learning. Sometimes the bias results directly from the used algorithm
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or method, sometimes it is even not formalized (it is de�ned only by functioning of the

algorithm).

Example 4. Suppose the series 1, 2, 3, . . .. The next following number can be guessed only

if an assumption is made. Aside from the obvious answer 4, we can also claim that the next

number is 47 because the sequence are denominators of continued fraction convergents to√
267 (cf. the sequence A041501 in Sloane [2011]).

In fact, if we have a sequence of n numbers, we can choose an arbitrary (n + 1)-th

number and say that the numbers are values of a polynomial of a degree at most n+ 2.

This example shows that an assumption about the data must be made. And usually

the most logical assumption is that a simpler solution is better.

4.2.1 Components of abstraction

In this section we would like to introduce the term �abstraction�. Let us consider some

information about the world. This information describes our experience and observations.

Is it possible to derive from these data a useful world model? Certainly, to be useful, the

model has to be better than a simple collection of data. It can be better in two ways:

First, it can be smaller than this collection, so we save the memory and/or computational

resources when using the model instead of the collection. Second, it can extrapolate the

data to provide us with the information not explicitly contained in the collection. This

estimate information is valuable, although it can be imperfect or sometimes wrong. If

the action we guess based on the model is on average still better than a blind action in

unknown territory, we have gained an advantage.

What makes the model �good�, what makes it satisfy these properties? We formulate

the principles for the abstraction:

1. �nding patterns in existing data (e.g. repetition)

2. extrapolating to unknown data

3. robustness: correction of errors in existing data

The �rst principle is satis�ed if the provided model is smaller than the data. This is also

the case for all grammar induction algorithms presented in section 2.7. The second principle

is more di�cult and it is usually present and expected in some well-known architectures
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like neural networks 1. There must always be present an inductive bias in some form,

which drives the extrapolation. For example, if the only requirement would be to generate

a grammar which produces all (positive) examples, a simple grammar yielding Σ∗ language

su�ces. If the requirement is to produce only positive examples, only the �rst principle

is e�ective and no generalization occurs. This was the case with Sequitur algorithm and

Myhill-Nerode equivalence algorithms.

In a real-world scenario, usually negative examples occur (e.g. punishments or lower

rewards). If only positive examples are present, language learning without additional

constraints is impossible (this is a well-known Gold problem, Gold et al. [1967]). However,

if additional constraints are speci�ed (forming an inductive bias), it is possible to make

generalizations also from the set of only positive examples.

Example 5 (Learning from positive examples). In a previous work [Valentín, 2010] we

investigated the possibility of creating a learning �rewall using a neural network. The

network was presented only with positive packets (a �legitimate tra�c�) and had to learn

to �lter the �illegitimate tra�c�.

We made an assumption that the set of negative examples N can be approximated by

a complement of the set of positive examples. It holds that N ⊆ PC . Assuming N = PC

gives the network a �bad point� for accepting a packet not present in the positive set. Not

accepting a positive example gives also a �bad point�. Thus the network generalization is

held on a useful level� when trying to maintain the best score, overfull generalization is

penalized by bad points from the complementary packets. A low generalization is penalized

by bad performance on a validation set. The trade-o� between validation set performance

and �bad points score� was implicit due to chosen network architecture.

As can be seen from the example, sometimes it is necessary to cope with noisy or missing

data (packets which are legitimate but did not occur in the input set, and if generated, they

could be presented to the network as negative examples earning it �bad points�). Either

the method is inherently meant to approximate noisy data � this is the case of neural

networks � or an exception must be formed within the architecture (e.g. a special rule for

preventing one word from being in the language). Formation of that explicit rule makes the

model greater in the description length. Thus if we want to allow noisy data in a symbolic

mechanism like grammar induction, we have to introduce some trade-o� parametrization
1Neural networks have an implicit inductive bias, caused by the architecture and by the training pro-

cedure � minimizing the error on the validation set (�early stopping�).
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between �bad points� and the description length2.

4.3 Parameters and their biological analogues

We think that parameters, which have to be set (such as error/generalization trade-o� or

the exploration/exploitation ratio), are analogical to biological parameters of our brains

(and our natures). Some of us are more exploratory, some of us prefer known, less risky

ways. Many people sacri�ce an immediate reward to gain future advantage, some just do

not bother with planning and enjoy the life. Some people see patterns everywhere while

others are more conservative with their inductions.3

Similarly, it is possible to set up agents with di�erent preferences. An evolutionary or

a similar mechanism could be used to select the best choice for a given task.

4.4 The world model

4.4.1 Markov decision process

Markov decision process is a mathematical structure suited to describe an environment

where an action executed in some state causes transition to another state or states, where

the transition is stochastic � the resulting state depends on a probability given by the

transition function. The agent also receives a corresponding reward. The transition does

not depend on history � the change of the environment is (up to the randomness) fully

assumed by the current state.

Formally, if S is the set of states, A the set of actions, transition function P (a, s, s′) is

the probability of transition from the state s to the state s′ while executing the action a,

and R(a, s, s′) is the reward received by the agent.

2In fact, the exact value of the error-correction/description-length parameter is not relevant in a long
run. If the ratio is set to 1:1, an exception would be tried once. If the ratio is set to 10:1, an exception
would be tried 10 times until accepted as a settled fact. When the performance is possibly in�nite, a
constant number of bad attempts plays no role. The trade-o� may also be set as a ratio of total attempts
(or energy spent), here we are able to set a performance not worse than (1− ε) of the optimal one.

3Suppose you are in a hurry of submitting an article or dissertation and your computer crashes. You
are trying many times to turn it on, everything is unsuccessful. Then, suddenly, the computer boots. You
remember that you were holding the button for �ve seconds and nervously knocked three times on the
chassis. The computer goes on for a while. But an hour later, you need to turn it on again. What will you
try? Holding the button for 5 seconds and knocking three times? (Maybe there is a cold solder joint...) Or
will you �rst try something less ridiculous? How long will you try something else until you try the magical
combination? And will you try it again (and how many times?) if it does not work for the �rst time?
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In the case that the agent can only partially observe the state s, comes into consideration

the probability Ω(o, s′, a) of getting the observation o ∈ O, if a transition to the state s′

occurs.

