

REFLECTION \& REFRACTION

Reflection

Depends upon:

$$
\boldsymbol{\omega}_{s}=2(\boldsymbol{\omega} \cdot \boldsymbol{n}) \boldsymbol{n}-\boldsymbol{\omega}
$$

\square Light polarization
\square Light direction
\square Surface normal

Refraction

Snell's Law

\square Describes relationship between angle of incidence and angle of refraction with respect to index of refraction of two surfaces

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\eta_{2}}{\eta_{1}}
$$

Total Internal Reflection

\square Light strikes surface with angle larger than a certain critical angle
\square Wave cannot pass and is reflected instead of refracted
\square Only occurs when going from a medium with higher refractive index to a medium with lower refracting index

Fresnel Equations

\square Describe lights behavior when moving between media with different refractive indices
\square Part of the light is reflected
\square Part of the light is refracted]-Adds to 1 due to energy conservation
\square Complex formulas not suitable for real time rendering
\square Usually approximated using Schlick's approximation

Schlick's Approximation

\square Approximates Fresnel factor
\square Formula calculates specular reflection coefficient

$$
F(\theta)=F_{0}+\left(1-F_{0}\right)(1-\cos \theta)^{5}
$$

Where: θ is the angle between view direction and half vector

$$
F_{0}=\left(\frac{\eta_{1}-\eta_{2}}{\eta_{1}+\eta_{2}}\right)^{2}
$$

Then: ReflectiveFactor $=F(\theta)$

$$
\text { RefractiveFactor }=1-F(\theta)
$$

Schlick's Approximation - F_{0} change

9
 Questions?

