Narrow Phase

Collision Detection Lesson 06
Lecture 06 Outline

- Problem definition and motivations
- Proximity queries for convex objects
 - Minkowski space, CSO, Support function
- GJK based algorithms (GJK, EPA, ISA-GJK)
- Voronoi Clipping Algorithm (V-Clip)
- Signed Distance Maps for collision detection
- Demos / tools / libs
Narrow-Phase Collision Detection

- **Input:** List of pairs of potentially colliding objects.
- **Problem 1:** Find which sub-objects are really intersecting and remove all non-colliding pairs.
- **Problem 2:** Determine the proximity/contact information, i.e. exact points where objects are touching (interpenetrating), surface normal at that contact point and separating / penetrating distance of objects.
- **Problem 3:** Recognize persistent contacts, i.e. topologically equivalent contacts from previous time steps.
Narrow-Phase Collision Detection

Output: List of contact regions with necessary proximity information between colliding objects

Strategies:
- Simplex based traversal of CSO – GJK based algorithms
- Feature tracking base algorithms as Lin-Canny or V-Clip
- Signed Distance Maps for collision detection
- Persistent clustering for contact generation and reduction
Proximity Queries for Convex Objects
Minkowski Space

Convex Bounded Point Set

- A set S of points $p \in \mathbb{R}^n$ is called convex and bounded if for any two points a and b the line segment ab lies entirely in S and the distance $|a - b|$ is finite (at most β).
- $a \in S \land b \in S \land t \in (0, 1) \Rightarrow (1 - t)a + tb \in S \land |a - b| \leq \beta$
- S must be continuous, but needs not to be smooth.
Minkowski Space

Given any two convex objects A and B we define Minkowski Sum, Difference and Translation as

Minkowski Sum $A \oplus B$
- $A \oplus B = \{a + b \mid a \in A \land b \in B\}$

Minkowski Difference $A \ominus B$ (known as CSO)
- $A \ominus B = A \oplus (-B) = \{a - b \mid a \in A \land b \in B\}$

Minkowski Translation $A \oplus t$
- $A \oplus t = A \oplus \{t\} = \{a + t \mid a \in A\}$
Minkowski Space

- **Sum**: $A \oplus B$
- **Difference**: $A \ominus B$
- **Translation**: $A \oplus t$
Touching Vectors

Touching Contact

- Two convex objects A and B are in touching contact, iff their intersection (as a point set) is a subset of some (contact) plane β. Formally: $A \cap B \subset \beta$

Touching Vector

- The touching vector t_{AB} between two convex objects A and B is any shortest translational vector t moving objects into the touching contact.

 $t_{AB} \in \{ t \mid A \cap (B \oplus t) \subset \beta \land t \in \mathbb{R}^3 \land |t| = d_{AB} \}$

Touching Distance

- Touching distance d_{AB} is the length of touching vector t_{AB}.

 $d_{AB} = \min \{ |t| \mid A \cap (B \oplus t) \subset \beta \land t \in \mathbb{R}^3 \}$
Touching Vectors and CSO

- Touching vector
- Penetration vector
- Separation vector
Touching Vectors

- Objects are in close proximity if their touching distance is smaller than a defined threshold.
- If objects are disjoint touching vector (distance) is usually called as separation vector (distance).
- If objects are intersecting touching vector (distance) is usually called as penetration vector (depth).
- Separation vector is unique. Penetration vector is usually not unique (co-centric circles).
Support Set and Boundary

Support Set
- The set of points from a convex object C which have a minimal projection onto a direction axis d is the support set of C
- $S^d_C = \{ \rho \mid \rho \in C \land d^T\rho = \min\{d^Tc \mid c \in C\} \}$

Support Boundary
- The set of all support points from a convex object C with respect to any direction d is the boundary of C
- $\partial(C) = \{ \rho \mid \rho \in S^d_C \land d \in \mathbb{R}^3 \}$
Support Set and Boundary

