

Gregor Raýman

Brief introduction to
functional programming in Scala

Bratislava, 16 Oct 2017

What is a function?

We programmers often use the terms function
and procedure as synonyms.

Procedure → Subroutine is a sequence of program instructions
that perform a specifc task, packaged as a unit.

Function is a relation between a set of
inputs and a set of permissible outputs
with the property that each input is related
to exactly one output.

What is Scala?

Scala
● is an object-oriented programming language
● is a functional programming language
● is a statically and strongly typed programming

language
● is a scalable language
● compiles to JVM, JavaScript and native code*
● Has a lot of syntactic sugar

Who am I?

Programmer

Scala user

A bit of Scala syntax - variables

var a: Int = 42
val b = 24
a = a + b
b = a - b
a = a - b
println(a, b)

keyword name
type

(optional) initial value

STOP

immutable

a = "hello" STOP Wrong type!

A bit of Scala syntax - functions

def max(a: Int, b: Int): Int =
 if (a > b)
 a
 else
 b

keyword name
parameter list(s)

(optional)
return type
(optional)

function’s body /
expression

● Note that the if-statement is an expression that returns a
value. That is why we don’t need a return statement.
(Scala has it, don’t use it)

● If the function consist of only one expression, we don’t need
 the parentheses

A bit of Scala syntax - functions

● while is not an expression

● A block of multiple
expressions enclosed in curly
braces is itself an expression.
The resulting value is the
value of the last one. (here
the value of y)

def gcd(a: Int, b: Int) = {
 var x = b
 var y = a
 while (x != 0) {
 val rest = y % x
 y = x
 x = rest
 }
 y.abs
}

Look, a method call on a primitive integer.
In Scala everything is a an object and so it
has methods.

Even the operators are methods.

1+2 is the same as 1.+(2)

A bit of Scala syntax - functions

● while is not an expression

● A block of multiple
expressions enclosed in curly
braces is itself an expression.
The resulting value is the
value of the last one. (here
the value of y)

: Int

Inferred by the compiler

: Int

: Int

def gcd(a: Int, b: Int) = {
 var x = b
 var y = a
 while (x != 0) {
 val rest = y % x
 y = x
 x = rest
 }
 y.abs
}

A bit of Scala syntax - functions

● while is not an expression

● A block of multiple
expressions enclosed in curly
braces is itself an expression.
The resulting value is the
value of the last one. (here
the value of y)

● The result type of a recursive
function has to be explicitly
specifed

: Int

Inferred by the compiler

: Int

: Int

def gcd(a: Int, b: Int) = {
 var x = b
 var y = a
 while (x != 0) {
 val rest = y % x
 y = x
 x = rest
 }
 y.abs
}

def gcd2(a: Int, b: Int): Int =
 if (a != 0) b.abs
 else gcd2(b % a, a)

A bit of Scala syntax - classes

class Person(val name: String, aSurname: String) extends Mammal {
 private var surnameNow = aSurname
 private var spouse: Person = _
 def surname = surnameNow

 println(s"Person $name $surname was born")

 def marry(p: Person, takeSurname: Boolean): Unit = {
 if (this != p) throw new Exception("Cannot marry myself!")
 if (spouse != null) throw new Exception("Cannot marry twice!")
 println(s"$name $surname married ${p.name} ${p.surname}")
 if (takeSurname) surnameNow = p.surname
 spouse = p
 if (p.spouse != this) p.marry(this, !takeSurname)
 }
}

DO NOT PROGRAM THIS WAY

PLEASE!

Read only property Parameter of the constructor

Member variable

Public member method (note, no parameter list)

Constructor code

Another public method

Substitution principle

val y: Int = 2 * x
val z: Int = x + x

Do y and z contain the same value?
Is z odd or even?

val x = 7val x = 7

var c = 0
def x:Int = {
 c = c + 1
 c
}

var c = 0
def x:Int = {
 c = c + 1
 c
}

Pure functions

A pure function:
● for the same input always returns the same

value*
● the only effect it has is returning the result

value. So no side effects.