4.4.2 Likelihood of the model

De�nition 18 (Likelihood of the model). Let be given a series of observations, actions

and rewards P = o1, a1, o2, r2, a2, o3, r3, a3, . . . , an−1, on, rn, where oi is an observation, ri is

a reward, and ai is an action at time i. LetM = (S,A,O, T,Ω, R) be a partially observable

Markov decision process. The likelihood of the model is

B(M) = max
s∈Sn

n−1∏
t=1

P (at, st, st+1) · Ω(ot+1, st+1, at)

From all possible models we could theoretically choose the most likely model (if we

disregard the computational intractability). However, this model might be too complicated.

In accordance with Occams's razor principle, it might be better to choose a less likely, but

a simpler model. Here we would have to specify the trade-o� between the simplicity and

the likelihood.

In practical applications, this formulation of the problem is too wide. In the next

section, we limit ourselves to a simpler case, where the transitions and observations are

deterministic.

4.5 Motivation and biological plausibility

Our framework consists of three components: reinforcement learning, abstraction, and

(optionally) metaplanning. Why have we chosen these components? Why do we think they

will be a contribution? Why can they succeed in tasks better than other architectures?

In Chapter 1, we described reinforcement learning and showed the biological and the-

oretical motivation for it. From the theoretical point of view, reinforcement learning can

be understood as a general approach to solve a generic problem. �Reinforcement learning

encompasses all of arti�cial intelligence: An agent is placed in an environment and must

learn to behave successfully therein� [Russell et al., 2010].

In Chapter 2, we explained the philosophy behind the minimum description length

principle. This principle sets out a general constraint to world modelling. However, we
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have also mentioned the problem of uncomputability. Thus the constraint has to be relaxed:

a pseudo-minimal model is also acceptable.

Having a few possible (pseudo-minimal) models of the world, how should an agent

proceed? If a decision has to be made immediately, the agent should proceed according to

the best (minimal in description length) model. However, if there is a time for exploration,

the agent could �rst go and investigate the possibility of other possible models. Spending

little energy and gaining some information can yield an advantage. In what way and

to what extent should the agent explore the possibilities? This is the question of meta-

planning. Here we again advocate the Minimal Description Length principle, but in a

relaxed way: The best model should be considered most likely, but the second (third-, and

so on) model should also be investigated. Of course, the best way to decide between them

is to explore the di�erences between them, to see, if there is a reason to consider the other

model in comparison with the best model. This could be compared to a scienti�c method:

The scientists try to create an experiment which could distinguish between two possible

worlds, which could falsify the hypothesis.

4.6 Computational and interaction complexity

It has been proved, that the dynamic programming will reach an optimal result [Sutton

and Barto, 1998]. The computational complexity is not very good, however, once the

computation ends, the agent performs optimally. In contrast with this, the Monte Carlo

or TD-learning methods do not perform time-consuming computations, but they use their

interaction with the environment to estimate the value of the states and actions. This

means that not every interaction in the real environment is optimal.

When we try to design a new method for reinforcement learning, we think it is a

good strategy to sacri�ce any computational resources to ensure the real performance of

the agent. Of course, this can mean the agent can be terribly slow. However, the cost

of the interaction with the real environment can be large in comparison with simulated

computations. We can buy a better computer or try to improve the algorithm, but we

cannot change the speed of the real environment. In other words, it is better to solve the

task in a longer time than not to solve it at all.
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4.7 Framework description

The general framework (see Fig. 4.1) can be laid out in a few steps, which are repeated in

a cycle:

1. Perception comes from sensors and is preprocessed and �ltered.

2. Sensory input is saved into the history.

3. Immediately after each sensory input, or at pre-de�ned time-steps (depending on

computational requirements) the abstraction module starts.

4. Abstraction module prepares MDL model(s) of the world.

5. The metaplanning module takes models and computes di�erences, assigns an internal

reward to the states which are able to di�erentiate between models (�systematic

exploration�).

6. Reinforcement module takes (the best) MDL world model and decides (via dynamic

programming) the next step (taking the internal reward of some states into account).

7. The action is sent to the motor output.

4.8 Components of the framework

Sensors

Sensors for the agent can be speci�ed as necessary. The domain � possible values of

observations � has to be speci�ed for each sensor. If the perception is missing, a null value

can be used. The sensory input can be continuous, however, necessary adjustment for the

abstraction module must be made, or the input can be discretized in the preprocessing

module.

Sensory preprocessing

All technicalities of the sensory processing should be made here, such as the calibration or

graphical processing.



CHAPTER 4. A FRAMEWORK FOR RL WITH ABSTRACTION 51

Figure 4.1: Components of the proposed framework and their connections
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History

This module saves all actions, observations, and rewards together with time. The whole

history as a sequence is used by the abstraction module.

Abstraction module

This is the most important module. It takes the history and tries to induce a world model

which can explain the agent's experience at best. For this purpose, we suggest to use

grammar induction or automaton inference.

The expected result of this module is a world model � to be technically precise, a

machine representing this model. If the meta-planning module is used, the result is a set

of the models, rated by their score (description length + error score).

If it is necessary to incorporate stochastic knowledge, a probabilistic automaton [Rabin,

1963] could be produced. However, there is no feasible algorithm available which would

generate a probabilistic automaton directly. An option is to generate a non-deterministic

automaton, to convert it to a probabilistic automaton, and recompute the probabilities

using one of the known algorithms [Ron et al., 1994].

The generated model does not have to be optimal, in case of a strong formalism it is

not even possible. Also a pseudo-minimal (best found) model is useful. The module could

use some heuristic to generate the model, such as those described in Section 3.2. It could

also use the previous model and try to modify it to �t the new knowledge (similar to the

state-splitting algorithms).

