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Motivation

- View inside implicits:

® The idea of representation of an entire
complex object by a single real function:

- applied effectively in skeletal implicits;

- min/max operations for CSG proposed by
Ricci [1973] have not found wide
acceptance (C' discontinuity as a reason);

- existence of R-functions proposed by
Rvachev [1963], surveyed by Shapiro
[1988], and applied in multidimensional
geometric modeling by Pasko [Ph.D. thesis,

1988].
More deep connection with CSG is possible.

¢ Theoretical possibility to derive an implicit
description of a surface swept by a woving
solid [Wang 1984]. Symbolic computations

required to yield a formula for the implicit form.

More deep connection with sweeping is
possible.

Const wetive Solid G e"“"z—.‘h’g (CKG)

Motivation

® Attention is paid in Computer Aided
Geometric Design (CAGD) to implicit surfaces
because of their closure under some important
operations: offsetting and blending [Hoffman
1993].

® Generalization of the “implicit function
representation” by introducing a deformation
technique using a matrix of free vibrations
[Sclaroff and Pentland 1991].

® Research on collision detection for implicit
surfaces [Gascuel 1993)].

¢ Similar polygonization algorithms stress the
common nature of implicit and voxel models.
Time-dependent transformation
(metamorphosis) of skeletal implicits [Wyvill
1991] and scheduled Fourier volume morphing

[Hughes 1992].
More deep connection with voxel models is

possible.




Motivation
Conclusions from the above overview:

* Representations by real functions are widely
used in geometric modeling ‘and computer
graphics in several forms.

¢ These models are not closely related to each
other.

* These models are not closely related to such
well-known representations as CSG, B-rep,
sweeping, and spatial partitioning (voxel
models).

® This obviously retards further research.

e A uniform function representation is needed
to fill these gaps. It has to:

- unify all functionally based approaches;

- be convertible from other representations;

- be dimension independent;

- have as reach as possible a system of
operations and relations.

F-rep concepts

Let us describe geometric concepts of a
functionally based modeling environment as a
triple:

(M, o, W)

where

M is a set of geometric objects,

@ is a set of geometric operations,

W is a set of relations on the set of objects.
Mathematically this triple is a sort of
algebraic system.

Objects
Geometric objects are considered as closed

subsets of n-dimensional Euclidean space E”
with the definition:

j(xl, X2y ooy x,.) >0

where f is a real continuous function defined on
E". We call f a defining function.

This inequality is called a

function representation (or F-rep)
of a geometric object.
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In 3D space, the boundary of such an object is a
so-called implicit surface.

The function can be defined by:

1) analytical expression;

2) function evaluation algorithm;

3) tabulated values and an appropriate

- interpolation procedure.

The major requirement to the funcnon is to have
at least C° continuity. o,

There is a classification of pomts in E" space
associated with the closed n-dimensional
object:

ftX) > 0 - for points inside the object;
fiX) =0 - for points on the object's boundary;
fitX) < 0 - for points outside the object.

Here, X = (x;, x2, ..., X) is a point in E".

Note that the definition of an object is the
inequality with the explicit function of n
variables f = f(x;, x2, ..., x,) but not the implicit
function of n-1 variables f(x;, x;, ..., X,) = 0.
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= The objects are defined in multidimensional
space for choosing a space of arbitrary
dimension in each specific case. For example, if
n = 4 then (x;, x2, x3) can be space coordinates
and x; can be interpreted as time.

= Two major types of elements of the set M are
1) primitives (simple geometric objects);
Each geometric primitive is described by the
concrete type of a function chosen'from the
finite set of such types.
2) complex geometric objects.
A complex geometric object is a result of
operations on primitives.

= In the modeling system, the finite set of
primitives can be defined. However, the
possibility of the extension of this set in a
symbolic manner should be provided. Actually,
this approach allows the modeling system to be
initially "empty" and make the user to be
responsible for an application oriented filling of

 the primitive set.
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Operations
The set of geometric operations & includes such
operations as: )
DM +M+. M oM
where n is a number of operands of an
'operation. The result of each operation is also an

object from the set M that ensures the closure
property of the function representation.

= Two main classes:

1) unary (n=1) operations

Let object G, has the definition f;(X) = 0. The
term "unary operation” on the object G; means
the operation G, =®,(G;) with the definition

=Y (i(X)) 20,
where ¥ is a continuous real function of one
variable. The examples of unary operations are
the bijective mapping, affine mapping,
projection, offsetting.
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| 2) binary (n=2) operations.