*) this also means that it always returns a
value. So it must not throw an exception
nor can it end in an endless loop

def gcd(a: Int, b: Int) = {
 var x = b
 var y = a
 while (x != 0) {
 val rest = y % x
 y = x
 x = rest
 }
 y.abs
}

Mutable local variables are ok. This function is still pure

Benefts of purity and immutability

● Much simpler to reason about
● Easy to cache slowly computed functions
● Easier to use in multi-threaded environment
● Much simpler to reason about

Scala type hierarchy

Any

AnyRef
(java.lang.Object)

AnyVal

Byte

Short

Int

Long

Float

Boolean

Char

Unit

Double

java.lang.String

Null

Nothing

...

The only instance is null.
So null can be assigned
to variables of all types
inheriting from AnyRef

The only instance is ()
(represents void in Java)

Has no instance at all

Functions as frst class objects

● In Scala functions are objects
● They themselves have types
● Can be assigned to variable
● Can be used as parameters of other functions
● Can be returned from functions

val up = (x: String) !> x.toUpperCase
val add = (a: Int, b: Int) !> a + b
val plus: (Int, Int) !> Int = add

Anonymous function
assigned to variables

The type of add and plus is
(Int, Int) !> Int

Functions have methods too

val withLen = (x: String) !> x + x.length
val rev: (String !> String) = _.reverse

val withLenRev = withLen.andThen(rev)
val revWithLen = rev andThen withLen

withLenRev("Scala") !/ returns 5alacS
revWithLen("Scala") !/ returns alacS5

revWithLen.apply("Scala")

Written as a method call

Written as an operator

Explicitly named type of the parameter
of the anonymous function

Explicit type of the variable rev No need to give the parameter a name
(used only once)

Functions have a method called apply.
Scala’s syntactic sugar allows you

to write just the parentheses.

Functions used as parameters

def doTwice(f: !> Unit):Unit = {f; f}

doTwice { println("Hello world") }

I know this is an extremely simple example.

Have you noticed the curly braces instead of parentheses?
This is a nice syntactic sugar.
You can use {x} instead of (x) if the parameter list has one
parameter.

Functions used as parameters

def doWith(c: Closeable)(f: Closeable !> Unit): Unit = {
 try {
 f(c)
 } finally {
 c.close()
 }
}

Now you can do the following. It looks like we have extended the syntax of
Scala, doesn’t it?

doWith(new FileInputStream("hello.txt")) { stream !>
 !!.
}

Two parameter lists

Generics and variance

class Box[A] {
 private var content: A = _
 def put(a: A): Unit = content = a
 def get: A = content
}

Invariant type parameter

Food

Meat

Pork

Box[Food]

Box[Meat]

Box[Pork]

?

?

Generics - Invariant

def examineBoxedMeat(box: Box[Meat]): Unit = {
 val meat:Meat = box.get
 val meat2:Meat = markInLab(meat)
 box.put(meat2)
}

val mealBox: Box[Food]
val porkBox: Box[Pork]
examineBoxedMeat(!!.)

Food

Meat

Pork

Box[Pork] is ok here. Box[Food] not

Box[Food] is ok here. Box[Pork] not

Box[Food]

Box[Meat]

Box[Pork]

❌

❌

Variance - Covariant

class Box[+A](content: A) {
 def get: A = content
}

def examineBoxedMeat(box: Box[Meat]): Boolean = {
 val meat:Meat = box.get
 val result:Boolean = sendToLab(meat)
 result
}

Covariant

Food

Meat

Pork

Box[Food]

Box[Meat]

Box[Pork]

Note that Box[+A] can
only return A. It cannot
accept it as parameters.

Variance - Contravariant

class Bin[-A] {
 def getdispose(a: A):Unit = ???
}

def cleanTheFridge(bin: Bin[Meat]): Unit = {
 val rottenMeat:Meat = getOldMeat()
 bin.dispose(rottenMeat)
}

Contravariant

Food

Meat

Pork

Box[Food]

Box[Meat]

Box[Pork]

Note that Bin[-A] methods
cannot return A.
It can take A as parameters.

