Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Lecture 3

Supervised single-layer models

|gor Farkas 2024

Linear NN models

Input vector: X = [x1 X,

e 'xn]T A
Tt "0}’
Output vector: Y=Ly s s ¥l W,

Weight matrix: W ~ type [mXn]

x Qﬂo 55
Linear transformation ¢ :R" —->R", y = Wx
@ ignores saturation property of neurons (Kohonen, 1970;

Anderson, 1972;

© allows to find analytic solutions using linear algebra. Cooper, 1973)

e Adding layers in a linear NN does not appear reasonable (since no
complexity is added).
* But: It allows nonlinear learning dynamics in linear deep nets (saxe, 2015).

Closed-form solution

Let's consider the data set: A __ = {(x?, y?), p=1,2,...,N}.

We look for a matrix W that satisfies y?»’ = Wx®, for each p.
In matrix notation:. Y=WX
YO y@ yM] = W X [xDx® .. x™]
(mXN) (mXn) (nXN)

If X was regular (i.e., square matrix with N = n, with linearly independent rows)
then X! would exist and W = YX"!

However, in general we cannot assume N = n, nor linear independence of input
vectors (= X! does not exist). Only generalized solutions exists:
wW=YX*
X*is called (Moore-Penrose) pseudoinverse matrix of X. Theorem: V X, 3 X*
with properties: 1) XX*X = X, 2) X*XX* = X*, 3) symmetric XX*and X*X.
a) X =X"XX")!, ifn<N and rank(X) = n.
b) X*=X"X)'X", ifn>N and rank(X) = N.

Auto-association In a linear network

Let us now look at autoassociation: y» =x», dim(y) = dim(x) = n

This can be useful for a memory, if n > N (i.e. few examples of large
dimension).

Consider the task: to remember N prototypes [x®P x® ... x™],

Goal: train a linear model on prototypes and then submit a corrupted
version of a prototype. Model should be able to reconstruct it.

Since Y = X, then W =XX". How to interpret W?

In a special, restrictive case (N = n, linearly independent inputs), we
would have a trivial solution W =1 (identity).

How about a general (non-trivial) case?

Basics of linear vector spaces

Let's have a linear space ‘R".

Linear manifold "= {x € R"|x = a,xV+ a,x?+ ... + a, xV,a # 0}

L R
Orthogonal complement Z* = {x € R"|x1 L}
Hence, £ ®. 1= R"

Each vector x € R” can be A X

where x € £ and x_.€ ™. lx

uniquely decomposed. x@
X=X,+X_ /\7'

What does an autoassociative NN do?

Training set A__ = {x¥, p=1,2,...,N} forms the linear manifold 7.

NN considers every departure x from -#” as added noise that needs to be
filtered out by projecting x to .£”:

We need to show that output Wx = XX*x=x, (filtered version of x), i.e. that

operator W = XX* makes an orthogonal projection to <.

Alternatively, the NN model with operator W = I — XX is called novelty
detector, where Wx = x_ €™

X ¢ x®
Now assume: you learned N patterns, and %
you want to add (N+1)-st pattern. X,
How to change W efficiently? >

Gram-Schmidt orthogonalization process

Let's have a base u",u®, ..., u® e £, for which we want to create an
orthogonal base vV, y?, ..., v® € Z.
Procedure:

Let vV =uD. In space with base formed by vV, u® let's find vector y®
such that v Lv®". Hence, v®=a v+ a,u®.

W

Recursive formula: we have vV, y@ | ... v*Yand compute v® such that
V(k)J_V(l), l: 1,2, cee o k‘l V(3) v(z)

v(k) _ (k)_zk—l v(i)T

i=1

How to use this recursion for a Gl model?

General Inverse model

If we have patterns x,x@, ..., x™» we can use Gram-Schmidt
process to calculate orthogonal base z(V,z?, ..., z™

Memory model W is computed recursively:
1. Initialize W©=0,i=1

2. Repeat A= =1)

A 07

(i)

W(l) — W(i—l) +

2

<

[=i+1

Example: 8 faces from CMU image data repository

Boa 1 Bca ¢ Boca 3

] . : 1 o 16 1
Bca s Bca G
[==} Bca 8 Boca 1 — SOrrupd

L
- & -
i

Recall by Gl and novelty detection

el Pova ly detadticn

Pdery i ML Ra=c@ation — Gl

Supervised single-layer perceptrons

I=1,2,..., m neurons, that can work independently
then each neuron independently splits input space into two subspaces

For sigmoidal neurons we get learning rule: (neti = 0;)
wi(t+1) = wi(t) + o.(d, - y). f'(0i).x

for linear neurons we get the least-means-square (LMS) learning rule
wi(t+1) = wi(t) + &.(d, - y). x,

closed-form solution may exist via pseudoinverse: for a linear model
W= D.X*, or W= f-(D).X*, if a nonlinearity is used [f'(d) = 0]