The binary operation on objects G; and G,
means the operation G; =®,(G,, G;) with the
definition

f3 =Y (fi(X), f(X)) 20,

where Yis a continuous real function of two
variables.

The examples of binary operations are

the set-theoretic operations, blending operations,
Cartesian product, metamorphosis.

~ © As with the objects, the user of the F-rep

based modeling system is able to introduce any
desired operation by its analytical or procedural
description in symbolic form and thus extend
the list of operations.

Relations

A binary relation is a subset of the set
M? = M x M. It can be defined as

SeMxM —1
The examples of binary relations are inclusion,
point membership, interference or collision.

e



Types of R-functions

Correspondence between set-theoretic
operations on geometric objects G; and
operations on their defining functions f;:

Union G3=G1 v Gy ‘—>f3=f1/f2
Intersection G3=G; NG, — fi=f1& [
Subtraction G;=G; \G, — f3=fi\f;

,& ,\ are signs of R-functions.

One of the possible analytical descriptions of
the R-functions is as follows:

1 2 2
Rf=r—(hi+f + 2+ F =20, f,)

1 T
ﬁ&fz—l—;;mﬁz—\/ﬁ + £ =201, f,)

where a=o(f,,f,) i1s an arbitrary continuous
function satisfying the following conditions:

-l<a(f,f,) =],
a(f] 9f2)=a(f29f1)= a("'fnfz) = a(fl’—fz)
The expression for the subtraction operation is
LN =f&(=1,)



1D example

The description of a segment in E” can be
obtained from the descriptions of two rays as
follows: =

f(x)=(x1 —b1)&(b2 - x1)
The plot of this function for the min/max
- functions is shown in Fig. 1a with

o=1, Fig. 1b corresponds to a=0, and Fig. 1c
corresponds to C™ functions with m=1. It is

important to point out that the function in Figs.

1b and 1c does not have points in its domain
where the derivative is discontinuous.
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Note that with this definition of the subtraction,
the resultant object includes its boundary.

If a=1, the above functions become

L, =min(f, f,)
L& [, =max(fi, f,)

This is a particular case described by Ricci
[1973]. The min/max functions are very
convenient for calculations but have C"
discontinuity when f, = f,.

If 0=0, the above functions take the most useful
in practice form:

L =hH+1 +’\/f12 +f22
Lh&f,=hH+1; "\/flz"”fz2

These functions have C’ discontinuity only in
points where both arguments are equal to zero.
If C" continuity is to be provided, one may use
another set of R-functions:

At =+ R )2+ £2)?
&t =(fi f TR )+ 12)7



3D example

F = ((fi\f )] (D 5D\ s

2D example

2a - V2x%+a(a-2x) - V2y*+a(a-2y) -

- V4a?-2a(V2x*+a(a-2x)+V 2y +a(a-2y) )+ 2x(x-a)+2y(y-a) = 0

?

Equation of a square

f(x,y) = 0.

xz0, f(xy)=x

< X=a f(xy)=a-x
G, AyzO, fs(x'Y)=Y
G: vysa f(xy)=a-y

f=f&L&TKS,

40



Polygon-to-function conversion
Data: a 2D simple polygon

Find: |

F(x,y) =0 atpolygon edges;
> (' inside the polygon;
<0 outside the polygon.

Requirements to the conversion algorithm:

» It should provide exact polygon descriptiém as a zero set of a
real function;

* No points with zero function value should be inside or outside

a polygon; |
» It should allow processing a simple arbitrary polygon without
any additional information.



Monotone formula

Rvachev [1974] and Peterson [1984] - monotone formula.
Dobkin et al. [1988] - an efficient algorithm for deriving it.

A set-theoretic formula where each of the _hm;

appears exactly once and no additional half-plane is used.

e Polygon vertices 4;(x;, y1), 42(%3 Vi).-.., A,,(;’,g% )

» Line passing through points 4,(x;y,) and 4 (xies, Yis):
Jis=x(yici=y)+y(Xivi=xi)=Xis 1+ xpiv1=0

e £ is a function positive in an open region £2; and negative in
an openregion £2;, \ «w.ix ~ PN

* Internal region of a convex polygon:
Qr=0;N02;N.NAQ2;.
e External reg'icny of a convex polygon

Q*=0:Ua:u.uaer.

