Computational Logic First-Order Logic

Martin Baláž

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

2011

Alphabet

- An alphabet contains
 - Variables
 - x, y, z, \ldots
 - Constants
 - *c*, *d*, *e*, . . .
 - Function symbols f, g, h, . . .
 - Predicate symbols
 p, q, r, ...
 - Logical connectives
 - $\neg, \lor, \land, \Rightarrow, \Leftrightarrow, \ldots$
 - Quantifiers
 - ∀∃
 - Punctuation symbols
 () ,

A term is

- a variable
- a constant
- an expression f(t₁,..., t_n) if f is a function symbol with arity n and t₁,..., t_n are terms

A *atom* is an expression $p(t_1, \ldots, t_n)$ where p is a predicate symbol with arity n and t_1, \ldots, t_n are terms.

Formula

- A formula is
 - an atom
 - ¬Φ if Φ is a formula
 - $(\Phi \wedge \Psi)$ if Φ and Ψ are formulas
 - $(\Phi \lor \Psi)$ if Φ and Ψ are formulas
 - $(\Pi \rightarrow \Psi)$ if Φ and Ψ are formulas
 - $(\Pi \leftrightarrow \Psi)$ if Φ and Ψ are formulas
 - . . .
 - $(\forall x)\Phi$ if x is a variable and Φ is a formula
 - $(\exists x)\Phi$ if x is a variable and Φ is a formula

A language is a set \mathcal{L} of all formulas.

Structure

A *domain* is a set of individuals *D*.

A signature is a tripple $\sigma = (F, P, arity)$ where

- F is a set of function symbols
- P is a set of predicate symbols
- arity: $F \cup P \mapsto N$ is an arity function

An interpretation is a function I such that

- I(f) is a function $f^{I}: D^{arity(f)} \mapsto D$
- I(p) is a relation $p^{I} \subseteq D^{arity(p)}$

A structure is a tripple $\mathcal{D} = (D, \sigma, I)$ where

- D is a domain
- $\circ \sigma$ is a signature
- I is an interpretation function

$(\forall x)p(c,x,x)$ $(\forall x)(\forall y)(\forall z)(p(x,g(y),z) \Leftrightarrow p(f(x),y,z))$

- Domain D = N
- Signature $\sigma = (\{c, f, g\}, \{p\}, \{c \mapsto 0, f \mapsto 1, g \mapsto 1, p \mapsto 3\})$
- Interpretation

$$l(c) = 0l(f) = x \mapsto x + 1l(g) = x \mapsto x + 1l(p) = \{(x, y, z) | x + y = z\}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A variable assignment is a mapping $e: X \mapsto D$ where X is a set of variables and D is a domain.

If $x \in X$ is a variable and $d \in D$ is an individual, then by $e(x \mapsto d)$ we will denote a variable assignment satisfying

$$e(x \mapsto d)(y) = \begin{cases} d & \text{if } x = y \\ e(y) & \text{if } x \neq y \end{cases}$$

Valuation

Let \mathcal{D} be a struture and e be a variable assignment. The value of a term t (denoted by t[e]) is

- e(t) if t is a variable
- c^{I} if t is a constant
- $f'(t_1[e],\ldots,t_n[e])$ if $t=f(t_1,\ldots,t_n)$ is a compound term
- A formula Φ is *true* w.r.t. \mathcal{D} and e (denoted by $\mathcal{D} \models \Phi[e]$) iff
 - $\mathcal{D} \models p(t_1, \ldots, t_n)[e]$ iff $(t_1[e], \ldots, t_n[e]) \in p'$
 - $\mathcal{D} \models \neg \Phi[e]$ iff $\mathcal{D} \not\models \Phi[e]$
 - $\mathcal{D} \models (\Phi \land \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ and $\mathcal{D} \models \Psi[e]$
 - $\mathcal{D} \models (\Phi \lor \Psi)[e]$ iff $\mathcal{D} \models \Phi[e]$ or $\mathcal{D} \models \Psi[e]$
 - $\mathcal{D} \models (\Phi \rightarrow \Psi)[e]$ iff $\mathcal{D} \not\models \Phi[e]$ or $\mathcal{D} \models \Psi[e]$
 - $\mathcal{D} \models (\Phi \leftrightarrow \Psi)[e] \text{ iff } \mathcal{D} \models \Phi[e] \text{ iff } \mathcal{D} \models \Psi[e]$
 - $\mathcal{D} \models (\forall x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)]$ for all $d \in D$
 - $\mathcal{D} \models (\exists x) \Phi[e]$ iff $\mathcal{D} \models \Phi[e(x \mapsto d)]$ for some $d \in D$