Collections

Covariant collections can only be immutable. Let’s defne our own:

trait Collection[+A] {
 def isEmpty: Boolean
 def first: A
 def rest: Collection[A]
}

A trait is similar to Java’s interface , it is abstract, defnes
capability of its instances. A class can implement (can inherit from)
multiple traits.

However, traits can implement methods and they can also have
member variables.

The simplest collections ever

object Empty extends Collection[Nothing] {
 override def isEmpty = true
 override def first = throw new NotImplementedError
 override def rest = ???
}

class One[+A](a:A) extends Collection[A] {
 override def isEmpty = false
 override def first = a
 override def rest = Empty
}

This is a real Scala function

A singleton instance
Is an empty collection of every type.

There is no Person in, no Bear in, no Integer in.

Is this useful?

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, I was designing the frst
comprehensive type system for references in an object oriented
language (ALGOL W). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn't resist the
temptation to put in a null reference, simply because it was so
easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years.”

Sir Charles Antony Richard Hoare

Option

sealed abstract class Option[+A] {
 val isEmpty: Boolean
 def get: A
}
object None extends Option[Nothing] {
 override val isEmpty = true
 override def get = ???
}

case class Some[+A](it: A) extends Option[A] {
 override val isEmpty = false
 override val get = it
}

All directly inheriting implementations must be in this same fle

Look, an abstract val

Look, a val overrides a def

What is this?

The type Option allows us to explicitly on the type level to defne, whether a variable, a
parameter or a return value can be without a value.

Note: This is not the actual Scala implementation

Case classes – a bit of Scala sugar

A case class in Scala is a normal
Scala class with a lot of helpful
functionality automatically
provided by the compiler
● All constructor parameters

become read-only properties
● Automatic toString and
equals implementations

● Generated copy methods
● Generated companion object*

with useful methods

case class Point(x: Int, y: Int) {
 def moveByX(dx: Int)
 = copy(x = x + dx)
}

val p0 = Point(0,2)
val p10 = p0.moveByX(10)
p10.toString !/ returns "Point(10, 2)"

*Scala does not know static methods.
But it knows singleton objects. An object
with the same name as a class is called
a companion object. For case classes
a companion object is automatically
generated. It contains an factory
method for creating instances of the
case class:

object Point {
 def apply(x: Int, y: Int)
 = new Point(x, y)
 !!.
}

Type based pattern

Switch and If on steroids.
Pattern matching
def describe(it: Any): String = {
 it match {
 case 0 !> "zero"
 case 1 !> "one"
 case x: String !> x
 case Point(0, 0) !> "origin"
 case Point(0, y) if y > 0 !> s"$y up on the x axis"
 case Point(x, y) !> s"[$x,$y]"
 case _ !> it.toString
 }
}

The “catch all” pattern.
If no pattern matches, a run-time

exception is thrown.
The compiler can actually check, whether

the patterns are exhaustive. Sealed
classes are needed for this functionality.

These patterns match only a single value

Type based patterns, checking
properties of the case class
and binding them the local

variables.

Options instead of null

def organizeLecture(
 room: Room,
 projector: Projector,
 speaker: Person,
 interpreter: Person
): Lecture
Do we need an interpreter? Do we need a projector? Does the method signature
tell us? Will we be able to organize the lecture?

val lecture = organizeLecture(
 Room("C"), null, Person("Gregor"), null)

lecture.sendInvitations()

Really? No projector needed?

Will the function never return null?

Options instead of null

def organizeLecture(
 room: Room,
 maybeProjector: Option[Projector],
 speaker: Person,
 maybeInterpreter: Option[Person]
): Option[Lecture]

organizeLecture(Room("C"), None, Person("Gregor"), None)
match {
 case Some(lecture) !> lecture.sendInvitations()
 case None !> !/ do nothing
}

This is clearly an allowed value

This will be called only when the function
returns Some[Lecture]

No need for a default case,
it can only be Some or None

More than one element - Lists

class Cons[+A](
 override val first: A,
 override val rest: Collection[A]
) extends Collection[A] {
 override val isEmpty = false
}

Now we can have collections with as many elements as we want. Here a list of 3 elements:
val list123 = Cons(1, Cons(2, Cons(3, Empty)))
Note the list is constructed from the end. We start with the Empty collection and then add
the elements to the head of the list.
Luckily, Scala has an implementation with more functionality an a much nicer syntax.
In Scala’s collection library our first is called head, rest is called tail and Empty is
Nil.