Support Scenario

Support Planes

Support Points

Support Set

Minimal Projections

Boundary

Projected Line Segment
Touching Vectors and Boundary

- **Touching Vector Theorem**
 - Any translational vector t moves two convex objects A and B into touching contact, iff it lies on the boundary of their CSO
 - $A \cap (B \oplus t) \subset \beta \iff t \in \partial (A \ominus B)$

- This theorem can simplify the definition of touching contact, vector and distance, by replacing $(A \cap (B \oplus t) \subset \beta)$ with the $t \in \partial (A \ominus B)$

 - $d_{AB} = \min \{ |t| \mid t \in \partial (A \ominus B) \}$
 - $t_{AB} \in \{ t \mid t \in \partial (A \ominus B) \land |t| = d_{AB} \}$
Contact Region

Intersecting objects

Support Planes

Contact Planes

Disjoint objects

Contact Region

Contact Region

Contact Points
Contact Region

- If objects are in touching contact (t_{AB} is zero), their intersection simply forms the contact region.
- If objects penetrate or are disjoint (t_{AB} is non-zero), the contact region is constructed as follows:
 - Compute two support sets $S^+_A \pm t_{AB}$ and $S^-_B \pm t_{AB}$ for A and B w.r.t t_{AB}.
 - Project both sets onto touching vector t_{AB} and take median.
 - Form contact plane with median as origin and normal as t_{AB}.
 - Project both support sets onto contact plane and take their (ideally) intersection as contact region.
Gilbert - Johnson - Keerthi Algorithm
Gilbert - Johnson - Keerthi Algorithm

- **Key idea** of all GJK based algorithms: iterative search for the touching vector in CSO
- **Strategy**: Perform a descent traversal of the CSO surface to find the closest point to the origin
- **Problem**: Naive construction and traversal of CSO is expensive and slow
- **Solution**: Simple support function can select proper support points on CSO and thus speed up the traversal to an almost constant time assuming coherent simulation.
Support Function

* Support function \(\text{support}(C, d) \in S^d_C \) of a convex object \(C \) w.r.t. direction \(d \) simply returns any support point from the respective support set \(S^d_C \).

* Support Function Operations

 \(\rightarrow \) Assuming \(\text{support}(A, d) \in S^d_A \) and \(\text{support}(B, d) \in S^d_B \), we define the support functions as follows:

 \(\rightarrow \text{support}(-B, d) = -\text{support}(B, -d) \in S^d_{-B} \)

 \(\rightarrow \text{support}(A \oplus B, d) = \text{support}(A, d) + \text{support}(B, d) \in S^d_{A \oplus B} \)

 \(\rightarrow \text{support}(A \ominus B, d) = \text{support}(A \oplus (-B), d) \)

 \[= \text{support}(A, d) + \text{support}(-B, d) \]

 \[= \text{support}(A, +d) - \text{support}(B, -d) \]
Proximity GJK Algorithm

- The traversal is done by iteratively constructing a sequence of simplices in 3D:
 - point or line or triangle or tetrahedron
- In each iteration newly created simplex is closer to the origin as the one in previous iteration
- New simplex is created by
 1) Adding a support point to the former simplex
 2) Taking the smallest sub-simplex which contains the closest point to the origin
Proximity GJK Algorithm