A formula Φ is *true* w.r.t. a structure \mathcal{D} (denoted by $\mathcal{D} \models \Phi$) iff $\mathcal{D} \models \Phi[e]$ for all variable assignments e. A set of formulas T *entails* a formula Φ (denoted by $T \models \Phi$) iff for all structures \mathcal{D} holds $\mathcal{D} \models \Phi$ whenever $\mathcal{D} \models \Psi$ for all Ψ in T.

Normal Forms

A formula is in *negation normal form* iff if $\{\neg, \land, \lor\}$ are are the only allowed connectives and literals are the only negated subformulas.

A formula is in *prenex normal form* iff it is of the form $(Q_1x_1)...(Q_nx_n)F$, $n \ge 0$, where Q_i is a quantifier, x_i is a variable and F is quantifier-free formula.

A formula is in *Skolem normal form* iff it is in prenex normal form with only universal quantifiers.

A formula is in *conjunctive normal form* iff it is conjunction of disjunctive clauses, where a *disjunctive clause* is a disjunction of literals.

A formula is in *disjunctive normal form* iff it is disjunction of conjunctive clauses, where a *conjunctive clause* is a conjunction of literals.

Negation Normal Form

- Double negative law: ¬¬P/P
- De Morgan's law: $\neg (P \land Q)/(\neg P \lor \neg Q)$ $\neg (P \lor Q)/(\neg P \land \neg Q)$
- Quantifiers:
 - $\neg(\forall x)P/(\exists x)\neg P$ $\neg(\exists x)P/(\forall x)\neg P$

Prenex Normal Form

- Negation: $\neg(\exists x)P/(\forall x)\neg P$ $\neg(\forall x)P/(\exists x)\neg P$
- Conjunction: $((\forall x)P \land Q)/(\forall x)(P \land Q) \quad (Q \land (\forall x)P)/(\forall x)(Q \land P)$ $((\exists x)P \land Q)/(\exists x)(P \land Q) \quad (Q \land (\exists x)P)/(\exists x)(Q \land P)$ if x does not appear as free variable in Q
- Disjunction:

 $\begin{array}{l} ((\forall x)P \lor Q)/(\forall x)(P \lor Q) \quad (Q \lor (\forall x)P)/(\forall x)(Q \lor P) \\ ((\exists x)P \lor Q)/(\exists x)(P \lor Q) \quad (Q \lor (\exists x)P)/(\exists x)(Q \lor P) \\ \text{if x does not appear as free variable in Q} \end{array}$

Implication:

 $\begin{array}{l} ((\forall x)P \to Q)/(\exists x)(P \to Q) \quad (Q \to (\forall x)P)/(\forall x)(Q \to P) \\ ((\exists x)P \to Q)/(\forall x)(P \to Q) \quad (Q \to (\exists x)P)/(\exists x)(Q \to P) \\ \text{if } x \text{ does not appear as free variable in } Q \end{array}$

Formulas P and Q are equisatisfiable if P is satisfiable if and only if Q is satisfiable.

Given a formula F:

- If F is already in Skolem normal form, we are done.
- 2 If not, then F is of the form

$$(\forall x_1) \dots (\forall x_m) (\exists y) F'(x_1, \dots, x_m, y, z_1, \dots, z_n)$$

where each z_i is a free variable and F' is in prenex normal form. Replace y with $f(x_1, \ldots, x_m, z_1, \ldots, z_n)$ where f is a new function symbol.

- Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- Distributive law (\lor over \land): ($(P \land Q) \lor R$)/ $(P \lor R) \land (Q \lor R)$ ($P \lor (Q \land R)$)/ $(P \lor Q) \land (P \lor R)$

- Negation Normal Form
- Prenex Normal Form
- Skolem Normal Form
- Distributive law (\land over \lor): $((P \lor Q) \land R)/(P \land R) \lor (Q \land R)$ $(P \land (Q \lor R))/(P \land Q) \lor (P \land R)$