Reinforcement learning module

This module uses the precomputed world model to infer the next best action. This can be

accomplished for example by simple dynamic programming algorithm described in Section

1.5.1.

If the time-tick for re-generation of world model is longer, this module can make ad-hoc

modi�cations into the existing model.

Metaplanning module

This module takes the set of proposed models from the abstraction module and tries to

navigate the agent so as to decide, which of the modules is the correct one. This enables
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a systematic exploration of the environment. The module computes, which sequence of

actions provides a di�erence between the models.

If the models are �nite-state automata, it is possible to �nd this sequence in a systematic

way. For automata M1 and M2 it is possible to �nd the language which is the di�erence

between the two generated languages: Ldiff = L(M1)−L(M2). This can be done by creating

an automaton accepting the di�erence (for the construction, see Theorem 4.10 in Hopcroft

and Ullman [2001]) and �nding a word accepted by the automaton. The word represents

the sequence which has to be taken. The metaplanning module can in�uence the action

values in order to execute the sequence, or make it more preferable.

If a stronger formalism is used, the di�erence cannot be computed (it is uncomputable

for CF languages). However, the metaplanning module can make a look-ahead few steps

in order to see if a di�erence occurs. If in n steps the predictions by machines M1 and

M2 di�er, these n steps can be taken in order to decide between M1 and M2. Again,

the metaplanning module can make these steps more preferable in order to encourage the

exploration.

4.9 Expected properties of the framework

An agent constructed by the framework will explore the world in a systematic way and

optimize its actions to earn the reward. During the exploration it can create a world

model, which can supply more knowledge than the knowledge explicitly contained in the

observations. For example, if a sequence of actions must be executed in order to receive the

reward, the execution of the �rst few actions may not have any e�ect in the environment.

However, the internal state of the derived model records these changes and e�ectively

predicts the necessary actions and the reward.

Of course, the agent's �rst steps are random and unsystematic. However, as the time

proceeds and the agent explores the environment, the world model should become closer to

the reality. If a su�ciently strong formalism is used, the agent may derive its own concepts,

which have not been explicitly formulated.

In doubts, the agent can employ two or more models, and take the adequate actions in

order to resolve his doubts. This enables the agent to systematically examine the world.



Chapter 5

Implementation

In this chapter, we present our prototypical implementation of the Reinforcement Learning

with Abstraction (RLA) framework presented in Chapter 4. We present chosen instanti-

ations of the underlying components and motivations behind the decisions. We will also

present a prototypical task, on which we were testing our implementation. The proto-

typical task � the maze problem � follows the general properties outlined in the previous

chapter, however, it is somewhat simpler. The reader must be cautioned that the maze

problem is meant to be an instantiation of a generic problem; therefore it is not possible

to solve it using the standard maze traversal methods or positioning methods like SLAM

(Simultaneous localization and mapping, Stachniss et al. [2011]), although it can seem so

at the �rst glance. A detailed description and discussion of the task is presented in the

following two sections.

5.1 Goal of the implementation

Almost all existing approaches of reinforcement learning are based on an implicit de�nition

of the state space. The space is usually de�ned by the range of possible observations. It

can be discrete or continuous.

For example, in tic-tac-toe game the agent can observe the board and the markings

placed there. All possible board layouts create the state space. Some layouts (such as four

X marks and only one O mark) may turn out to be unreachable during training, or they

can be already removed from the state space during the agent design.

What if the observation cannot cover the whole space of possibilities given by the

54
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environment? For example, if we consider the problem of navigation in the maze: If the

coordinates (x, y) are observable, they give the full account of agent's location in the maze

and they allow the learning methods to compute the state values and action values in the

respective states (locations). However, if the agent can observe only the surrounding (say,

his location and 4 neighboring cells) and does not know in advance the maze dimensions,

how should be the state space de�ned? There can be a number of cells with the same

con�guration of neighboring cells and walls, but the agent gets the same observation in all

of them.

The goal is to create an agent, which is able to create a world model from his obser-

vations and actions. This model allows the possibility to distinguish states with the same

observation.

Moreover, this approach is also useful when the observation space equals the state

space, but it is possible to �nd interesting and useful links between the states. We do not

know these links in advance or are not willing to enter this knowledge to the agent because

it could be a laborious task.

5.2 The maze problem

Suppose we have a labyrinth, that the agent does not know in advance. How to traverse

this maze and create its map?

Of course, there exist standard approaches to solve this task, with the assumption that

it is possible to place a marker into the environment in order to remember that we have

visited a concrete cell (Trémaux algorithm, Tarry's traversal algorithm, and so on).

In our case it is not possible to place markers nor is it possible to have the coordinates.

Also we do not want to give the agent an explicit information that he is in a maze of a

speci�c type. We demand that he ful�lls this task without this information, what will

also demonstrate his ability to solve even more general problems. In other words, we want

the same algorithm to be able to traverse the maze, even if the maze contains teleports

or one-way doors. The only information available to the agent is the observation from

the prede�ned set O and the agent can take actions from the set A. The observation can

provide information about the agent's surrounding. The actions or observations are atomic

� they do not carry any type of information such as coordinates or direction. We can use

the same agent in a 2D or 3D maze, if we change the size of the sets A and O appropriately.

Theorem 4 (Zero-marker maze traversal). It is impossible to traverse a maze, if the agent
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cannot place markers into the maze [Dudek et al., 1991].

Proof. The impossibility follows from the fact that two regular graphs with the same

degree cannot be distinguished for the agent (For example a triangle and a square, a

graph with three or four vertices connected into a cycle, respectively. Each vortex has two

edges, so it is impossible to distinguish them if the observation does not contain additional

information.)

Notwithstanding this result, it makes sense to solve the maze problem from the rein-

forcement learning point of view. If two word models are possible (i.e. both models �t

the agent's experience), and we are not able to distinguish them, it is wise to suppose the

simplest model. If the observations begin to disagree with our expectations, we are able

to select another model.

