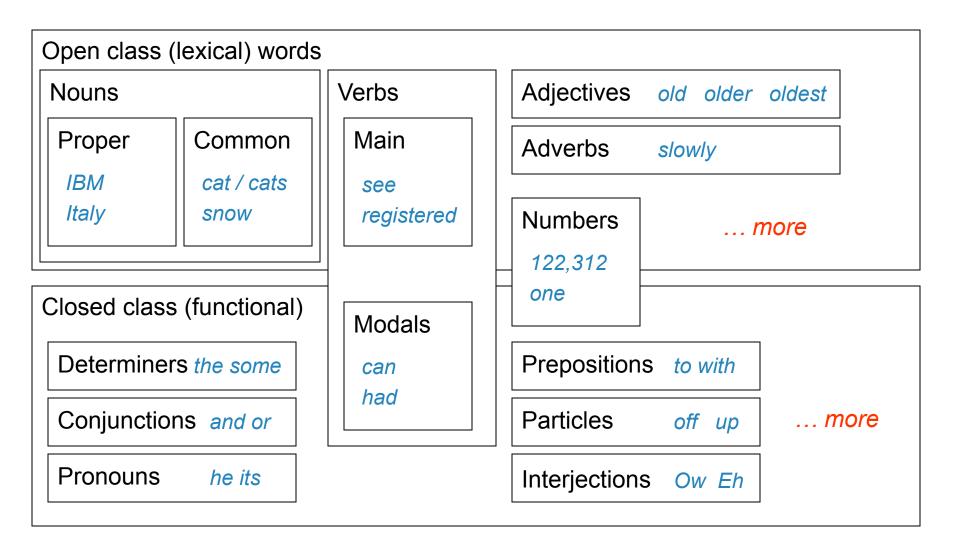
Part-of-speech tagging

A simple but useful form of linguistic analysis

Parts of Speech

- Perhaps starting with Aristotle in the West (384–322 BCE), there
 was the idea of having parts of speech
 - a.k.a lexical categories, word classes, "tags", POS
- It comes from Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us that there are 8 parts of speech
 - But actually his 8 aren't exactly the ones we are taught today
 - Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
 - School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection



Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ
 - On my <u>back</u> = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
 - Text-to-speech (how do we pronounce "lead"?)
 - Can write regexps like (Det) Adj* N+ over the output for phrases, etc.
 - As input to or to speed up a full parser
 - If you know the tag, you can back off to it in other tasks

Penn Treebank POS tags

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

Deciding on the correct part of speech can be difficult even for people

Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know that he is honest = IN
 - Yes, that play was nice = DT
 - You can't go that far = RB
- 40% of the word tokens are ambiguous

Part-of-speech tagging

A simple but useful form of linguistic analysis

Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

Sources of information

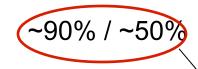
- What are the main sources of information for POS tagging?
 - Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VB(D) IN VB NN
 - Knowledge of word probabilities
 - man is rarely used as a verb....
- The latter proves the most useful, but the former also helps

More and Better Features → Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
 - Word the: the → DT
 - Lowercased word | Importantly: importantly → RB
 - Prefixes unfathomable: un- → JJ
 - Suffixes Importantly: -ly → RB
 - Capitalization Meridian: CAP → NNP
 - Word shapes 35-year: d-x → JJ
- Then build a maxent (or whatever) model to predict tag
 - Maxent P(t|w): 93.7% overall / 82.6% unknown

Overview: POS Tagging Accuracies

- Rough accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(t|w):
 - TnT (HMM++):
 - MEMM tagger:
 - Bidirectional dependencies:
 - Upper bound:



- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%
- 96.9% / 86.9%
- 97.2% / 90.0%
- ~98% (human agreement)

Most errors on unknown words

How to improve supervised results?

Build better features!

```
RB
PRP VBD IN RB IN PRP VBD .
They left as soon as he arrived .
```

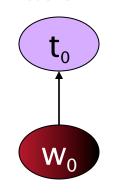
We could fix this with a feature that looked at the next word

```
JJ
NNP NNS VBD VBN .
Intrinsic flaws remained undetected .
```

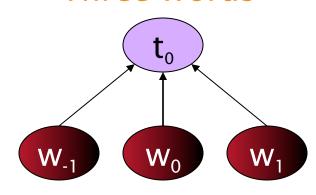
· We could fix this by linking capitalized words to their lowercase versions

Tagging Without Sequence Information

Baseline



Three Words



Model	Features	Token	Unknown	Sentence
Baseline	56,805	93.69%	82.61%	26.74%
3Words	239,767	96.57%	86.78%	48.27%

Using words only in a straight classifier works as well as a basic (HMM or discriminative) sequence model!!

Summary of POS Tagging

- For tagging, the change from generative to discriminative model **does not by itself** result in great improvement
- One profits from models for specifying dependence on **overlapping features of the observation** such as spelling, suffix analysis, etc.
- An MEMM allows integration of rich features of the observations, but can suffer strongly from assuming independence from following observations; this effect can be relieved by adding dependence on following words
- This additional power (of the MEMM ,CRF, Perceptron models) has been shown to result in improvements in accuracy
- The **higher accuracy** of discriminative models comes at the price of **much** slower training

Part-of-speech tagging revisited

A simple but useful form of linguistic analysis