Scala Lists

You have already seen that in Scala a method with one parameter can be written as an
operator. So

1 + 2 is the same as 1.+(2) and f andThen g is the same as f.andThen(g)

However, when the operator ends with a semicolon, it is bound to the right operand. So

a +: b is the same as b.+:(a) and a :: b is the same as b.::(a)

These four lists are equal

List(1, 2, 3)
1 !: 2 !: 3 !: Nil
Nil.!:(3).!:(2).!:(1)
!:(3,!:(2,!:(1,Nil))) Can you guess, what !: means here?

Working with lists – Summing up

Lists can also be used in pattern matching:
def sum(xs: List[Int]): Int = xs match {
 case Nil !> 0
 case h !: t !> h + sum(t)
}

@tailrec
def sumWithAcc(acc: Int, xs: List[Int]): Int = xs match
{
 case Nil !> acc
 case h !: t !> sumWithAcc(acc + h, t)
}

!
Danger. Stack overfow possible

def sumWithLoop(xs: List[Int]): Int = {
 var acc = 0
 var rest = xs
 while (rest.nonEmpty) {
 acc += rest.head
 rest = rest.tail
 }
 acc
}

All these variants
loop over the list

Working with Lists - Transformation

def map[A,B](as: List[A])(f: A !> B): List[B] =
as match {
 case Nil !> Nil
 case h !: t !> f(h) !: map(t)(f)
}

What will the following code return?
map(List("one","two","three")) { _.length }
Exercise: Implement a function that flters a list and returns only element for which
another functions returns true. What will the type of the function be?

Note: Scala’s Lists have the methods map, flter etc...

We know and use the internal structure of
the list to “loop” over its elements

Look, no loop visible here

Useful methods on collections

trait C[A] {
 def map[B](f: A !> B): C[B]
 def flatMap[B](f: A !> C[B]): C[B]
 def filter(p: A !> Boolean): C[A]
 def exists(p: A !> Boolean): Boolean
 def forall(p: A !> Boolean): Boolean
 def foreach(p: A !> Unit): Unit
 def find(p: A !> Unit): Option[A]
 def reduce(op: (A, A) !> A): A
 def fold(z: A)(op: (A, A) !> A): A
 def foldLeft[B](z: B)(op: (B, A) !> A): B
 def foldRight[B](z: B)(op: (A, B) !> A): B
 def collect[B](pf: PartialFunction[A, B]): C[B]
 !!.
 def sum: A = reduce(_ + _)
 def min: A = reduce((x:A, y:A) !> if (x < y) x else y)
}
Can you guess what these methods do, just by looking at their types?

Note: This is just a simplifcation

Can we do that?
Where do the +, < come from?

map and fatMap

Task: Split a sentence (list of strings) to a list of
characters codes
List("Hello","World") !!> List(72, 101, 108, 108, 111, 87, 111, 114, 108, 100)

def strToCharCodes(s: String) = s.toList.map(_.toInt)
def split1(ws: List[String]) = ws map strToCharCodes

split1(List("Hello","World")) !!> List(List(72, 101, 108, 108, 111), List(87, 111, 114, 108, 100))

split1(List("Hello","World")).flatten !!> List(72, 101, 108, 108, 111, 87, 111, 114, 108, 100)

List("Hello","World").map(w !> w.map(c !> c.toInt)).flatten
List("Hello", "World").flatMap(w !> w.map(c !> c.toInt))

List of lists

Unwraps the list of lists

For comprehensions

In Scala there are no for-cycles. for is just
syntax sugar for map, flatMap, withFilter and
foreach
List("Hello", "World").flatMap(w !> w.map(c !> c.toInt))

is the same as
for (
 w !- List("Hello", "World");
 c !- w
) yield c.toInt

For comprehensions

● Last before ← yield becomes map
● Last without ← yield becomes foreach
● Other become ← flatMap
● if becomes withFilter