5.3 Prototypical problem: Finding the model of the

maze

If we assume a simpler case that the environment is deterministic, we can separate world

models according to whether they satisfy the observation/action sequence, i.e. according

to whether the above-de�ned likelihood of the model is B(M) = 1 or 0.

From the models which satisfy this condition, we would like to select the simplest model

(with the smallest number of states). This is our selection of the inductive bias (Section

4.2), which is necessary to overcome the indeterminacy.

We argue that the best method is the grammatical induction (or automaton inference,

depending on the formalism, ranging from �nite-state automaton, through the push-down

automaton, to the Turing machine). If we choose the �nite-state automaton (a regular

deterministic grammar), the link to the Markovian model is obvious: the states of the

automaton (the grammar nonterminals) represent the states of the Markov process. The

actions in the Markovian process are the input symbols (terminals) for the automaton (or

grammar). The detailed approach is outlined in the following section.

For a stronger formalism than �nite automata it is necessary to look at the resulting

automaton (say, a Turing machine) as an oraculum, which responds to all questions re-

garding implicitly represented Markov model, i.e. to what state leads the action, what

observation and reward the agent gets in a speci�c state, and so on. The measured com-

plexity is the complexity of the machine (description length), not of the Markov model �
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Figure 5.1: The maze. The numbers represent the observations received by the agent.

it is not necessary to represent the Markov model explicitly. The arguments and possible

advantages and disadvantages of a stronger formalism are presented in the discussion.

5.3.1 A simple maze instance

The maze can look like the one in Fig. 5.1. The perception of the agent is limited to 4-bit

information about the cell and four neighboring cells to the left, right, up, down (whether

the cell contains a wall or is free) from the least important bit to the most important one.

5.4 Algorithm

The goal is to �nd (the minimal) �nite automaton (Markovian process) which would satisfy

the observation/action sequence P = o1, a1, o2, r2, a2, o3, r3, a3, . . . , an−1, on, rn.

5.4.1 Model inference via automaton/grammar inference

How is it possible to �nd a model using the mechanism of formal languages? Let us

suppose we have already implemented a method for grammar inference. The following

example illustrates, how this mechanism could be modi�ed to model inference.

Example 6 (Model vs. automaton). The pre�x subsequences a1, . . . , ak where k ≤ n,

which lead to a pre-selected observation o (i.e. it holds o = ok) are considered to be

the words of the language Lo. A regular grammar (�nite automaton) is created for the

language Lo. By a small modi�cation it is possible to create automata for each of the

languages Lo (for all possible observations o ∈ O), where the automata are equivalent, up

to the position of the accepting states. Edges and states of the automata represent directly
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the states and transitions in the Markov model, positions of the accepting states in the

automaton accepting the language Lo represent those states in the Markov model, which

provide the observation o.

5.4.2 Unsuccessful generalization using Myhill-Nerode

equivalence

We tried to use the method of grammatical induction based on Myhill-Nerode equiva-

lence, which we created (described brie�y in Section 2.7.3 and in more detail in Malý

[2011]). Unfortunately, this method turned to be unsatisfactory. The reason is that this

method produces a grammar/minimal automaton accepting only the given set of words.

This automaton has too many states. The inability to accept other words diminishes the

generalization ability (see Section 4.2.1).

5.4.3 Solution using the SAT solver

We decided to �nd the minimal model by formalizing the constraints for the model using

logical formulas, and letting a SAT solver to solve these formulas. A SAT solver is a

program, which decides whether there exists a satisfying valuation for a logical formula,

and if there is such a valuation, �nds the values for the variables.

Formalization

Let us suppose that the model has j states numbered 0, 1, . . . , j − 1 and, without loss of

generality, it starts in the state number 0. Let the number of actions be |A| = k, the

number of the possible observations |O| = l.

Let actions and observations be numbered from 0 to k and l, respectively. For the sake

of simplicity, we disregard the rewards r.

The fact that in the state s the agent gets the observation o is written by the predicate

obs(o, s). The fact that the action a transfers the environment from the state s to the state

s′ is denoted by the predicate tr(s, a, s′). The fact that in time t the environment is in the

state s is denoted by pos(t, s).

We have the following constraints. For the predicate obs:

In one state we have at most one observation: ∀s ∈ S : ∀o, o′ ∈ O, o 6= o′ : ¬obs(o, s)∨
¬obs(o′, s)



CHAPTER 5. IMPLEMENTATION 59

In one state we have at least one observation: ∀s ∈ S :
∨
o∈O obs(o, s)

Similarly, for the predicate tr it holds:

∀s, s′, s′′ ∈ S, a ∈ A, s′ 6= s′′ : ¬tr(s, a, s′) ∨ ¬tr(s, a, s′′)

∀s ∈ S, a ∈ A :
∨
s′∈S tr(s, a, s

′)

And for the predicate pos:

∀t, 0 ≤ t ≤ T, s, s′ ∈ S : ¬pos(t, s) ∨ ¬pos(t, s′)

∀t, 0 ≤ t ≤ T :
∨
s∈S pos(t, s)

The constraints that the model satis�es the observations are:

∀0 ≤ t ≤ T, s ∈ S : obs(s, ot) ∨ ¬pos(t, s)

∀0 ≤ t ≤ T − 1, s, s′ ∈ S : tr(s, at, s
′) ∨ ¬pos(t, s) ∨ ¬pos(t+ 1, s′)

The assumption that the automaton begins in the state 0 is given by stating that

pos(0, 0).

Search for the minimal model

In the formalization above, we assumed that we know the number of states (j). However,

we do not know this number in advance. Therefore, we must invoke the SAT solver multiple

times using di�erent values. This can be accomplished for example by a binary search for

the minimal j (cutting the interval in halves, until an unsatis�able result for j − 1 and a

satis�able result for j is found). However, during experiments we realized that

1. The SAT solver usually �nished in a short time (usually less than 0.5 second) for

satis�able instances and in a long time (sometimes > 2 min.) for unsatis�able in-

stances.

2. The number of states needed for the automaton is monotonic (a new visited cell

may increase the number of states necessary to represent the world, but it cannot

decrease).

