
How to do architecture
tomas.kulich@vacuumlabs.com

What are we talking about

It's all about the economics
- if you take everything into account

- debug

- enhance

- introducing new people

- introducing existing people

- what will public think

- aesthetics

Don't think dogmatic
...use pros-cons lists instead

Ego is the enemy!

Can I just "like" some approaches more?
TLDR: No.

Long answer: yes, but..

Example1: Template engine
<div>

 <h1>Django Boys Blog</h1>

</div>

{% for post in posts %}

 <div>

 <p>published: {{ post.published_date }}</p>

 <h1>{{ post.title }}</h1>

 <p>{{ post.text|linebreaksbr }}</p>

 </div>

{% endfor %}

`<div>
 <h1>Django Boys Blog</h1>
</div>

${posts.map((post) => `
 <div>
 <p>published: ${post.published_date}</p>
 <h1>${post.title}</h1>
 <p>${post.text || linebreaksbr}</p>
 </div>`).join('')
}`

Example2: Databases
db.inventory.find({ status: "A", qty: { $lt: 30 } }

versus:

SELECT * FROM inventory WHERE status = "A" AND qty < 30

Easy vs simple
Easy: quick to use

Simple: simple to think about

Must see lecture on the topic: https://www.infoq.com/presentations/Simple-Made-Easy

Some complex stuff:

- implicit behavior (triggered by just naming stuff)

- pre/post something hooks, events

- ORMs

Databases made easy
db.inventory.find({ status: "A", qty: { $lt: 30 } }

versus:

SELECT * FROM inventory WHERE status = "A" AND qty < 30

versus:

db('inventory').where('status', 'A').whereLess('qty', 30)

arr.filter(x => x % 2 == 0).map(x => x/2).sum()

sum(map(x => x/2, filter(x => x % 2 == 0, arr)))

arr.filter(x => x % 2 == 0).map(x => x/2).sum()

sum(map(x => x/2, filter(x => x % 2 == 0, arr)))

thread(arr,

 [filter, x => x%2 == 0, $],

 [map, x => x/2, $],

 [sum, $])

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class CalculateCircleAreaExample {

 public static void main(String[] args) {

 int radius = 0;
 System.out.println("Please enter radius of a circle");

 try
 { ...

How to build abstractions
● Do I need it at all?

○ don't generalize stuff you're going to need once
○ premature generalization antipattern
○ Interface implemented once
○ HOF called once
○ Protocol realized once

● Do I have the knowledge to do it now?
○ There is milion way how to build abstraction, have you considered more than one?

● Baklava is a good pastry, bad code
● Leaking abstractions

● What should be in the scope? What shouldn't?
● If you aim for everything, you end up with nothing
● NO is valid design decision!

● Java typesystem sucks
○ so does Dart's!

● JS objects cannot override hash and equality
○ same for Go

Decisions you may be ashamed of
● global variable can be a good idea
● copy paste can be a good idea
● shout on error can be a good idea
● monorepo very often is a good idea
● "We'll need this later" is a myth, "We'll rewrite this later" is a valid design

decision
● "Portability is for people who cannot write new programs" --LT--

Wisdom of Python (Zen)
● Explicit is better than implicit
● Simple is better than complex
● Namespaces are for preventing name collisions not for creating taxonomies
● Readability counts
● There should be one-- and preferably only one --obvious way to do it

Ask Me Anything

