Faculty of Mathematics, Physics and Informatics Comenius University Bratislava

Neural Networks

Lecture 3

Supervised single-layer models

Linear NN models

Input vector:
Output vector:
Weight matrix:
$\boldsymbol{x}=\left[x_{1}, x_{2, \ldots}, x_{n}\right]^{T}$
$\boldsymbol{y}=\left[y_{1,} y_{2, .}, ., y_{m}\right]^{T}$
$\mathbf{W} \sim$ type $[m \times n]$

Linear transformation $\varphi: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}, \boldsymbol{y}=\mathbf{W} \boldsymbol{x}$
© ignores saturation property of neurons
© allows to find analytic solutions using linear algebra.
(Kohonen, 1970;
Anderson, 1972;
Cooper, 1973)

- Adding layers in a linear NN does not appear reasonable (since no complexity is added).
- But: It allows nonlinear learning dynamics in linear deep nets (Saxe, 2015).

Closed-form solution

Let's consider the data set: $\mathrm{A}_{\text {train }}=\left\{\left(\boldsymbol{x}^{(p)}, \boldsymbol{y}^{(p)}\right), p=1,2, \ldots, N\right\}$.
We look for a matrix \boldsymbol{W} that satisfies $\boldsymbol{y}^{(p)}=\boldsymbol{W} \boldsymbol{x}^{(p)}$, for each p.
In matrix notation: $\quad \boldsymbol{Y}=\boldsymbol{W} \boldsymbol{X}$

$$
\underset{(m \times N)}{\left[\boldsymbol{y}^{(1)} \boldsymbol{y}^{(2)} \ldots \boldsymbol{y}^{(N)}\right]}=\underset{(m \times n)}{\boldsymbol{W}} \times \underset{(n \times N)}{\times} \underset{\left(\boldsymbol{x}^{(1)}\right)}{\left.\boldsymbol{x}^{(2)} \ldots \boldsymbol{x}^{(N)}\right]}
$$

If \boldsymbol{X} was regular (i.e., square matrix with $N=n$, with linearly independent rows) then \boldsymbol{X}^{-1} would exist and $\boldsymbol{W}=\boldsymbol{Y} \boldsymbol{X}^{-1}$.
However, in general we cannot assume $N=n$, nor linear independence of input vectors ($\Rightarrow \boldsymbol{X}^{-1}$ does not exist). Only generalized solutions exists:

$$
W=Y X^{+}
$$

\boldsymbol{X}^{+}is called (Moore-Penrose) pseudoinverse matrix of \boldsymbol{X}. Theorem: $\forall \boldsymbol{X}, \exists \boldsymbol{X}^{+}$ with properties: 1) $\left.\left.\boldsymbol{X} \boldsymbol{X}^{+} \boldsymbol{X}=\boldsymbol{X}, 2\right) \boldsymbol{X}^{+} \boldsymbol{X} \boldsymbol{X}^{+}=\boldsymbol{X}^{+}, 3\right)$ symmetric $\boldsymbol{X} \boldsymbol{X}^{+}$and $\boldsymbol{X}^{+} \boldsymbol{X}$.
a) $\boldsymbol{X}^{+}=\boldsymbol{X}^{\mathrm{T}}\left(\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}}\right)^{-1}$, if $n<N$ and $\operatorname{rank}(\boldsymbol{X})=n$.
b) $\boldsymbol{X}^{+}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}}$, if $n>N$ and $\operatorname{rank}(\boldsymbol{X})=N$.

Auto-association in a linear network

Let us now look at autoassociation: $\boldsymbol{y}^{(p)} \equiv \boldsymbol{x}^{(p)}, \operatorname{dim}(\boldsymbol{y})=\operatorname{dim}(\boldsymbol{x})=n$
This can be useful for a memory, if $n>N$ (i.e. few examples of large dimension).

Consider the task: to remember N prototypes $\left[\boldsymbol{x}^{(1)} \boldsymbol{x}^{(2)} \ldots \boldsymbol{x}^{(N)}\right]$.
Goal: train a linear model on prototypes and then submit a corrupted version of a prototype. Model should be able to reconstruct it.

Since $\boldsymbol{Y} \equiv \boldsymbol{X}$, then $\boldsymbol{W}=\boldsymbol{X} \boldsymbol{X}^{+}$. How to interpret \boldsymbol{W} ?
In a special, restrictive case ($N=n$, linearly independent inputs), we would have a trivial solution $\boldsymbol{W}=\boldsymbol{I}$ (identity).

How about a general (non-trivial) case?

Basics of linear vector spaces

Let's have a linear space \mathfrak{R}^{n}.
Linear manifold $\mathscr{L}=\left\{\boldsymbol{x} \in \mathfrak{R}^{n} \mid \boldsymbol{x}=a_{1} \boldsymbol{x}^{(1)}+a_{2} \boldsymbol{x}^{(2)}+\ldots+a_{N} \boldsymbol{x}^{(N)}, a_{p} \neq 0\right\}$ $\mathscr{L} \subset \mathfrak{R}^{n}$

Orthogonal complement $\mathscr{L}^{\perp}=\left\{x \in \mathfrak{R}^{n} \mid x \perp \mathscr{L}\right\}$
Hence, $\mathscr{L} \oplus \mathscr{L}^{\perp}=\mathfrak{R}^{n}$
Each vector $\boldsymbol{x} \in \mathfrak{R}^{n}$ can be uniquely decomposed:

$$
\boldsymbol{x}=\boldsymbol{x}_{\mathrm{P}}+\boldsymbol{x}_{\mathrm{C}}
$$

where $\boldsymbol{x}_{\mathrm{p}} \in \mathscr{L}$ and $\boldsymbol{x}_{\mathrm{C}} \in \mathscr{L}^{\perp}$.