3. As mentioned in Section 4.8, the abstraction module does not have to �nd strictly

the minimal model. Also a pseudo-minimal model is acceptable.

Therefore, we decided to use an iterative solution, beginning with the number of nec-

essary states set to the value 1, and increasing this value for each unsuccessful or too long

SAT solver run (probably unsatis�able formula).
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Unknown actions and unknown states

The model found by the described algorithm does not incorporate the uncertainty � it

does not mark unknown actions, and contains only visited states. Unexecuted actions are

unbound in the transformed logical formula and it is up to the SAT solver to decide how

they will be assigned.

However, this is easily resolved by a simple iteration over the history. The respective

transition for each executed action is marked as known. For each unknown action, a (new)

unknown state is created (see Fig. 5.2 for illustration). The method is able to distinguish

between two triples of states having the same observation (three cells marked with the

number 8 and three cells marked by 16 in top left part of the maze, compare 5.2 with 5.1).

5.4.4 Algorithm overview

The algorithm overview is given in Fig. 5.3. Basically, the agent runs in a �perceive-learn-

act� loop. In the �perceive� and �act� parts the agent interacts with the environment. The

�learn� part consists of recording the experience, creating a world model, and computing

the best action according to the newly created model. Creation of the world model consists

of a loop (the inner loop), in which the the SAT solver is iteratively invoked in attempt to

�nd a solution of a formula, containing a transcript of agent's experience transformed into

logical propositions.

5.4.5 Policy

The reinforcement module is independent from the abstraction module. This allows a

free choice of abstraction method or the policy for reinforcement learning. We tested two

policies. First, the agent was run with a random policy. The purpose was mainly to test

the program and to test the performance of the abstraction module.

After this �rst experiment, we have tried a greedy policy which favorized the unknown

actions to encourage the maze exploration.

5.5 Results and discussion

We have run the implemented agent in the maze. The agent gradually extended his world

model, adding necessary states and keeping the model at the minimal (or pseudo-minimal)

level. The development during the �rst 23 time steps is shown in Appendix A.
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Figure 5.2: An example of generated model (the left top part of the maze).



CHAPTER 5. IMPLEMENTATION 62

1 number_of_states = 1 ;
2 while ( true )
3 {
4 obse rvat i on = getObservat ion ( ) ;
5 reward = getReward ( ) ;
6 h i s t o r y . append ( observat ion , reward ) ;
7
8 while ( true )
9 {
10 formula=transformToCNFFormula ( number_of_states , h i s t o r y ) ;
11 i f ( invokeSATSolver ( formula , t ime l im i t ) == SAT)
12 break ;
13 else //UNSAT or INDET ( t ime l im i t exceeded )
14 number_of_states++;
15 }
16
17 model = extractSATSolut ion ( ) ;
18
19 solveDynamicProgramming (model ) ;
20
21 // i n i t i a l s t a t e i s 0 by d e f i n i t i o n ( wi thou t l o s s o f g e n e r a l i t y )
22 model . i n i t i a l i z e (0 ) ;
23 for (h in h i s t o r y )
24 model . advance (h) ; // emulate ac t i on to ge t to the next s t a t e
25
26 current_state = model . getCurrentState ( ) ;
27
28 i f ( debug )
29 {
30 model . draw ( ) ;
31 model . mark ( current_state ) ;
32 }
33
34 ac t i on = bestAct ion (model . s t a t e ( current_state ) ) ;
35
36 executeAct ion ( ac t i on ) ;
37 }

Figure 5.3: Overview of the implementation
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The performance of the implementation depends primarily on the SAT solver times,

with the time to solve satis�able instances being less than 0.01 second for 12 states and

increasing to about 60 seconds for 30 states.

The main goal was to focus more on the prototype testing and not the performance.

Further performance improvements are presented in Section 5.7.

5.5.1 Separate observations for di�erent modalities

In this implementation, we have presented the agent a simple number. The agent now

has no prior possibility to know that 2 and 12 have both a wall on the left. It would be

possible to split the observational domain into multiple subdomains, i.e. in this case having

four 1-bit numbers (observations o1, o2, o3, o4), so the agent could derive a rule based on

a separate part of the information obtained from the environment (without having to use

a modular arithmetic or another means). However this requires a stronger formalism and

brings no advantage when only the FSA inference is used.

5.6 Flexibility of the algorithm

The framework and the algorithm for reinforcement learning with abstraction (RLA) were

proposed so as to be �exible, creating the world model as necessary. Therefore, the algo-

rithm can be used without change for example of a task of traversing a maze with cells

labeled with letters � the agent sees a letter on the current cell (see Fig. 5.4), and does

not have any other information. The performance was similar as mentioned above. The

only modi�cation is to change the number of possible observations to match the number

of letters.

Teleports and one-way doors could also be added arbitrarily.

5.6.1 3D-maze traversal

We have used the algorithm also for traversing a three dimensional maze. The only re-

quirement necessary was to modify the number of actions. An example of the traversed

maze is in Figure 5.1.
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D C B D B D

C A B B C D

C D

D C A C A A

D A D B C

C C

D D D B C C C

Figure 5.4: A �letter� maze. The letters represent the observations received by the agent.

Table 5.1: An example of 3D-maze (27 free cells) traversed by the RLA agent in 199
steps/486 seconds.
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5.6.2 Protocol discovery

The principle of operation of RLA is not limited to a maze traversal. It can be used for

a variety of real-world tasks, characterized by a limited (partial) observation of the state

and a �nite-state nature of the environment. A simple example might be kind of �hacker's�

game � a protocol discovery.

Let us suppose that we do not know the exact protocol for sending emails (Simple

Mail Transfer Protocol, SMTP), but we know the way how to connect the agent to the

SMTP server and let it communicate arbitrary messages. This can be done for example by

connecting the output of the agent to an internet socket. Let us also suppose that we are

able to detect if the mail was successfully sent, for example, using an external mail client.

