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Motivation and probabilistic concepts

● Unlike discriminative models, stochastic (probabilistic) models are 
generative, providing an added value for some tasks (denoising, 
missing value restoration, sampling,…)

● Difference b/w a sample and population (→ generalization)
● Probability distribution (of population) over a random vector X
● Avoiding a lookup table approach (no generalization)
● Graphical models – directed and undirected
● Probabilities: prior, posterior, conditional
● Bayes rule
● Machine learning: MSE and maximum likelihood estimation

P(B∣A)=P (A∣B). P(B)
P(A)
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Example: Bayesian estimation in linear regression

p(w |d , x)  =  p(d |w , x) p (w)
p (d )

posterior  =  observation∗priorevidence

● Assume data set {x(i),d(i)}, and linear regressor with parameter vector w
● Mean-squares regression:  minimize MSE, i.e.     
● probabilistic approach (in stochastic environment): 

1/N∑
i=1

N

(d (i )−wT x( i))2

● Observation density is commonly reformulated as likelihood function, 
i.e. l(w|d,x) = p(d|w,x)

● maximum likelihood (ML) estimate (of w): wML = arg maxw l(w|d,x) 
● maximum a posteriori (MAP) estimate: wMAP = arg maxw {l(w|d,x) . p(w)}
● in general, MAP is more accurate (since it includes priors), but 

computationally more costly
● for large data sets (i.e. many observations), ML often works well

(Haykin, 2009, sec. 2.3)
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Link to linear regression

y = target 

P( y∣x )= 1
σ √2π

exp(
−( y−w1 x−w2)

2

2σ2 )Maximizing

= minimizing E=∑
i=1

N

( y(i )−w1 x
(i)−w2)

2

Minimizing the sum of squared errors yields the ML solution
for a linear fit assuming Gaussian noise of fixed variance.

w.r.t. w1,w2
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Structured probabilistic models

● Graphical (probabilistic) models – directed or undirected

● Structured probabilistic models provide a formal framework for 
modeling only direct interactions between random variables

● Learning probabilistic distributions yields various advantages
● partition function = normalizing constant = sum (or integral) of 

all probabilities 
● discriminative vs. generative models
● energy based models

(Goodfellow et al, 2015)
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Linear factor models

● the simplest directed graphical models
● first we sample latent variables h ~ p(h)
● then we sample observables x

● they build pmodel(x) = pmodel(x|h)h

● Probabilistic PCA: x  ∼ N(x; b, WWT +σ2I), i.e. x = Wh + b + σz,

● z ~ N(z,0,I) is Gaussian noise; 

● parameters W, σ2 can be estimated iteratively (e.g. by EM alg.)

● probabilistic PCA becomes (deterministic) PCA as σ→0
● manifold interpretation of PCA
● nonlinear analogy: probabilistic (generative) SOM (GTM)

(Goodfellow et al, 2015)
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Introduction of physics’ concepts

● Statistical mechanics formally studies macroscopic equilibrium 
properties of large systems of elements that are subject to the 
microscopic laws of mechanics.

● Entropy: The more ordered the system, or the more concentrated the 
underlying probability distribution, the smaller the entropy will be.

● Energy: States of low energy have a higher probability of occurrence 
than states of high energy.

● As the temperature T is reduced, the probability is concentrated on a 
smaller subset of low-energy states.

P(S= s)= 1
Z

exp(−E (s)
T

) Z=∑
s '

exp(− E(s ' )
T

) = partition function

pi=
1
Z

exp(−
E i
T
) Z=∑

j
exp(−

E j
T

)

(Haykin, 2009, ch.11)
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Free energy and entropy

● Helmholtz’ free energy of a physical system: F = – T log Z
● Average energy: 〈E〉 = i pi Ei

● Hence 〈E〉 – F = – T i pi log pi  = TH, where H is the entropy
● Minimal free energy: … of a stochastic system with respect to 

variables of the system is achieved at thermal equilibrium, when 
the system is governed by the Gibbs (Boltzmann) distribution 
(Landau & Lifshitz, 1980).

– and the principle of detailed balance holds (πi pij = πj pji)

● Nature likes to follow minimum free energy principle in a closed 
system (according to the 2nd law of thermodynamics)

● In modeling stochastic phenomena, generative models are useful 
(e.g. Markov chains)
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Markov chains

● Assume a system, as a stochastic process {Xn, n=1,2,…} described by 
a vector of random variables, operating in discrete time

● P(Xn+1 = xn+1 | Xn=xn, …, X1=x1) = P(Xn+1 = xn+1|Xn=xn)  (Markov property)
● (square) matrix P of transition probabilities pij = P(Xn+1 = j | Xn = i) ≥0
● subject to Σ j pij  = 1
● If P is fixed, the MC is homogeneous in time
● MC is ergodic, if ∃ a limit of Pn, for n→∞ where π(n) = Pn  π(0)

● π(n) is a state distribution vector at time n, example:
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Markov chain Monte Carlo methods

● a class of algorithms for sampling from a probability distribution 
(e.g. a training set)

● MCMC is any method that produces an ergodic Markov chain 
whose own stationary distribution is unknown (Robert and Casella, 
1999), avoids chicken-and-egg problem

● repeatedly samples i → j using pij = P(Xn+1 = j | Xn = i)

● By constructing a Markov chain that has the desired distribution as 
its equilibrium distribution, one can obtain a sample of the desired 
distribution by observing the chain after a number of steps.

