
Computational Logic

First-Order Logic

Martin Baláº

Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics

Comenius University in Bratislava

2011

Martin Baláº Computational Logic

Alphabet

An alphabet contains

Variables

x , y , z , . . .

Constants

c, d , e, . . .

Function symbols

f , g , h, . . .

Predicate symbols

p, q, r , . . .

Logical connectives

¬,∨,∧,⇒,⇔, . . .
Quanti�ers

∀ ∃
Punctuation symbols

() ,

Martin Baláº Computational Logic

Term and Atom

A term is

a variable

a constant

an expression f (t1, . . . , tn) if f is a function symbol with arity

n and t1, . . . , tn are terms

A atom is an expression p(t1, . . . , tn) where p is a predicate symbol

with arity n and t1, . . . , tn are terms.

Martin Baláº Computational Logic

Formula

A formula is

an atom

¬Φ if Φ is a formula

(Φ ∧Ψ) if Φ and Ψ are formulas

(Φ ∨Ψ) if Φ and Ψ are formulas

(Π→ Ψ) if Φ and Ψ are formulas

(Π↔ Ψ) if Φ and Ψ are formulas

. . .

(∀x)Φ if x is a variable and Φ is a formula

(∃x)Φ if x is a variable and Φ is a formula

A language is a set L of all formulas.

Martin Baláº Computational Logic

Structure

A domain is a set of individuals D.

A signature is a tripple σ = (F ,P, arity) where

F is a set of function symbols

P is a set of predicate symbols

arity : F ∪ P 7→ N is an arity function

An interpretation is a function I such that

I (f) is a function f I : Darity(f) 7→ D

I (p) is a relation pI ⊆ Darity(p)

A structure is a tripple D = (D, σ, I) where

D is a domain

σ is a signature

I is an interpretation function

Martin Baláº Computational Logic

Example

(∀x)p(c , x , x)
(∀x)(∀y)(∀z)(p(x , g(y), z)⇔ p(f (x), y , z))

Domain D = N

Signature

σ = ({c , f , g}, {p}, {c 7→ 0, f 7→ 1, g 7→ 1, p 7→ 3})
Interpretation

I (c) = 0

I (f) = x 7→ x + 1

I (g) = x 7→ x + 1

I (p) = {(x , y , z) | x + y = z}

Martin Baláº Computational Logic

Variable Assignment

A variable assignment is a mapping e : X 7→ D where X is a set of

variables and D is a domain.

If x ∈ X is a variable and d ∈ D is an individual, then by e(x 7→ d)
we will denote a variable assignment satisfying

e(x 7→ d)(y) =

{
d if x = y

e(y) if x 6= y

Martin Baláº Computational Logic

Valuation

Let D be a struture and e be a variable assignment.

The value of a term t (denoted by t[e]) is

e(t) if t is a variable

c I if t is a constant

f I (t1[e], . . . , tn[e]) if t = f (t1, . . . , tn) is a compound term

A formula Φ is true w.r.t. D and e (denoted by D |= Φ[e]) i�

D |= p(t1, . . . , tn)[e] i� (t1[e], . . . , tn[e]) ∈ pI

D |= ¬Φ[e] i� D 6|= Φ[e]

D |= (Φ ∧Ψ)[e] i� D |= Φ[e] and D |= Ψ[e]

D |= (Φ ∨Ψ)[e] i� D |= Φ[e] or D |= Ψ[e]

D |= (Φ→ Ψ)[e] i� D 6|= Φ[e] or D |= Ψ[e]

D |= (Φ↔ Ψ)[e] i� D |= Φ[e] i� D |= Ψ[e]

D |= (∀x)Φ[e] i� D |= Φ[e(x 7→ d)] for all d ∈ D

D |= (∃x)Φ[e] i� D |= Φ[e(x 7→ d)] for some d ∈ D

Martin Baláº Computational Logic

Entailment

A formula Φ is true w.r.t. a structure D (denoted by D |= Φ) i�

D |= Φ[e] for all variable assignments e.

A set of formulas T entails a formula Φ (denoted by T |= Φ) i� for

all structures D holds D |= Φ whenever D |= Ψ for all Ψ in T .

Martin Baláº Computational Logic

Normal Forms

A formula is in negation normal form i� if {¬,∧,∨} are are the only
allowed connectives and literals are the only negated subformulas.

A formula is in prenex normal form i� it is of the form

(Q1x1) . . . (Qnxn)F , n ≥ 0, where Qi is a quanti�er, xi is a variable

and F is quanti�er-free formula.

A formula is in Skolem normal form i� it is in prenex normal form

with only universal quanti�ers.

A formula is in conjunctive normal form i� it is conjunction of

disjunctive clauses, where a disjunctive clause is a disjunction of

literals.

A formula is in disjunctive normal form i� it is disjunction of

conjunctive clauses, where a conjunctive clause is a conjunction of

literals.
Martin Baláº Computational Logic

Negation Normal Form

Double negative law:

¬¬P/P
De Morgan's law:

¬(P ∧ Q)/(¬P ∨ ¬Q)
¬(P ∨ Q)/(¬P ∧ ¬Q)

Quanti�ers:

¬(∀x)P/(∃x)¬P
¬(∃x)P/(∀x)¬P

Martin Baláº Computational Logic

Prenex Normal Form

Negation:

¬(∃x)P/(∀x)¬P
¬(∀x)P/(∃x)¬P
Conjunction:

((∀x)P ∧ Q)/(∀x)(P ∧ Q) (Q ∧ (∀x)P)/(∀x)(Q ∧ P)
((∃x)P ∧ Q)/(∃x)(P ∧ Q) (Q ∧ (∃x)P)/(∃x)(Q ∧ P)
if x does not appear as free variable in Q

Disjunction:

((∀x)P ∨ Q)/(∀x)(P ∨ Q) (Q ∨ (∀x)P)/(∀x)(Q ∨ P)
((∃x)P ∨ Q)/(∃x)(P ∨ Q) (Q ∨ (∃x)P)/(∃x)(Q ∨ P)
if x does not appear as free variable in Q

Implication:

((∀x)P → Q)/(∃x)(P → Q) (Q → (∀x)P)/(∀x)(Q → P)
((∃x)P → Q)/(∀x)(P → Q) (Q → (∃x)P)/(∃x)(Q → P)
if x does not appear as free variable in Q

Martin Baláº Computational Logic

Skolem Normal Form

Formulas P and Q are equisatis�able if P is satis�able if and only if

Q is satis�able.

Given a formula F :

1 If F is already in Skolem normal form, we are done.

2 If not, then F is of the form

(∀x1) . . . (∀xm)(∃y)F ′(x1, . . . , xm, y , z1, . . . , zn)

where each zi is a free variable and F ′ is in prenex normal

form. Replace y with f (x1, . . . , xm, z1, . . . , zn) where f is

a new function symbol.

Martin Baláº Computational Logic

Conjunctive Normal Form

1 Negation Normal Form

2 Prenex Normal Form

3 Skolem Normal Form

4 Distributive law (∨ over ∧):
((P ∧ Q) ∨ R)/(P ∨ R) ∧ (Q ∨ R)
(P ∨ (Q ∧ R))/(P ∨ Q) ∧ (P ∨ R)

Martin Baláº Computational Logic

Disjunctive Normal Form

1 Negation Normal Form

2 Prenex Normal Form

3 Skolem Normal Form

4 Distributive law (∧ over ∨):
((P ∨ Q) ∧ R)/(P ∧ R) ∨ (Q ∧ R)
(P ∧ (Q ∨ R))/(P ∧ Q) ∨ (P ∧ R)

Martin Baláº Computational Logic