The RLA agent is then let to learn the protocol, trying di�erent actions, which evoke

di�erent responses from the server. Most of the responses usually generate an error mes-

sage, but some will lead to a di�erent response and cause a change in an internal state

of the server. This change is dictated by the protocol. An example of a simple SMTP

communication is shown in Figure 5.5.

We have tested our RLA agent in a simple SMTP environment. We have modi�ed the

agent so it can send lines like �HELO�, required by the protocol. 1 The agent was able to

learn the SMTP protocol in 113 steps.

5.7 Inclusion of the old model

The speed of the model search can be easily improved. In many cases the agent does not

explore any new cell. In this case, the model can remain the same, under the assumption

it was correct. Visiting already visited cells should usually not bring any surprise to the

agent. Thus, before a new search, the old model can be tested if the latest experience does

not contradict it. If it does not, the old model can remain and be considered a valid world

model in the current step.

Another situation occurs when the agent explores a new cell. If the old model was

correct, it predicted the existence of the new cell. Thus the only modi�cation necessary is
1In principle, the agent could be modi�ed to send arbitrary strings. In this case, because of a great

space of possible strings, it would be practical not to record every such string as a separate action, but
to record only a few past actions or only the actions which lead to a di�erent response. It should be also
noted, that some strings would require a high number of attempts if generated by a simple chance. The
design of the strings generation is highly protocol-dependent and is more of a �hacking� nature, which we
consider to be out of scope of this work.
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220 server ESMTP ready
HELO server
220 I am glad to meet you
MAIL FROM:<agent@rla.sk>
250 OK
RCPT TO:<user@rla.sk>
250 OK
DATA
354 End data with <CR><LF>.<CR><LF>
From: agent@rla.sk
To: user@rla.sk
Subject: �rst mail
Dear user,
this is my �rst mail.

Sincerely,
Your RLA agent
.
250 OK: queued as 71

Figure 5.5: An example of SMTP communication. Text in bold indicates the response of
the server, requests of the client are in italics.

to add the new cell as a new state to the old model. This new model (the old model plus

one state) becomes a valid model for the current step.

Combining these two tests can save substantial time. Instead of a completely new

search from scratch, we �rst test the old model. Then we try to �nd a new model, but

use the old model as an additional information. This greatly restricts the search space

for the SAT solver since almost all variables are �xed, and the new model is found almost

immediately.

Only if these two approaches fail, the agent attempts to search for a completely new

model.

5.7.1 Experiments with partial use of the old model

We have also experimented with the idea of using parts from the old model as a basis for

the new search. In graph terms, we can imagine this as computing a model of one part of

the world (for example, an old experience) and a model of a second part (new experience)



CHAPTER 5. IMPLEMENTATION 67

separately, and then joining the models together. At some point, we need to link states

from the �rst model to the states of the second model. It is necessary to �nd all points

where the two models join together. If one of the cells (states) where in reality the two

parts of the world join remains unlinked, at the next visit of this cell/state the agent is

forced to create a separate model for the experience beyond this point. This would mean

that a third model is created, in which we can �nd an unlinked state, and this situation

repeats again and again.

Thus, the two models must be connected perfectly. We decided to combine the process

of computing the model for the second part and the process of linking together: we search

for a big (joined) model, where the model for the �rst part is kept as bound variables, and

the model for the second part (new, free variables) will link correctly to it. The big model

then encompasses the whole experience. The computation time depends mainly on the

number of free variables since the old variables are �xed and do not need to be computed.

Therefore, the computation time depends on the size of the �new� part plus some additional

(but relatively small) number of variables which describe the relations between the �old�

and �new� states.

However, this approach was not very successful. The problem is, which part of the old

model to use. We have tried to de�ne a threshold for inclusion based on the count and

recency of the respective experience. For each state and each edge, we count how many

times we visited the corresponding cell, or executed the corresponding action. We also

record how recently this happened. This was inspired by the idea of computing models

for two (almost) independent parts of the maze separately and then joining these models

into one model. However, the results were mixed. For example, in most of the cases

inclusion of the old model caused unsatis�ability due to some fundamental ��aw� in the

model, or the model has to be restricted (with a high threshold) so much that it did not

bring a substantial improvement of time. Moreover, we did not �nd any useful heuristic

to set a static threshold or to compute it from the run variables by a simple formula.

Thus the program has to search for the �right� threshold, increasing gradually from zero

to maximum, beginning at the original model, then trimming some of the old states and

edges, ending with a completely new model. This search itself takes a certain amount of

time. At some point the sum of the time spent for the �threshold� models exceeds the

time necessary for computing a completely new model. To spend the time in search for a

completely new model seems a better investment in this case.

When we decided to stop the process at some point and took the result of this �thresh-
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old� approach as a �nal result, we underwent a risk that the agent would not �nd a model

for a given number of states, even if such a model existed. A small number of such failures

should not be a problem � using �pseudo-minimal� model is perfectly in line with philoso-

phy of MDL. However, the failures seemed to be repeated one after another, because the

�aw, which occurred in some of the earlier models, was transferred to the following mod-

els. We were thus forced to switch from the �threshold approach� to a �complete� search,

using a brand new model at some point. That required introducing another parameter �

a threshold for when to switchover, what further complicates the heuristic approach. In

theory, it could be possible to �nd a combination of right parameters for selecting which

thresholds to try, at what time to interrupt them, and when to switch to �complete� search.

But we were not able to �nd such a good combination, we rather decided to use a more

transparent approach, trying only the whole old model, and after a failure immediately to

switch and search for a new model from scratch. The heuristic approach was thus greatly

simpli�ed � only an appropriate time limit for for the new model search has to be guessed.

5.8 Further experiments with mazes

After initial experiments we found out, that the system was in principle able to derive a

world model. However, this was done at some computational cost. This can be reduced

by adding ad-hoc rules about the environment, which are known in advance. One can

see these rules as a replacement of a good meta-abstraction module: they could be in

principle derived by the agent itself, only if he is provided with a good, strong abstraction

mechanism.2 We have decided to use the following rules:

1. It is not possible to move against a wall.

2. When there is not a wall, a movement in that direction takes the agent to a di�erent

cell.

