Computational Logic

First-Order Logic

Martin Balaz

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Martin Balaz Computational Logic



Alphabet

An alphabet contains
@ Variables
X, Yy Zyon.
o Constants
c,d,e,...

@ Function symbols
f,g,h,...

@ Predicate symbols
p,q,r, ...

@ Logical connectives
VoA, =, e,

o Quantifiers
vV 3

@ Punctuation symbols

()
Martin Balaz Computational Logic



A term is
@ a variable
@ a constant

@ an expression f(t1,...,t,) if f is a function symbol with arity
nand ty,...,t, are terms

A atom is an expression p(ti,...,t,) where p is a predicate symbol
with arity n and t1,..., t, are terms.

Martin Balaz Computational Logic



Formula

A formula is
@ an atom
e —® if ¢ is a formula
o (PAV)Iif ®and V are formulas
o (PVV)if dand V¥ are formulas
o (M— W) if ® and WV are formulas
o (Me W) if dand W are formulas
° ...
o (Vx)® if x is a variable and ® is a formula
@ (Ix)® if x is a variable and ¢ is a formula

A language is a set L of all formulas.

Martin Balaz Computational Logic



A domain is a set of individuals D.
A signature is a tripple o = (F, P, arity) where

@ F is a set of function symbols
@ P is a set of predicate symbols
@ arity: FUP +— N is an arity function
An interpretation is a function / such that
o I(f) is a function f': Dtv(f) ., D
o I(p) is a relation p/ C Dtv(P)
A structure is a tripple D = (D, 0, 1) where
@ D is a domain
@ U is a signature

@ / is an interpretation function

Martin Balaz Computational Logic



(Vx)p(c, x, x)
(Vx)(Vy)(V2)(p(x, &(v), 2) < p(f(x),y,2))

@ Domain D =N
@ Signature

0 = ({C7 f,g},{p},{c'—> Oaf —1l,g—1p— 3})
@ Interpretation

I(c) =

Martin Balaz Computational Logic



Variable Assignment

A variable assignment is a mapping e: X — D where X is a set of
variables and D is a domain.

If x € X is a variable and d € D is an individual, then by e(x — d)
we will denote a variable assignment satisfying

et ) ={ 4y e

Martin Balaz Computational Logic



Let D be a struture and e be a variable assignment.
The value of a term t (denoted by t[e]) is

e ¢(t) if tis a variable
o c!if tis a constant
o fl(tife],..., ta[e]) if t = F(t1,...,t) is a compound term
A formula @ is true w.r.t. D and e (denoted by D |= ®[e]) iff
D k= p(ty, ..., ta)[e] iff (ti[e], ..., tale]) € P’
D = —d[e] iff D [~ d[e]
D E (P AV)[e] iff D d[e] and D = Ve]
DE(oV \U)[e] iff D = ®[e] or D | V]e]
D E (® — V)e] iff D |~ dle] or D = V]e]
D E (¢« V)e] iff D = dle] iff D = V]e]
D = (Vx)®[e] iff D = d[e(x — d)] for all d € D
D = (3x)P[e] iff D = dle(x — d)] for some d € D



Entailment

A formula ® is true w.r.t. a structure D (denoted by D = ) iff

D [= d[e] for all variable assignments e.

A set of formulas T entails a formula ® (denoted by T |= @) iff for
all structures D holds D = ¢ whenever D = WV for all W in T.

Martin Balaz Computational Logic



Normal Forms

A formula is in negation normal form iff if {—=, A, V} are are the only
allowed connectives and literals are the only negated subformulas.

A formula is in prenex normal form iff it is of the form
(@ix1) ... (Qnxn)F, n >0, where Q; is a quantifier, x; is a variable
and F is quantifier-free formula.

A formula is in Skolem normal form iff it is in prenex normal form
with only universal quantifiers.

A formula is in conjunctive normal form iff it is conjunction of
disjunctive clauses, where a disjunctive clause is a disjunction of
literals.

A formula is in disjunctive normal form iff it is disjunction of
conjunctive clauses, where a conjunctive clause is a conjunction of
literals.

Martin Balaz Computational Logic



Negation Normal Form

@ Double negative law:
-=P/P

@ De Morgan’s law:
“(PAQ)/(-PV-Q)
-(PV Q)/(—-PAN-Q)

@ Quantifiers:
=(Vx)P/(3x)-P
—(Ix)P/(Vx)-P

Martin Balaz Computational Logic



Prenex Normal Form

o Negation:
—(3Ix)P/(Vx)-P
=(Vx)P/(3x)-P
e Conjunction:
(V)P AQ)/(¥x)(PAQ) (QA(VX)P)/(Vx)(Q A P)
(F)PAQ)/(EF)NPAQ) (QA(EX)P)/(Ix)(QAP)
if x does not appear as free variable in @
@ Disjunction:
(Vx)PV Q)/(vx)(PV Q) (QV(Vx)P)/(Vx)(QV P)
(F)PVQ)/(EF)(PVQ) (QV(INNP)/(Ix)(QVP)
if x does not appear as free variable in @
@ Implication:
(V)P = Q)/(Fx)(P = Q) (Q — (vX)P)/(Vx)(Q — P)
()P — Q)/(Vx)(P — Q) (Q — (3x)P)/(3x)(Q — P)

if x does not appear as free variable in @

Martin Balaz Computational Logic



Skolem Normal Form

Formulas P and Q are equisatisfiable if P is satisfiable if and only if
Q is satisfiable.

Given a formula F:
© If F is already in Skolem normal form, we are done.
@ If not, then F is of the form

(Vx1) ... (Vxm) 3y ) F (x15 -« s Xmy ¥ 21y -+ - Zn)

where each z; is a free variable and F’ is in prenex normal
form. Replace y with f(x1,...,Xm,21,...,2,) where f is
a new function symbol.

Martin Balaz Computational Logic



Conjunctive Normal Form

© Negation Normal Form
@ Prenex Normal Form
© Skolem Normal Form

© Distributive law (V over A):
(PAQ)VR)/(PVR)A(QRVR)
(PV(QAR))/(PVQ)AN(PVR)

Martin Balaz Computational Logic



Disjunctive Normal Form

© Negation Normal Form
@ Prenex Normal Form
© Skolem Normal Form

© Distributive law (A over V):
(PVQ)AR)/(PAR)V(QAR)
(PA(QVR))/(PAQ)V(PAR)

Martin Balaz Computational Logic