This is not limited to collections. Any class that
implements (some of) the methods, can be used in a
for-comprehension.

for is just syntactic sugar

Options instead of null, again

def organizeLecture(
 room: Room,
 maybeProjector: Option[Projector],
 speaker: Person,
 maybeInterpreter: Option[Person]
): Option[Lecture]
for (lecture !- organizeLecture(
 Room("C"), None, Person("Gregor"), None)
) {
 lecture.sendInvitations()
}

This will be called only when the function
returns Some[Lecture]. No need to write

an empty clause when it returns None.

Useful methods (on collections?)

trait C[A] {
 def map[B](f: A !> B): C[B]
 def flatMap[B](f: A !> C[B]): C[B]

 !!.
}
C stands for Context. The function f called by map does not need to know anything about the
structure of C. The function used in flatmap knows about C, so that we cannot combine
incompatible contexts.

for (
 person !- personContext;
 meal !- mealContext if !meal.meat !| !person.vegetarian
) yield (person.name, meal.name)
This works if both personContext and mealContext are of the same kind (both Collection,
or both Future, etc).

Using for for some random stuff :)

trait Rnd[+A] {
 def next(): A
}

object RndDouble extends Rnd[Double] {
 override def next(): Double = Math.random()
}
class RndInt(from: Int, to: Int) extends Rnd[Int] {
 override def next(): Int =
 from + ((to – from + 1) * RndDouble.next).floor.toInt
}
val tenGenerator = new RndInt(1, 10) Does this function really

needs to know that it
deals with random numbers?

Using for for some random stuff :)

trait Rnd[+A] { self !>
 def next(): A
 final def map[B](f: A !> B) = new Rnd[B] {
 override def next(): B = f(self.next())
 }
}
val tenGenerator = RndDouble map { n !>
 1 + (10 * n).floor.toInt
}

self is just an alias for this,
because this in the Rnd[B]

references the anonymous
nested class

This function does not know
that n is a random number

Using for for some random stuff :)

trait Rnd[+A] { self !>
 def next(): A
 final def map[B](f: A !> B) = new Rnd[B] {
 override def next(): B = f(self.next())
 }
 final def flatMap[B](f: A !> Rnd[B]) = new Rnd[B] {
 override def next(): B = f(self.next()).next()
 }
}
val moveGenerator = for (
 c !- tenGenerator;
 col = ('A' + c).toChar;
 row !- tenGenerator
) yield (col, row)
moveGenerator.next() !/ returns (F,2) or (B,4) or !!.

flatMap combines this Rnd
with the one returned from f

Using for for some random stuff :)

We have created a generator of (Char, Int) pairs.
Can we also create a generator of Int sequences?
val seqGenerator = for (
 i !- 1 to 10;
 n !- tenGenerator
) yield n

STOP
Does not work! We cannot

combine a Range with a Rnd
this way

class IntSeqRnd(len: Int) extends Rnd[Seq[Int]] {
 override def next() =
 for (i !- 1 to len) yield tenGenerator.next()
}

But this is not functional!

A pure function:
● for the same input always returns the same value
● the only effect it has is returning the result value.

So no side effects.
Math.random() certainly is not a pure function. It does not always return the
same result value (that would make it be quite pointless) and calling it changes
some internal state of the pseudo-random generator, so it has side effects.

Can we have a pure function that can provide random numbers?

Modeling state functionally

● In object oriented programming state is modeled as
objects. State changes are modeled as changing the
data of object’s member variables.

● In (pure) functional programming, data is immutable.

class Person(n:String) {
 private var name = n
 def getName = name
 def setName(nn:String):Unit = {name = nn}
}

val p = new Person("Gregor")
p.setName("Greg")
p.getName

case class Person(name: String)

val p = Person("Gregor")
val p1 = p.copy(name = "Greg")

The state of the object p
has been changed

The object p is not changed.
New state is in the new object p1

“Pure?” functional random numbers

class FunRandom extends Function0[(Double, FunRandom)] {
 private val n = Math.random()
 private lazy val next = new FunRandom
 def apply(): (Double, FunRandom) = (n, next)
}

val f0 = new FunRandom
val (n1a, f1a) = f0()
val (n1b, f1b) = f0() !/ n1a != n1b
val (n2a, f2a) = f1a()
val (n2b, f2b) = f1b() !/ n2a != n2b

FunRandom always returns the same result. It returns a pair of a random number and another instance of RunRandom.