A B

A B

O W

O W

A B

A B

O W

A B

A B
Proximity GJK Algorithm
Proximity GJK Algorithm

CSO

O

CSO
Proximity GJK Algorithm Algorithm
Proximity GJK Algorithm

In: Convex objects A, B and initial simplex W

Out: Touching vector w

function PROXIMITYGJK(A, B, W) : w

1. \{$v, \delta\} \leftarrow \{1, 0\}$
2. **while** $(\|v\|^2 - \delta^2 > \varepsilon)$ **do**
 3. $v \leftarrow \text{ClosestPoint}(W)$
 4. $w \leftarrow \text{Support}(A \ominus B, v) = \text{Support}(A, +v) - \text{Support}(B, -v)$
 5. $W \leftarrow \text{BestSimplex}(W, w)$
 6. **if** $(|W| = 4)$ **then** **return** PROXIMITYEPA(A, B, W) ;
 7. **if** $(v^Tw > 0)$ **then** $\delta^2 \leftarrow \max \left\{ \delta^2, \frac{(v^Tw)^2}{\|v\|^2} \right\}$
8. **end**
9. **return** w

end
Computing Support Function

- Searching for the support vertex \(w \) heavily depends on the representation of the convex objects \(A \) and \(B \)
- For a simple primitives it can be computed directly
- For convex polytopes
 - Naive approach is to project all vertices onto the direction axis and take any one with the minimal projection
 - if we consider a coherent simulation we can use a local search sometimes called as “hill climbing” and find the support vertex in almost constant time
Hill Climbing Support Function

- For convex polytopes do a local search to “refine” the support point from previous simulation state

In: Convex polytope A, initial support vertex w and the direction vector d
Out: New support vertex with minimal projection w

function SUPPORTHC(A, d, w) : w
1: $\{\mu, \text{Found}\} \leftarrow \{d^T w, \text{false}\}$
2: while not Found do
3: \hspace{1em} Found \leftarrow true
4: \hspace{1em} foreach w' in NEIGHBOURS(w) do
5: \hspace{2em} if $(d^T w' < \mu)$ then $\{\mu, w, \text{Found}\} \leftarrow \{d^T w', w', \text{false}\};$ break
6: \hspace{2em} end
7: \hspace{1em} end
8: return w
Simplex Refinement

Problem: Given a simplex and new vertex form new simple by adding the vertex and select sub-simplex closest to the origin.

Bad solution: The simplex can be done by solving a system of linear equations (slow, numeric issues).

Good solution: Form new simplex and test in which external Voronoi region the origin lies.

The selected Voronoi region directly shows us which sub-simplex is the desired (closest) one.
Voronoi Simplex Refinement

- **Point Simplex**
- **Line Simplex**
- **Triangle Simplex**
Voronoi Simplex Refinement

- **Empty Simplex:** A vertex simplex \{w\} is formed
 - The smallest simplex, which contains the closest point to the origin is \{w\} (case 0)

- **Vertex Simplex:** An edge simplex \{W1,w\} is formed
 - It has 2 vertex regions \{W1, w\} and one edge region \{e1\}
 - Since W1 lies on support plane which is perpendicular to the support axis (vector w) origin can not be in the region of W1
 - Thus we check only regions of w and e1 by projecting -w onto the edge e1 (case 1)
Voronoi Simplex Refinement

Edge Simplex: A face simplex \(\{W_1, W_2, w\} \) is formed
- It has 3 vertex regions, 3 edge regions and 2 face regions
- The origin can be only in \(\{w, e_1, e_2, n_1\} \) regions
- Construct Voronoi planes with normals \(\{e_1, e_2, u_1, v_1\} \) and test whether the origin is above or below these planes, i.e. compare signs of \(-w\) projections onto these normals

Face Simplex: A tetrahedron simplex \(\{W_1, W_2, W_3, w\} \) is formed
- A tetrahedron has 4 vertex regions, 4 face regions, 6 edge regions and 1 interior region (T)
- Origin can lie only in regions \(\{w, e_1, e_2, e_3, n_1, n_2, n_3, T\} \)
- Construct Voronoi planes with normals \(\{e_1, e_2, e_3, n_1, n_2, n_3, u_1, u_2, u_3, v_1, v_2, v_3\} \) and test sign \(-w\) projection onto normals
In: Simplex W and new point on CSO surface w
Out: New smallest simplex W containing w and the closest point to the origin

