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Introduction

e So far we’ve looked at “generative models”
e Language models, Naive Bayes

e But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)

* Because:
e They give high accuracy performance
e They make it easy to incorporate lots of linguistically important features

e They allow automatic building of language independent, retargetable NLP
modules



Christopher Manning

Joint vs. Conditional Models

e We have some data {(d, c)} of paired observations
d and hidden classes c.

e Joint (generative) models place probabilities over P(c,d)
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):
e All the classic StatNLP models:

e n-gram models, Naive Bayes classifiers, hidden
Markov models, probabilistic context-free grammars,
IBM machine translation alignment models
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Joint vs. Conditional Models

e Discriminative (conditional) models take the data P(c|d)
as given, and put a probability over hidden
structure given the data:

e Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

e Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly probabilistic)
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Bayes Net/Graphical Models

e Bayes net diagrams draw circles for random variables, and lines for direct
dependencies

e Some variables are observed; some are hidden
e Each node is a little classifier (conditional probability table) based on

incoming arcs a a

Naive Bayes Logistic Regression

Generative Discriminative
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Conditional vs. Joint Likelihood

e A joint model gives probabilities P(d,c) and tries to maximize this
joint likelihood.

e |t turns out to be trivial to choose weights: just relative frequencies.

A conditional model gives probabilities P(c|d). It takes the data
as given and models only the conditional probability of the class.
* We seek to maximize conditional likelihood.
e Harder to do (as we’ll see...)
* More closely related to classification error.
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Training Set

Objective Accuracy
Joint Like. 86.8
Cond. Like. 98.5

Test Set

Objective Accuracy
Joint Like. /3.6
Cond. Like. 76.1

(Klein and Manning 2002, using Senseval-1 Data)

Conditional models work well:
Word Sense Disambiguation

Even with exactly the same
features, changing from
joint to conditional
estimation increases
performance

That is, we use the same
smoothing, and the same
word-class features, we just
change the numbers
(parameters)
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Features

e |nthese slides and most maxent work: features f are elementary
pieces of evidence that link aspects of what we observe d with a

category c that we want to predict
e A featureis a function with a bounded real value: /- Cx D — R
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Features

e |nthese slides and most maxent work: features f are elementary
pieces of evidence that link aspects of what we observe d with a

category c that we want to predict
e A featureis a function with a bounded real value
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Example features

 fi(c, d)=[c=LOCATION A w,="“in" A isCapitalized(w)]
e fi(c, d) =[c=LOCATION A hasAccentedLatinChar(w)]
* fi(c, d) =[c=DRUG A ends(w, “¢")]

LOCATION LOCATIO \ DRUG PERSON
in Arcadia in Quebec taking Zantac saw Sue

e Models will assign to each feature a weight:
* A positive weight votes that this configuration is likely correct

e A negative weight votes that this configuration is likely incorrect
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Example features

 fi(c, d)=[c=LOCATION A w,="“in" A isCapitalized(w)]
e (¢, d)=[c=LOCATION A hasAccentedLatinChar(w)]
* fi(c, d) = [c=DRUG A ends(w, “c”)]

in Arcadia in Québec taking Zantac saw Sue

e Models will assign to each feature a weight:
* A positive weight votes that this configuration is likely correct
e A negative weight votes that this configuration is likely incorrect
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Feature Expectations

e We will crucially make use of two expectations
e actual or predicted counts of a feature firing:

e Empirical count (expectation) of a feature:
emplrlcal E(ﬁ) - E(c,d)EObserved(C,D) ﬁ (C’ d)

e Model expectation of a feature:

E(f)= . omen Ple:d) fi(c,d)
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Features

e In NLP uses, usually a feature specifies (1) an indicator function
— a yes/no boolean matching function — of properties of the
input and (2) a particular class

* filc, d) = [D(d) A c=c]
e They pick out a data subset and suggest a label for it.

 We will say that ®(d) is a feature of the data d, when, for each
¢, the conjunction ®(d) A ¢ = ¢; is a feature of the data-class

pair (¢, d)
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Features

 |n NLP uses, usually a feature specifies

1. anindicator function — a yes/no boolean matching function — of
properties of the input and

2. aparticular class

Jic, d)=[D(d) A c=c]]

e Each feature picks out a data subset and suggests a label for it



Christopher Manning

Feature-Based Models

e The decision about a data point is based only on the
features active at that point.

Data
BUSINESS: Stocks

hit a yearly low ...