It is still not pure, because creating the new instance has side effects on the state of Math.random.

Is there a way? Can a real world program be functionally pure?

Useful programs have to interact with the outside world. They have to have have inputs, outputs. So totally pure
programs are not really useful. But we can “push” the impure , state changing functionality to the borders of the
programs. (To learn more about this, study the IO monad)

Note: Yes, it is possible to create a purely functional pseudo-random generator by keeping the state inside the function
instances.

Type classes

Remember?
trait C[A] {
 !!.
 def sum: A = reduce(_ + _)
 def min: A = reduce((x:A, y:A) !> if (x < y) x else y)
}

Can we do that?
Where do the +, < come from?

Type classes

Let’s write a function that fnds the smallest
element. To be able to that, we need a decision
function that tells which from two elements is
smaller.

trait LessThan[-T] {
 def lt(a:T, b:T): Boolean
}
case class Person(name: String, age: Int, height: Int)

val ageLessThan: LessThan[Person] = new LessThan[Person] {
 override def lt(a: Person, b: Person) = a.age < b.age
}

A Person does not have any “natural” ordering

Using this, we will sort people by age

Type classes

val ageLessThan: LessThan[Person] = new LessThan[Person] {
 override def lt(a: Person, b: Person) = a.age < b.age
}
def least[T](a: T, b: T)(lessThan: LessThan[T]) =
 if (lessThan.lt(a, b)) a else b
Least(
 Person("Gregor", 47, 189),
 Person("Vincent", 7, 130)
)(ageLessThan)

Scala has a very powerful feature called implicit parameters. It instructs the compiler
to automatically use implicit variables whenever we have not specifed one explicitly.

Let’s use this feature to simplify our code

The function least will be applicable
to any type T for which we can provide

an instance of LessThan[T]

Type classes

implicit val ageLessThan: LessThan[Person] =
 new LessThan[Person] {
 override def lt(a: Person, b: Person) = a.age < b.age
 }
def least[T](a: T, b: T)(implicit lessThan: LessThan[T]) =
 if (lessThan.lt(a, b)) a else b
Least(
 Person("Gregor", 47, 189),
 Person("Vincent", 7, 130)
)

Note that this works only, when the implicit parameter can be selected
unambiguously.

There is even more concise way to write the function least[T]

No need to provide the parameter list
explicitly

Type classes

def least[T:LessThan](a: T, b: T) = {
 val lessThan = implicitly[LessThan[T]]
 if (lessThan.lt(a, b)) a else b
}

This notation means the same as the previous one.
The function automatically gets another parameter list with an

anonymous parameter of the type LessThan[T]
We say that T belongs to the type class LessThan.

To access the parameter by name,
we use the helper method implicitly

Let’s fnd the smallest element from more than two elements.

Type classes, Higher kinded types

trait Reducer[-C[_]] {
 def reduce[T](c: C[T])(f: (T, T) !> T):T
}

implicit val seqReducer: Reducer[TraversableOnce] = new Reducer[TraversableOnce] {
 override def reduce[T](c: TraversableOnce[T])(f: (T, T) !> T) = c.reduce(f)
}

def min[C[_]:Reducer, T:LessThan](c:C[T]) = {
 val reducer = implicitly[Reducer[C]]
 val lessThan = implicitly[LessThan[T]]
 reducer.reduce(c)(least[T])
}
min(List(
 Person("Gregor", 47, 189),
 Person("Vincent", 7, 130),
 Person("Adam", 4, 101))
)

This means, that C needs a parameter. C[T] is a type,
 C is called a type constructor.

Questions?

cloudfarms.com and cloudfarms.online