3. When it is possible to move from one state to another, then a movement in the

opposite direction returns the agent back to the �rst state.

These rules limit the generality of the agent. However, they greatly improve the speed.

For example, the �rst rule is broken in games like Sokoban, and the third rule is not true

in environments with one-way doors.
2The inclusion of local knowledge was recommended also by M. Fori²ek.
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Performance testing and comparison to

other approaches

After optimizations presented in Section 5.7, we have a faster implementation of the frame-

work. We would like to answer two questions: What is the speed of the framework? This

is necessary to assess whether the implementation is useful and what size of problems it

can solve, whether the solution is viable when applied to practical problems. The other

but related question is how our approach compares to other approaches. There are many

kinds of practical problems. Would it be bene�cial to use our framework for this or that

particular problem? Or should one use a di�erent method? In what kind of problems is

our method superior and where is it not?

6.1 Methodology

We have compared other algorithms for POMDP and three generic (MDP, fully observable

world) algorithms with our RLA method. The test were performed on a computer with

AMD AthlonTM64 Processor 3500+ and 1GB RAM. For generic algorithms, we used the

PyBrain library Schaul et al. [2010], which contains an implementation of many RL meth-

ods. We modi�ed the examples supplied with the library to the purpose of our test. These

programs are available on the CD medium.

69



CHAPTER 6. PERFORMANCE TESTING AND COMPARISONS 70

6.1.1 Algorithms for POMDP

We compared our RLA with algorithms outlined in Section 3.2. For each of these, we

compared experimental results of the authors with the performance of RLA. As each of

the papers uses a di�erent approach and a di�erent test case, so we do in our comparison,

running RLA on the same input as did the author(s) of the respective paper.

Lion algorithm

In Lion algorithm (described in Section 3.2.1), when the agent �nds an inconsistent state

(a state where the obtained reward is di�erent from the expected one) it tries to avoid

that state by setting the utility function to zero. Therefore, the algorithm is able to be

successful only in a world which contains a path from goal that consists of only unaliased

states1. This is, however, not true in most of the mazes and therefore the algorithm would

be not successful.

Utile Distinction Memory

McCallum [1992] writes that for a maze depicted in Figure 6.1, �UDM consistently learned

the optimal policy for this maze in �ve trials of 500 steps each�, i.e. it took 2500 steps.

The author does not state the CPU time necessary to perform the trials.

In our experiment, RLA explored the same environment in 35 steps and it took 3.8

seconds.

Figure 6.1: The maze used for testing in McCallum [1992]. In this paper, the agent's
perception is de�ned in a similar manner that we described in Section 5.3.1. It is a bit vector
of length four whose bits specify whether or not there is a wall to the agent's immediate
north, east, south, west. The numbers in the squares are the agent's observations.

1To be precise, it could possibly �nd a way containing aliased states by accident � if the agent is lucky
when entering these states for the �rst time.
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6.1.2 Generic algorithms

We have selected three generic RL methods: Q, Q(λ), SARSA (see Sections 1.5.4, 1.5.5,

1.5.6), which were run together with our RLA implementation on a set of mazes. Each

method was stopped after it had successfully explored the maze and created a model of

the maze. In the case of RLA, the model is explicit.

It should be noted that the generic algorithms were not designed to run in a partially

observable world. Therefore, they have been provided a fully observable world � in this

sense the test is not �fair�, because RLA obtains only a partial observation, however, we

think it is a useful comparison. We see that even in this �unfair� test RLA performs quite

well. How generic algorithms behave in a partially observable world can be seen in the

next subsection.

In the case of the other three generic methods, the exploration is considered to be

�nished when the value-function does not change signi�cantly in any state. We consider a

change of the value-function in a state to be signi�cant if the change leads to a di�erent

action to be chosen in that state. In other words, we compute the optimal action in every

state, i.e. the action which (presumably) leads to the goal. In fact, this enables us to

visualize the implicit model � the computed table of of the value-function � and make it

explicit to see the direction in which the agent moves.

→ ↓ ↓ → ↓ →
→ → → → ↓ ↑

↓ ↑
↓ ↓ ← ← ← ↑
↓ ← ← ↑ ↑
↓ ↑
→ → → → → → ↑

0.63 0.67 0.65 0.65 0.70 0.97
0.65 0.69 0.70 0.73 0.76 0.85

0.80 0.94
0.81 0.82 0.82 0.82 0.75 1.00
0.82 0.82 0.76 0.77 0.95
0.82 0.92
0.83 0.84 0.86 0.87 0.88 0.90 0.91

Table 6.1: An example of a model learned by SARSA. At the left side, the arrows indicate
the direction of the best action for each cell. On the right, the utilities of the states are
shown.

For each run, we track the number of steps in the environment (environment time, Fig.

6.2 and 6.4) and the real time (CPU time needed for the computation, Fig. 6.3 and 6.5).

If one method has both times lower, it is clearly superior. If the real time is high, but the

environment time is low, we can consider it as a good trade-o�. As we explained before:
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for some tasks it is better to invest in a CPU-intensive computation rather than to let the

agent (for example, a robot) make a number of costly steps in the real environment.
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Figure 6.2: The number of steps in environment necessary for SARSA,Q, and Q(λ) to fully
explore the world, depending on the size of the maze (the number of free cells). The vertical
bars show the standard deviation from 10 runs. We have also added RLA for comparison
(a rescaled view of RLA is available in Fig. 6.4).

6.1.3 Discussion of results

We can see that the RLA in comparison with other POMDP algorithms performs sig-

ni�cantly better. In comparison with generic algorithms, when these are granted full

observation, RLA performs better in terms of the number of steps necessary to explore the

environment.
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Figure 6.3: The time necessary for SARSA, Q, and Q(λ) to fully explore the world, de-
pending on the size of the maze � the number of free cells. The vertical bars show the
standard deviation from 10 runs.