function $\text{BESTSIMPLEX}(W, w): W$

1: $d \leftarrow 0 - w$
2: $e_1 \leftarrow W_1 - w; \quad e_2 \leftarrow W_2 - w; \quad e_3 \leftarrow W_3 - w;$
3: $n_1 \leftarrow e_1 \times e_2; \quad n_2 \leftarrow e_2 \times e_3; \quad n_3 \leftarrow e_3 \times e_1;$
4: $u_1 \leftarrow e_1 \times n_1; \quad u_2 \leftarrow e_2 \times n_2; \quad u_3 \leftarrow e_3 \times n_3;$
5: $v_1 \leftarrow n_1 \times e_2; \quad v_2 \leftarrow n_2 \times e_3; \quad v_3 \leftarrow n_3 \times e_1;$
6: switch $|W|$ do
7: case 0 /* empty simplex */
8: return $\{w\}$
9: end
10: case 1 /* vertex simplex */
11: if $(d^T e_1 > 0)$ then return $\{w\}$
12: if $(d^T e_1 < 0)$ then return $\{W_1, w\}$
13: end
14: case 2 /* edge simplex */
15: if $(d^T e_1 < 0) \land (d^T e_2 < 0)$ then return $\{w\}$
16: if $(d^T e_1 > 0) \land (d^T u_1 > 0)$ then return $\{W_1, w\}$
17: if $(d^T e_2 > 0) \land (d^T v_1 > 0)$ then return $\{W_2, w\}$
18: if $(d^T u_1 < 0) \land (d^T v_1 < 0)$ then return $\{W_1, W_2, w\}$
19: end
20: case 3 /* face simplex */
21: if $(d^T e_1 < 0) \land (d^T e_2 < 0) \land (d^T e_3 < 0)$ then return $\{w\}$
22: if $(d^T e_1 > 0) \land (d^T u_1 > 0) \land (d^T v_3 > 0)$ then return $\{W_1, w\}$
23: if $(d^T e_2 > 0) \land (d^T u_2 > 0) \land (d^T v_1 > 0)$ then return $\{W_2, w\}$
24: if $(d^T e_3 > 0) \land (d^T u_3 > 0) \land (d^T v_2 > 0)$ then return $\{W_3, w\}$
25: if $(d^T n_1 > 0) \land (d^T u_1 < 0) \land (d^T v_1 < 0)$ then return $\{W_1, W_2, w\}$
26: if $(d^T n_2 > 0) \land (d^T u_3 < 0) \land (d^T v_2 < 0)$ then return $\{W_2, W_3, w\}$
27: if $(d^T n_3 > 0) \land (d^T u_3 < 0) \land (d^T v_3 < 0)$ then return $\{W_3, W_1, w\}$
28: if $(d^T n_1 < 0) \land (d^T n_2 < 0) \land (d^T n_3 < 0)$ then return $\{W_1, W_2, W_3, w\}$
29: end
30: end
Problem: Given (0 or 1 or 2 or 3) simplex \(\{W_1, W_2, W_3\}\) find the closest point to the origin

- Empty Simplex: Return 0
- Vertex Simplex: Return \(W_1\)
- Edge Simplex: Return the closest point on line \(\{W_1, W_2\}\) to the origin.
 - No need to check other regions (eg. vertex \(W_1\) region etc.)
- Face Simplex: Return the closest point on plane \(\{W_1, W_2, W_3\}\) to the origin.
 - No need to check other regions (eg. vertex \(W_1\) region etc.)
Closest Point Algorithm

In: Simplex \(W \)
Out: Closest point on simplex to the origin \(v \)

function \text{CLOSESTPOINT}(W) : v

1: \(d \leftarrow W_2 - W_1 \)
2: \(n \leftarrow (W_2 - W_1) \times (W_3 - W_1) \)
3: \text{switch } |W| \text{ do}
4: \text{case 0 return 0 ;} /* empty simplex */
5: \text{case 1 return } W_1 ; /* vertex simplex */
6: \text{case 2 return } W_1 - \frac{d^T W_1}{d^T d} d ; /* edge simplex */
7: \text{case 3 return } \frac{n^T W_1}{n^T n} n ; /* face simplex */
8: \text{end}
end
GJK Overlap Test