12



Deriving a formula

| Level 0: AlAzAI'gA”‘
Level 1: A, 4.4,
Level 2: A3A4A5, A'/"48A9
=Q° n(n; U(@; na; Jua; ue; u@; ne; ue; Nai,ne
e Each region is presented only once,

e Set-theoretic operation apphed to a region is determmed
by the tree level which th15 region belongs to.

QF =Q} and Q, =Q;

- a; N(@; U@; na: Ua; U@; na; )nasna;,.



Sweeping with converted polygons

fEY 20 fiEmyd 20
~ Goal: Sweeping operation to be closed on F-rep.

® f1(x,y) defines some polygon on the xy-plane;
 /,(z) =z A (a-2) defines the 'segmént [0,a] on the z-axis;

e definition of a 3D translational sweep:
f3(x,3,2)= f1(x, y)N fi(z)

- intersection of the infinite cyhnder with the boundary
' fz(x,y) Oandtwo halfspaceszZO and azz.



Rotational sweeping

The mapping from the Cartesian coordinate system
to the cylindrical coordinate system:

x'= Vx" +}"

y'=arctan(y/ x)



Variable generator
More general sweeping: a polygon generator dependent on z.

1) Sweeping by the polygon moving in xy directions:
fi(x,y.2)= fi{x=0,(2),y=0,(z) N\ f,(z)

2) pelygon changing its position, crientation and shape:
X=0,(x¥,2), s
_}’J: ¢2{’x,3f,z}, L

fs (x,y,z)= jx(o(x}’i’:/@;’/‘ci V.z)) N f(z)

6 = kz,c = cos(6),s = sin(6),

X'=xc+ys
y'=-xs+yc



Inclusion and point membership
Inclusion relation | |

This. relation is described as Gz < G; and means
that the object G; is a subset of G;. If G is a
point P, the relation can be described by the
following bivalued predicate: |

0, ££,(X)<0 forPeG,
L, fX)20 forPeG,

Point membersh_zp' relation

Let iG; be the mtenor of G; and bG; be the
boundary of G;. The point membership relauon
is descnbed by the 3-valued predicate:

5,(P.G) ={

o | o,xfj;(_X)<o for P£G,
- 8,(P,G) =41 iff,(X)=0 forPebG,
|2 if£,X)y>0 forPeiG,

This predicate can be correctly evaluated for G; |
without “internal zeroes” (mtemal pomts with
I X)=0).

17



Intersection relation

The intersection (interference, collision) relation
is defined by the bivalued predicate:

$.(G.G) = 0,iffG,NG, =2
(GGr) = 1,ifG,NG, #D
G;: fi(X) 20 G :fAX) 20

Y,

Is intersection empty?

A function f; (X) = f,(X)& £, (X) defining the
result of the intersection can be used to evaluate
S.. It can be stated that S, =0 if f;(X) <0 for any
point of E" (Rvachev 1967).

18



Collision detection algorithm
1. Calculate the admissible démain D for given 'tvéo objects.
2. Find p* where f(p*)=max(f(p)) in D.
é. If f(p*) < 0, no collision is"détected. |

4. If f(p*) = 0, p* gives coordinates of the collision point. -

. ‘.v

Admissible domain D :
1. Bounding boxes are projected onto three coordinate planes;
2. Projections intersections are detected in each plane;

3. Rectangular domain is detected in the space.



Search for an extremal point

LJ| | 1]

X

. Generate quasi-random LP1: points (or Sobe]' s seqnences)

—

- points are placed randomly in the nodes of a rectangular grid;
.-N points guarantee N'? accuracy of point detection;

» Start the spiral quadratic search from a random point
- successive one-dimensional quadratic searches;
- a quadratic interpolant by three uniformly spaced pomts

- f(p) is required to be C' continuous;

~ « Stop trials in the following cases:
- zero or positive value of function f(p) is found;
- assigned number N of trials is exceeded;

- p* is found with given accuracy.

20



Internal zeroes

Internal zeroes are not acceptable for several reasons:

e Points of internal zeroes can be, -incorrectly classified as
boundary points; b
e Some operations on F-rep objects suppose distance-like
behavior of the defining function and internal zeroes can cause
incorrect results of these operations;

e The surfaée defined by the resulting function can be used in
some applications including aesthetic design but a creased
surface is not satisfactory.

Collision between two deformable abjects:

(a) worst case; (b) detected collision event.

- Collision between fur strands

a1