Data
... to restructure

bank:MONEY debt.

Data

DT JJ NN ...
The previous fall ...

Label: BUSINESS
Features

{..., stocks, hit, a,

yearly, low, ...}

Label: MONEY

Features
{..., w,=restructure,
w,,=debt, L=12, ...}

Label: NN

Features
{w=fall, ¢ ,=J)
w_,=previous}

Text
Categorization

Word-Sense
Disambiguation

POS Tagging
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Example: Text Categorization

(Zhang and Oles 2001)

e Features are presence of each word in a document and the document class
(they do feature selection to use reliable indicator words)

e Tests on classic Reuters data set (and others)
* Naive Bayes: 77.0% F;
e Linear regression: 86.0%
* Logistic regression: 86.4%

e Support vector machine: 86.5%

e Paper emphasizes the importance of reqularization (smoothing) for successful
use of discriminative methods (not used in much early NLP/IR work)
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Other Maxent Classifier Examples

* You can use a maxent classifier whenever you want to assign data points to
one of a number of classes:

e Sentence boundary detection (mikheev 2000)
e |s a period end of sentence or abbreviation?
e Sentiment analysis (Pang and Lee 2002)
e Word unigrams, bigrams, POS counts, ...
e PP attachment (Ratnaparkhi 1998)
e Attach to verb or noun? Features of head noun, preposition, etc.
e Parsing decisions in general (Ratnaparkhi 1997; Johnson et al. 1999, etc.)
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Feature-Based Linear Classifiers

e Linear classifiers at classification time:

Linear function from feature sets {f} to classes {c}.
Assign a weight A, to each feature f.

We consider each class for an observed datum 4
For a pair (c,d), features vote with their weights:

* vote(c) = 2ZAf(c,d)

in Québec in Québec in Québec

Choose the class ¢ which maximizes 2ZAf(c,d)
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Feature-Based Linear Classifiers

e Linear classifiers at classification time:
e Linear function from feature sets {f} to classes {c}.

» Assign a weight A, to each feature f.
e We consider each class for an observed datum d

e For a pair (¢,d), features vote with their weights:
* vote(c) = 2ZAf(c,d)

0.3
in Québec @Q’u@ -0.6 (in QU@

o Choose the class ¢ which maximizes ZAf/(c,d) =
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Feature-Based Linear Classifiers

There are many ways to chose weights for features

e Perceptron: find a currently misclassified example, and
nudge weights in the direction of its correct classification

e Margin-based methods (Support Vector Machines)
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Feature-Based Linear Classifiers

e Exponential (log-linear, maxent, logistic, Gibbs) models:
* Make a probabilistic model from the linear combination ZAf(c,d)

P(c|d.h) eXPE)Lifi(Cad) <— Makes votes positive
C R = : :

z cXp E A S (¢',d) <— Normalizes votes
° P( |In Québec) — e].Se—O.G/(e].Se—O.6 + eO3 + eO) — 0586
e P( lin Québec) = e%-3 /(e!-8e06 + 03 + ¢0) = (0.238
e P( lin Québec) = eV /(e!-8e0-6 + ¢0-3 + 0) = 0.176

« The weights are the parameters of the probability
model, combined via a “soft max” function
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Feature-Based Linear Classifiers

e Exponential (log-linear, maxent, logistic, Gibbs) models:

* Given this model form, we will choose parameters {A}
that maximize the conditional likelihood of the data
according to this model.

e We construct not only classifications, but probability
distributions over classifications.

e There are other (good!) ways of discriminating classes —
SVMs, boosting, even perceptrons — but these methods are

not as trivial to interpret as distributions over classes.
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Aside: logistic regression

e Maxent models in NLP are essentially the same as multiclass
logistic regression models in statistics (or machine learning)

* |f you haven’t seen these before, don’t worry, this presentation is self-
contained!