- **Incremental Separating-Axis GJK (ISA-GJK)**
 - A subtle modification to the proximity GJK
 - Descent overlap test for convex objects
 - Iteratively searches for some separating axis
 - Average constant time complexity in coherent simulation

- **Principle: Similar traversal to Proximity GJK**
 - Reports overlap: When the best simplex is tetrahedron
 - Reports no-overlap: When the signed distance of the support plane to the origin is positive

\[v^T w = v^T \text{ support}(A \ominus B, v) = v^T \text{ support}(A, +v) - v^T \text{ support}(B, -v) > 0 \]
ISA-GJK Algorithm

In: Convex objects \(A, B \) and initial Simplex \(W \)
Out: Overlap check: (true/false)

function \(\text{OVERLAPGJK}(A, B, W) \) : bool
1: \(\{v, w\} \leftarrow \{1, 1\} \)
2: while \((v^T w \leq 0) \) do
3: \(v \leftarrow \text{CLOSESTPOINT}(W) \)
4: \(w \leftarrow \text{SUPPORT}(A \ominus B, v) = \text{SUPPORT}(A, +v) - \text{SUPPORT}(B, -v) \)
5: \(W \leftarrow \text{BESTSIMPLEX}(W, w) \)
6: if \((|W| = 4) \) then return true ; \hspace{1cm} /* intersection */
7: end
8: return false
end
External Voronoi Regions

- **Interior Set:**
 - The set of all interior points \(\text{int}(C) \) of a convex polytope \(C \) is the intersection of negative half-spaces formed by all faces of \(C \) (surface points are not included).
 \[
 \text{int}(C) = \{ \ c \in \mathbb{R}^3 \mid d_s(c, F) < 0 \land F \in C \ \}\]

- **Distance:**
 - The distance \(d(c,X) \) between a feature \(X \) and some point \(c \) is the minimum distance between \(c \) and any point of \(X \).
 \[
 d(c,X) = \min \{ \ |x - c| \mid x \in X \ }\]
External Voronoi Regions

- Signed Distance
 - The signed distance $d_s(c, F)$ between a point c and a plane F, defined by a unit normal n_F and a reference point o_F is the projection of the reference vector $(c - o_F)$ onto planes normal

$$d_s(c, F) = n^T_F (c - o_F)$$

- Having two incident features X, Y: if X has a lower dimension than Y, then X must be a subset of Y and therefore the distance of any point c to X is less than or equal to Y

$$X \cap Y \land \dim(X) < \dim(Y) \Rightarrow X \subset Y \Rightarrow d(c,X) \leq d(c,Y)$$
External Voronoi Regions

- **External Voronoi Region**
 - The Voronoi region $\text{VR}(X)$ of a feature X on some convex polytope C is a set of external points which are closer (\leq) to X than to any other feature Y in C.
 - $\text{VR}(X) = \{ c \notin \text{int}(C) \mid d(c, X) \leq d(c, Y) \land Y \in C \}$

- **External Voronoi Plane**
 - The Voronoi plane $\text{VP}(X, Y)$ of two incident features X and Y is the plane containing the intersection of their Voronoi regions.
 - $\text{VP}(X, Y) = \beta \land \text{VR}(X) \cap \text{VR}(Y) \subseteq \beta$

- **Inter-feature Distance**
 - The inter-feature distance $d(X, Y)$ between features X and Y is the minimum distance between any points $x \in X$ and $y \in Y$.
 - $d(X, Y) = \min \{ |x - y| \mid x \in X \land y \in Y \}$
External Voronoi Regions