Softmax regression

In classification tasks, where #output_neurons = #classes, it is
convenient to interpret outputs as (conditional) probabilities

hard assignment vs soft assignment (of classes)

Softmax activ. function (Luce, 1959) enables that (by normalization): all
nonnegative values sum up to one

y.= exp (0} argmax .y, = argmax, o, 0,:2]. w; X, +b,
Zk exp (o) \

logit
Important: the model remains differentiable

Despite nonlinearity, the outputs of softmax regression are still
determined by an affine transformation of input features (- logits)

Hence, softmax regression is a linear model.

(Zhang et al, 2020)
12

Log-likelihood estimation

Assume a training set {X,D}, consisting of N pairs of input vectors x®
and one-hot label vectors d». Let NN model predictions be y».

We compare the predictions with ground truth by checking how probable
the actual classes are according to our model, given the features:

N
P(D|Xx)=]] P(d
p=1

According to maximum likelihood estimation, we maximize P(D|X), which
IS equivalent to minimizing the negative log-likelihood, i.e. — log P(D|X)

N
—log P(D|X)= Z log P(d"'|x'")=>" loss(d"”
p=1
For each pattern p (with m classes assumed)

losstt!=CE""'=—->" d\” log y'?’
=1

Cross-entropy loss calculation

CE = —log P(d|x) = — 3:d; log v;, Y, = exp0,)

i, k=12,..m Zk exp (o)
CE = 3.;d;log Xiexp(oy) — 2id;o; =log Zrexp(oy) — 2. d; 0,
The derivative:

decg _ exp(0i> 4 =
@0, ZkeXP<0k) |

has the same effect as in case of the squared error

P(y=ilx)-d,

l

allows easy gradient computation

provides a useful link to information theory

Basics of information theory

assume a random discrete event that can take values j
Entropy: H(p) =-2;p.logp, reaches max. for uniform distribution

In order to encode data drawn randomly from the distribution p, we
need at least H(p) “nats” to encode it (analogy to a “bit™).

—log g, guantifies surprisal observing an event j having assigned it a
(subjective) probability q

Cross entropy H(p, g) is the expected surprisal of an observer with
subjective probabilities ¢ upon seeing data that was actually
generated according to probabilities p.

Kullback-Leibler divergence measures the distance b/w two
distributions: Dx.(p,q) = H(p,q) — H(p) = — 2; p,log (p./ q)

hence, minimizing Dx.(p,q) corresponds to minimizing H(p,q)

(Zhang et al, 2020)

15

Model learning: Sequential or batch mode

Sequential mode

e on line (example-by-example), stochastic

* able to track small changes in training data

e easier to implement, requires less local storage

* difficult to establish theoretical conditions for convergence

Batch mode
e adaptation performed at the end of each epoch, deterministic
e provides an accurate estimate of gradient vector

 parallelization possible

E_=1/2N) Z¥ _ (d? - y»y Aw oc -OE_(low,

Mini-batches — best of two “worlds” (typical minibatch size 50-256)

Online versus batch learning in param. space

Batch learning - does Online learning - zig-zags
steepest descent on the around the direction of steepest
error surface descent

constraint from
4~ training pattern 1

W w, AN
constraint from
training pattern 2

Example: training a single-layer perceptron

« MNIST data set, 10 classes of hand-written digits, images 28x28

e Accuracy 90+ %, check also http://yann.lecun.com/exdb/mnist/

Input examples

Ex kY EA B4 P2
EEEE

9
3191715

Weights after training

0 2 3 i |
— *.. ‘:. ‘.
) | &\ &
5 " 6 7 8 9
a = | o || SN 72N
Q||| 2| e

https://www.oreilly.com/content/not-another-mnist-tutorial-with-tensorflow/

Summary

* Linear models — studied in 1970s but concepts still useful
* Single-layer models are linear in parameters
* Hence, analytic solutions possible (via pseudoinverse)

e Tasks: (self-supervised) autoassociation, (supervised)
regression, classification

* General Inverse model (projection to linear manifold)
* Data classification — soft assignment (softmax)

* Cross-entropy error used for classification

* Link to information theory (via entropy)

* Batch vs online learning

	Single-layer models
	Linear model
	Pseudoinverse
	Auto-associator
	Linear spaces
	AA function
	Gram-Schmidt orthogonalization
	General Inverse model
	Example data
	Recall
	Single-layer perceptrons
	Softmax regression
	Log-likelihood estimation
	Cross-entropy loss
	Link to information theory
	Sequential vs batch training
	Online vs batch
	Perceptron example
	Summary