* |f you have seen these before you might think about:

* The parameterization is slightly different in a way that is advantageous
for NLP-style models with tons of sparse features (but statistically inelegant)

e The key role of feature functions in NLP and in this presentation

e The features are more general, with falso being a function of the class —

when might this be useful?
27
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Quiz Question

 Assuming exactly the same set up (3 class decision: LOCATION,
PERSON, or DRUG:; 3 features as before, maxent), what are:

e P( | by Goéric) =
e P( | by Goéric) =
e P( | by Goéric) =
e 1.8 fl(c d) = [c = LOCATION A w_ = “in” A isCapitalized(w)]
e -0.6 ) =[c=LOCATION A hasAccentedLatlnChar(w)
0.3 f3(c [c = DRUG A ends(w, “

) exp Y 4. f(c,d)
@D @D - N S S
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Building a Maxent Model

e We define features (indicator functions) over data points

e Features represent sets of data points which are distinctive enough to
deserve model parameters.

n  u

e Words, but also “word contains number”, “word ends with ing”, etc.

e We will simply encode each ® feature as a unique String
e A datum will give rise to a set of Strings: the active ® features
* Each feature f(c, d) = [©(d) A ¢ = ¢,] gets a real number weight

* We concentrate on © features but the math uses 7 indices of /,
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Building a Maxent Model

e Features are often added during model development to target errors
e Often, the easiest thing to think of are features that mark bad combinations

e Then, for any given feature weights, we want to be able to calculate:
e Data conditional likelihood
* Derivative of the likelihood wrt each feature weight
e Uses expectations of each feature according to the model

e We can then find the optimum feature weights (discussed later).
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Exponential Model Likelihood

e Maximum (Conditional) Likelihood Models :

e Given a model form, choose values of parameters to maximize the
(conditional) likelihood of the data.

exp ¥ 4, f,(c,d)
log P(C|D,A) = log P(c|d,A) = ; log "
(c.dIFC.D) (c,dIFC.D) 2 exp E A f(c',d)
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The Likelihood Value

e The (log) conditional likelihood of iid data (C,D)
according to maxent model is a function of the
data and the parameters A.:

log P(C|D,A) =log P(c|d, M) = log P(c|d,A)

(c, ,D) (c,d)y=(C,D)
e |f there aren’t many values of ¢, it’s easy to
calculate: GXPE)»,-fi(C»d)

log P(C|D, ) = ; log :
(c.dfT.D) 2 exp E A fi(c',d)
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The Likelihood Value

e We can separate this into two components:

log P(C| D, 1) = E logexpz)uifl.(c,d) - E logzexpz)»ifi(c',d)

(c,d¥XC.D) (c,d¥XC.D) c ;

log P(C| D,A)=N(X) = M(X)

e The derivative is the difference between the
derivatives of each component
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The Derivative I: Numerator

i, logexp Y A, f.(c,d) J A fi(c,d)
IN(A) _ _(cdiC.D) 2 _ _(cdiC,D) Z
A, A, A,
0y 4, fi(c.d)
) (c,d;C,D) a)\‘z
= Ji(c,d)
(c,d)(C,D)

Derivative of the numerator is: the empirical count(f, c)
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The Derivative ll: Denominator

d log M exp ) A f,(c',d)
aM()L) _ (c,d;c,D) c2 Z
oA, oA,

. aEexpEA,.ﬁ.(c',d)
B (c,d;w) S exp X (s d) o
) exp Y A fi(c'.d) Y A fi(c'.d)
) (c,d;cw) D,exp > A fi(c"d) 2 T oA
c eleE)»ifi(c',d) Y A fi(c'd)

) (c,d;c,m Z 2 exp ZE_ A S (", d) aA,

— g/ EP(C'|d9)L)f;(C'9d) = predicted count(f, A)
(c,d C,D) c
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) The Derivative Il

9
<O
ua 3

dlog P(C|D,A)
oA,

l

= actual count( f,,C) —predicted count( f,, 1)

e The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The optimum
distribution is:

e Always unique (but parameters may not be unique)
e Always exists (if feature counts are from actual data).

e These models are also called maximum entropy models because we
find the model having maximum entropy and satisfying the

constraints: Ep (f]) = Eﬁ (]F]),Vj
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Finding the optimal parameters

 We want to choose parameters A, A,, A;, ... that maximize the
conditional log-likelihood of the training data

CLogLik(D) = E log P(c. |d.)
i=1

e To be able to do that, we’ve worked out how to calculate the
function value and its partial derivatives (its gradient)
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A likelihood surface
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Finding the optimal parameters

e Use your favorite numerical optimization package....
e Commonly (and in our code), you minimize the negative of CLogLik
Gradient descent (GD); Stochastic gradient descent (SGD)

Iterative proportional fitting methods: Generalized Iterative Scaling
(GIS) and Improved Iterative Scaling (lIS)

3. Conjugate gradient (CG), perhaps with preconditioning

Quasi-Newton methods — limited memory variable metric (LMVM)
methods, in particular, L-BFGS
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