Vertex Voronoi Region

Edge Voronoi Region

Face Voronoi Region
Voronoi Region Theorem

- Let $X \in A$ and $Y \in B$ be a pair of features from disjoint convex polytopes A and B.
- Let $x \in X$ and $y \in Y$ be the closest points between X and Y.
- Points x and y are the (globally) closest points between A and B iff $x \in \text{VR}(Y) \land y \in \text{VR}(X)$.
Voronoi Region Theorem

Voronoi region theorem
V-Clip Algorithm

- Key idea of the V-Clip algorithm is an efficient search for two closest features.
- Obviously an exhaustive search is a very expensive solution.
- Fortunately the following Voronoi Region Theorem allows us to find the global minimum of the inter-feature distance, by performing usually only a few iterations of a local search.
V-Clip Algorithm

- Given two convex polytopes A, B and any two features $X \in A$, $Y \in B$
- In each iteration V-Clip checks if they satisfy the Voronoi Region Theorem.
 - If they don’t, it changes X and Y to some (usually incident) features X' and Y', so that either the sum their dimensions or the inter-feature distance strictly decreases.
 - Assuming a finite number of features the algorithm can never cycle
 - If we initialize X and Y with the closest features from the previous time-step and the simulation is coherent, then we probably need only a few iterations to find new closest features.
In: A pair of convex polytopes A, B and respective initial features X, Y
Out: A Separation vector w, or \emptyset if penetration occurred

function V-CLIP(A, B, X, Y) : w
1: while (true) do
2: switch PAIRTYPE(X, Y) do
3: case VV type : /* Vertex-Vertex */
4: if ClipVertex($X, Y, \{ YE \mid E \in \text{EDGES}(Y) \}$) then continue
5: if ClipVertex($Y, X, \{XE \mid E \in \text{EDGES}(X) \}$) then continue
6: return $X - Y$
7: end
8: case VE type : /* Vertex-Edge */
9: if ClipVertex($X, Y, \{ V_1^Y Y, V_2^Y Y, YF_1^Y, YF_2^Y \}$) then continue
10: if ClipEdge($Y, X, \{XE \mid E \in \text{EDGES}(X) \}$) then continue
11: $u = V_2^Y - V_1^Y$
12: return $X - \left(V_1^Y + \frac{u^T(X - V_1^Y)}{u^Tu} \right)$
13: end
14: case VF type : /* Vertex-Face */
15: if ClipVertex($X, Y, \{ EY, V_1^Y E, V_2^Y E \mid E \in \text{EDGES}(Y) \}$) then continue
16: if ClipFace(Y, X, A) then continue
17: return $X - \left(\frac{n^T(V_1^Y - X)}{n^Tn} \right)$
18: end
19: case EE type : /* Edge-Edge */
20: if ClipEdge($X, Y, \{ V_1^Y Y, V_2^Y Y, YF_1^Y, YF_2^Y \}$) then continue
21: if ClipEdge($Y, X, \{ V_2^X X, V_1^X X, XF_1^X, XF_2^X \}$) then continue
22: $\{u^X, u^Y\} \leftarrow \{V_2^X - V_1^X, V_2^Y - V_1^Y\}$
23: $\{n^X, n^Y\} \leftarrow \{(u^X \times u^Y) \times u^Y, (u^X \times u^Y) \times u^X\}$
24: return $\begin{bmatrix} V_1^X + \frac{(n^X)^T(V_1^Y - V_1^X)}{(n^X)^Tu^X} & u^X \end{bmatrix} - \begin{bmatrix} V_1^Y + \frac{(n^X)^T(V_1^X - V_1^Y)}{(n^X)^Tu^Y} & u^Y \end{bmatrix}$
25: end
26: case EF type : /* Edge-Face */
27: if ClipEdge($X, Y, \{ EY, V_1^Y E, V_2^Y E \mid E \in \text{EDGES}(Y) \}$) then continue
28: $\{d_1, d_2\} \leftarrow \{d_2(V_1^X, Y), d_2(V_2^X, Y)\}$
29: if (sgn($d_3d_2 < 0$)) then $Y \leftarrow 0$; continue
30: if ($d_1 < |d_2|$) then $X \leftarrow V_1^X$ else $X \leftarrow V_2^X$
31: continue
32: end
33: case EV, FV, FE type : SWAP(X, Y); SWAP(A, B); continue; /* Swap Cases */
34: end
35: if ($Y = \emptyset$) then return \emptyset
36: end
Vertex Clipping