The absolute (processor) time needed by RLA to explore the world grows exponentially.

This is expectable, since RLA uses SAT to compute models. With currently available

processor powers, an upper limit for feasible use (about 1 hour) would be about 50�60

states.

6.1.4 How do generic algorithms perform in a partially

observable environment?

We have modi�ed the code used for exploration in the previous section in such a way that

the algorithm receives only a partial observation, 3 × 3 cells surrounding the agent. This
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Figure 6.4: The number of steps in environment necessary for RLA to fully explore the
world, depending on the size of the maze � the number of free cells. The vertical bars show
the standard deviation from 10 runs.

means, that in di�erent states the agent can obtain the same observation. The result is

that none of the algorithms was able to create a world model.

These generic algorithms are designed in such a way that they in principle average

the reward information received in a state. Thus, if the world contains multiple states

with the same observation but of a di�erent utilities, these utility values will be averaged.

Unfortunately, the maze contains many perceptually aliased states, which are distributed

quite uniformly across the maze, thus having a quite uniform distribution of their utility

values. For example, the utility value in a simple maze depends on the distance to the

goal. The �model� of a generic algorithm will thus consist of all states having the almost

the same utility, equal to the average of utilities of all states plus some noise. The actions
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of an agent using such a model will be very similar to a random walk.



Chapter 7

Conclusion and future work

7.1 Results

We have described the principles, advantages, and limitations for our framework that en-

ables the agent to create the world model. We have also presented a simple implementation,

using a SAT solver for automaton inference. The implementation successfully created a

world model representing the maze. The agent was able to distinguish states with the same

perceptual information, unlike most of the reinforcement learning methods.

For POMDP maze tasks, the RLA method is faster than other available methods. Even

in comparison to generic methods (SARSA, Q learning, Q-lambda) in fully observable MDP

tasks, RLA performs signi�cantly better in terms of number of steps in the environment

without the requirement for full observation. If the problem is a POMDP, none of the

generic methods is available, and the RLA method might be one of few methods capable

of solving the problem.

7.2 Future work

It would be possible to use another method of grammar inference or automata inference, for

example the ECGI method [Rulot et al., 1989], which produces a regular grammar, genetic

algorithm [Javed et al., 2004] or other symbolic techniques [Alquezar, 1997; Rivest and

Schapire, 1993]. It would also be possible to modify our algorithm using the SAT solver to

�nd a stronger grammar (e.g. a context-free grammar), or a one- or two-counter automaton.

However, the complexity (the number of clauses to solve) would be much greater. It is also
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necessary to remember the uncomputability limit � two counter automata are equivalent

to Turing machines when a speci�c encoding is used.

7.2.1 Strong formalism

If it was possible to use a stronger method, we suppose that the generalization would be

more interesting. For example, let us assume an empty matrix, where the agent can move

in an unlimited number of steps to the left, right, up, down, and can put a mark on the

cell. Obviously, as the matrix is in�nite, the agent cannot have experience with each cell.

The question �where will I be from the cell p if I do 3 steps right, 3 steps up, 3 steps left,

and 3 steps down� has no answer within his experience. The �nite-state automaton cannot

provide the answer either, because each cell has to be assigned a separate state. Thus it is

unable to generalize the rule that by making this movement, the agent will end up on the

same cell.

However, if a stronger method could be used, for example, a two-counter automaton, it

is possible to derive a simple automaton which counts the coordinates on its counters. This

automaton has only a few states, thus it is more preferable to any �nite-state automaton

that records each cell separately.

The concept of coordinates, which could be inferred in this way, was not included in

the agent's design, but the agent has derived it himself.

We do not have knowledge, whether the technique presented in Fahmy and Roos [1996]

for real-time 2-counters automata is able to produce such an automaton.

7.2.2 Two-level grammars

An alternative possibility is to introduce another level of grammar induction on top of

the inferred model. The inferred meta-rules could be used for deciding between similar

models (of the equal or comparable sizes) and improving the generalization of the model.

For example, in the current implementation with �nite automaton there is no useful infor-

mation deduced for the unknown actions, as they constitute free variables for the formula.

However, analyzing the derived model could infer this meta-information � that the action

�go right� from the state with the wall in the right will result in the same state. This rule

may or may not be valid (we could arrange a maze with moving walls � a kind of Sokoban

� where this is not true). The metaplanning module would have to take care about the

use and veri�cation of these meta-rules.
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Two context-free grammars were proven to be Turing complete [Sintzo�, 1967]. Double-

step inference of (pseudo-minimal) context-free grammars could be a more e�ective way

how to search for a (pseudo-minimal) Turing machine at once1. However this is only a

speculation.

7.3 Conclusion

This work is concerned with partially observable problems in reinforcement learning. This

class of problems is still open and existing theory provides only partial solutions. A re-

view of existing approaches is given together with a general theoretical background of

reinforcement learning and Markov models.

The work proposes a novel framework � Reinforcement Learning with Abstraction. It

also contains a prototypical implementation of the RLA method. The implementation is

tested on a set of tasks. The results and comparison to another approaches are presented.

For a subset of speci�c problems, namely partially observable problems, the RLA performs

signi�cantly better than other available approaches.

The framework in general is derived theoretically and well-founded. Partially also

biological motivations are provided. The future work (Section 7.2) contains some proposals

to make the implementation more feasible and/or to gain more generalization power.

1Search for a minimal Turing machine is a undecidable problem. A pseudo-minimal (best which we can
�nd in a reasonable time) Turing machine would be, however, also a useful generalization of the problem.



Appendix A

Illustration of model development

The following �gures illustrate the development of agent's world model during exploration

of a maze (Fig. 5.1). Ellipses represent states, each state is labelled by the observation and

the value (V). The grey ellipse represents the state the agent is in, the bold arrow marks

the best action. The dotted arrows mark the actions which were not yet explored (and are

only �predicted� by the model).
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Figure A.1: Development of agent's model during the maze exploration. Steps 0-14.



Appendix B

Source code documentation

Removed in shortened version, can be requested by email.
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