● The more steps there are, the more closely the distribution of the 
sample matches the actual desired distribution. 

● Examples: Metropolis algorithm, simulated annealing,...
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Metropolis algorithm

● is a stochastic algorithm simulating the evolution of a physical 
system to thermal equilibrium (Metropolis et al., 1953)

● Example of a MCMC method
● Transition to a new state (si→sj) accepted if ∆E = E(sj) – E(si) < 0, 

otherwise allowed if d < exp(–∆E/T) , where d = rnd(0,1).

● Metropolis algorithm 
generates a Markov 
chain, whose transition 
probabilities converge to a 
unique and stable 
Boltzmann distribution 
(Beckerman, 1997).

(wiki MCMC)
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Simulated annealing

● Consider the problem of finding a low-energy system whose 
states are ordered in a Markov chain.

● For T→0, free energy F→〈E〉 which leads to a global minimum of 
average energy.

● SA = combination of two related ingredients:
– schedule that determines the rate at which temperature is 

lowered;
– Metropolis algorithm that iteratively finds the equilibrium 

distribution at each new temperature in the schedule by using 
the final state of the system at previous temperature as the 
starting point for new temperature.

● Kirkpatrick et al. (1983), Černý (1985)
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Boltzmann machine

● fully connected recurrent two-layer  
network – stochastic binary model

● two different types of units:
● visible units – interface to the 

environment, can be clamped 
during training (positive phase)

● hidden units – always operate 
freely (negative phase)

● symmetric weight matrices

hidden 

visible

●  Goal: Learn input patterns according to Boltzmann distribution.
●  Two assumptions: (1) Each input pattern persists long enough  

 to permit the network to reach thermal equilibrium. (2) There is  
 no sequential structure in input patterns.

(Hinton, 1985)
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Learning in the Boltzmann machine

● Pattern completion: When a subset of visible neurons are 
clamped (to a desired pattern), the network can retrieve the 
activations of the remaining visible neurons, provided that it has 
learned the training distribution properly.

● State vector s = [sv , sh]    (visible & hidden components)

● State vector x is the realization of the random variable X

● Energy of BM: E(s) = – ½ ∑i∑j wij si sj

● Probability of state s:  
● Two phases alternated during training: positive and negative
● Criterion for learning: maximize marginal probability over data

P(S= s)= 1
Z

exp(−E (s)
T

) Z=∑
s '

exp(− E(s ' )
T

)
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Learning rule in the BM

● Training patterns are assumed statistically independent
● Cost function:

● Probability of finding visible neurons in state sv , for any sh , is

● Then (maximize L)

L(w)=log ∏
sv∈ trn

P(s v)= ∑
sv∈trn

log P(sv )

P(sv )=
1
Z∑sh

exp (−E (s)
T

) Z=∑
s

exp(− E(s )
T

)

L(w) =∑
sv∈trn

(log∑
sh

exp(− E(s )
T

)− log∑
s

exp(− E(s )
T

))
∂L(w)
∂w ij

= 1
T ∑

sv∈trn (∑sh P (sh | sv)s i s j −∑
s
P(s)s i s j) ∝ Δw ij

ρij
+=⟨si s j ⟩

+ ρij
- =⟨s i s j ⟩

-

Δ wij=η(T )(ρij
+−ρij

- )

visible

hidden 

(Haykin, 2009)
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Deep Belief Networks

● Based on restricted Boltzmann Machine (RBM) 
– no lateral connections, alternating:

● RBMs can be stacked and trained in a greedy 
manner, on a layer-by-layer basis

● Update the hidden states all in parallel, given 
the (clamped) visible states (sigma logistic f.)

● Update the visible states all in parallel, given 
the (clamped) hidden states

● Learning rules: (data – reconstruction)

hidden 

visible

(Hinton, 2006)

p(h j=1| sv )= σ (b j+∑i v iw ij)

p(v i=1 | sh) = σ (a i+∑ j h jw ij)

Δwij = ⟨ v ih j ⟩data − ⟨ v ih j ⟩reconstr
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DBN (ctd)

● Contrastive divergence as an approximation to ML learning
● RBM is trained directly on the input data, allowing stochastic neurons 

in the hidden layer to capture important features
– after enough iterations, the visible and hidden vectors are 

sampled from the stationary distribution
● trained features are then treated as “input data,” for 2nd RBM => 

learning features of features
● DBNs learns joint distribution b/w observed data and hidden layers
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DBN application

● Top layer learns the joint distribution of 
handwritten digit images and their labels

● 44000 training images, 10000 testing
● 1.25% error on testing data (best of the 

time)
● Input units are real valued, hidden units 

binary (stochastic)
● Labels provided during training the top 

layer
● triggered the boom of deep learning
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DBN on MNIST dataset

10 samples for each class from the generative 
model with a particular label clamped on.

Errors: Each case is labeled by
the network’s guess.
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Summary

● Training generative models with hidden units is a powerful way to 
make models represent the world given by the training data. 

● By learning a model pmodel(x) and representation pmodel(x|h), a generative 
model can provide answers to many inference problems about the 
relationships between input variables in x, and can o er di erent ff ff
ways of representing x by taking expectations of h at di erent layers ff
of the hierarchy. 

● Generative models hold the promise to provide AI systems with a 
framework for all the many di erent intuitive concepts they need to ff
understand, giving them the ability to reason about these concepts in 
the face of uncertainty.
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