- Given a vertex V from one object, some "old" feature N from another object and a set of feature pairs S_n

- The vertex clipping simply marks X (Y) if the vertex V lies above (below) the VP(X,Y) for each feature pair XY $\in S_n$
 - First it clears all features among SN (ClearAll(S_N))
 - Next it tests the side (w.r.t. Voronoi plane) of V and mark "further" features.
 - Finally it updates N with some unmarked feature (UpdateClear(N, SN)) and returns true if N was changed.
Vertex Clipping Cases

\[d \leq 0 \]

\[V/E \]

\[E/F \]

\[d > 0 \]

\[V/E \]

\[E/F \]
ClipVertex and UpdateClear

In: A vertex V, a feature N to be updated and a set of clipping feature pairs S_N

Out: Test if the feature N was updated (true/false)

function `ClipVertex(V, N, S_N) : bool`

1: $M \leftarrow N$;
 /* store old feature */
2: foreach XY in S_N do
3: Test \leftarrow sgn$(d_s(V, \mathcal{NP}(X,Y)))$
4: if (Test > 0) then $\text{MARK}(X)$ else $\text{MARK}(Y)$
5: end
6: return $\text{UPDATEClear}(N, S_N)$
end

In: A feature N to be updated and a set of clipping feature pairs S_N

Out: Test if the feature N was updated (true/false)

function `UPDATEClear(N, S_N) : bool`

1: $M \leftarrow N$;
 /* store old feature */
2: foreach XY in S_N do
3: if (X is “clear”) then $N \leftarrow X$; break;
 /* update old to closest feature */
4: if (Y is “clear”) then $N \leftarrow Y$; break;
 /* update old to closest feature */
5: end
6: return $N \neq M$;
 /* true if feature changed */
end
Edge Clipping

- Take an edge \(E \), the "old" feature \(N \), a set of respective feature pairs \(S_N \) and perform a sequence of local tests to properly mark "further" features.

- Let \(d_1, d_2 \) represent signed distances of the endpoint vertices \(V_1^E, V_2^E \) to the Voronoi plane \(\beta = \text{VP}(X,Y) \) of a particular feature pair \(XY \in S_N \).

- If both vertices lie on the same side of the clipping plane \((\text{sgn}(d_1d_2) > 0) \), we simply mark the feature of the opposite side as in vertex clipping.
Edge Clipping

- If vertices lie on different sides \((\text{sgn}(d_1 d_2) < 0)\), edge \(E\) intersects the clipping plane in some point \(p = (1 - \lambda)V_1^E + \lambda V_2^E\), where \(\lambda = d_2/(d_1-d_2)\) and we must consider two sub-cases depending on the type of the feature pair.

- Let vector \(u = \text{sgn}(d_2) (V_2^E - V_1^E)\) represent the edge \(E\) pointing out of the negative half-space to the positive half-space of \(\beta\).

- If \(XY\) is a "VE" pair, the local test depends on the sign of the \((X - p)\) projection onto the edge vector \(u\), i.e., \(+\text{sgn}(u^T (X - p))\)
Edge Clipping

- If XY is a "EF" pair, there are another two sub-cases.
- If \(p \) lies above the face \(Y \), the local test depends on the angle between edge vector \(u \) and the face normal vector \(n \)
- If \(p \) lies below the face \(Y \) we use the similar local test, but mark opposite features

Therefore the final local test (handling both sub-cases) can be written as:
\[- \text{sgn}(n^Tu) \text{sgn}(d_s(p,Y))\]
Edge Clipping Cases

\[\begin{align*}
E &\leq 0 < 90^\circ \\
V &\leq 0 < 90^\circ \\
V &\leq 0 > 90^\circ \\
E &\leq 0 > 90^\circ \\
V &\leq 0 > 90^\circ \\
E &\leq 0 < 90^\circ \\
E &\leq 0 < 90^\circ \\
E &\leq 0 > 90^\circ \\
\end{align*}\]
ClipEdge Algorithm

In: An edge E, a feature N to be updated and a set of clipping feature pairs S_N
Out: Test if the feature N was updated (true/false)

function ClipEdge(E, N, S_N) : bool

1: ClearAll(S_N)
2: foreach XY in S_N do
3: $\beta \leftarrow \mathcal{V}(X, Y)$
4: $\{d_1, d_2\} \leftarrow \{ d_s(V_1^E, \beta), d_s(V_2^E, \beta) \}$ \text{ /* signed distances to β */}
5: $\{p, u\} \leftarrow \{ E(d_2/(d_1 - d_2)), \sgn(d_2)(V_2^E - V_1^E) \}$
6: if (sgn($d_1 d_2$) > 0) then Test $\leftarrow \sgn(d_1)$
7: if (sgn($d_1 d_2$) < 0 \land XY is "VE") then Test $\leftarrow +\sgn(u^T(X - p))$
8: if (sgn($d_1 d_2$) < 0 \land XY is "EF") then Test $\leftarrow -\sgn(u^T u) \sgn(d_s(p, Y))$
9: if (Test > 0) then Mark(X) else Mark(Y)
10: end
11: return UpdateClear(N, S_N)
end
Signed Distance Maps for collision detection
Signed Distance Map

Signed distance map: $\text{SDM}_N(V)$ is $N \times N \times N$ regular grid, where each unit cell with a center point p stores the signed distance to the closest point on the surface of some volume V.

This signed distance is a combination of a sign function $\text{sgn}_V(p)$ and the unsigned distance function $d(p, V)$ w.r.t. V.

$$\text{SDM}_N(V) = \{ \text{sgn}_V(p)d(p,V) \mid p = (i + 0.5, j + 0.5, k + 0.5) \land 1 \leq i, j, k \leq N \}$$
Signed Distance Maps

+ Signed distance maps (SDM) become recently a popular technique for approximate collision detection and distance computation.

+ Pros: Efficient overlap test, fast contact generation and penetration depth computation for arbitrary shaped, non-convex objects with complex and highly tessellated geometry.

+ Suitable even for real-time applications as games.

+ Cons: Huge amount of memory necessary for massive scenarios and a large number of redundant (unnecessary) contacts generated during the collision detection.
Distance Map Construction

* Brute force construction
 - For each grid cell we need to compute the distance of its center to each surface triangle and store the shortest distance
 - Assuming N is the grid size and M is the number of triangles, we have to call the primitive point-to-triangle distance function $N \times N \times N \times M$ times

* Other Efficient Methods
 - Lower-Upper Bound Tree (LUB-Tree)
 - Characteristic/Scan Conversion (CSC)
 - Chamfer and Vector Distance Transform (CDT, VDT)
 - Fast Marching Method (FMM)
Proximity Queries with SDM

- Performing proximity queries using SDM involves simple point location tests.
- The key idea is to sample several points on the surface and store it together with the SDM.
- During the collision detection sample points of one object are transformed into the local space of the other object and are "looked-up" in the SDM of the other object and vice versa.
- Surface points located inside other object (lie under the zero level \(SDM_A(p_B) \leq 0\)) are used to create necessary contact information (contact point, contact normal, penetration depth, etc.)