What does an autoassociative NN do?

Training set $\mathrm{A}_{\text {train }}=\left\{\boldsymbol{x}^{(p)}, p=1,2, \ldots, N\right\}$ forms the linear manifold \mathscr{L}.
NN considers every departure \boldsymbol{x} from \mathscr{L} as added noise that needs to be filtered out by projecting \boldsymbol{x} to \mathscr{L} :

We need to show that output $\mathbf{W} \boldsymbol{x}=\boldsymbol{X} \boldsymbol{X}^{+} \boldsymbol{x}=\boldsymbol{x}_{\mathrm{p}}$ (filtered version of \boldsymbol{x}), i.e. that operator $\boldsymbol{W}=\boldsymbol{X} \boldsymbol{X}^{+}$makes an orthogonal projection to \mathscr{L}.

Alternatively, the NN model with operator $\boldsymbol{W}=\boldsymbol{I}-\boldsymbol{X} \boldsymbol{X}^{+}$is called novelty detector, where $\boldsymbol{W} \boldsymbol{x}=\boldsymbol{x}_{\mathrm{C}} \in \mathscr{L}^{\perp}$.

Now assume: you learned N patterns, and you want to add $(N+1)$-st pattern. How to change W efficiently?

Gram-Schmidt orthogonalization process

Let's have a base $\boldsymbol{u}^{(1)}, \boldsymbol{u}^{(2)}, \ldots, \boldsymbol{u}^{(k)} \in \mathscr{L}$, for which we want to create an orthogonal base $\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)}, \ldots, \boldsymbol{v}^{(k)} \in \mathscr{L}$.
Procedure:
Let $\boldsymbol{v}^{(1)} \equiv \boldsymbol{u}^{(1)}$. In space with base formed by $\boldsymbol{v}^{(1)}, \boldsymbol{u}^{(2)}$ let's find vector $\boldsymbol{v}^{(2)}$ such that $\boldsymbol{v}^{(2)} \perp \boldsymbol{v}^{(1)}$. Hence, $\boldsymbol{v}^{(2)}=a_{1} \boldsymbol{v}^{(1)}+a_{2} \boldsymbol{u}^{(2)}$.

$$
v^{(2)}=u^{(2)}-\frac{v^{(1) T} u^{(2)}}{\left|v^{(1)}\right|^{2}} v^{(1)}
$$

Recursive formula: we have $\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)}, \ldots, \boldsymbol{v}^{(k-1)}$ and compute $\boldsymbol{v}^{(k)}$ such that

$$
\begin{aligned}
& \boldsymbol{v}^{(k)} \perp \boldsymbol{v}^{(i)}, i=1,2, \ldots, k-1 \\
& \quad \boldsymbol{v}^{(k)}=\boldsymbol{u}^{(k)}-\sum_{i=1}^{k-1} \frac{\boldsymbol{v}^{(i) T} \boldsymbol{u}^{(k)}}{\left|\boldsymbol{v}^{(i)}\right|^{2}} \boldsymbol{v}^{(i)}
\end{aligned}
$$

How to use this recursion for a GI model?

General Inverse model

If we have patterns $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(N)}$, we can use Gram-Schmidt process to calculate orthogonal base $\boldsymbol{z}^{(1)}, \boldsymbol{z}^{(2)}, \ldots, \boldsymbol{z}^{(N)}$

Memory model W is computed recursively:

1. Initialize $\boldsymbol{W}^{(0)}=\mathbf{0}, i=1$
2. Repeat

$$
\begin{aligned}
& \boldsymbol{z}^{(i)}=\boldsymbol{x}^{(i)}-\boldsymbol{W}^{(i-1)} \boldsymbol{x}^{(i)} \\
& \boldsymbol{W}^{(i)}=\boldsymbol{W}^{(i-1)}+\frac{\boldsymbol{z}^{(i)} \boldsymbol{z}^{(i) T}}{\left|\boldsymbol{z}^{(i)}\right|^{2}} \\
& i=i+1 \\
& \quad \text { Hint: } \sum_{i=1}^{k-1} \frac{\boldsymbol{v}^{(i) T} \boldsymbol{u}^{(k)}}{\left|\boldsymbol{v}^{(i)}\right|^{2}} \boldsymbol{v}^{(i)}=\sum_{i=1}^{k-1} \frac{\boldsymbol{v}^{(i)} \boldsymbol{v}^{(i) T}}{\mid \boldsymbol{v}^{\left.(i)\right|^{2}} \boldsymbol{u}^{(k)}}
\end{aligned}
$$

Example: 8 faces from CMU image data repository

lace 1

tace 4

lere 7

$\tan \mathbf{x}$

tycu 5

bre 9

1-989

lece 6

Recall by GI and novelty detection

Restoration-Gl

Supervised single-layer perceptrons

- $i=1,2, \ldots, m$ neurons, that can work independently
- then each neuron independently splits input space into two subspaces

- For sigmoidal neurons we get learning rule: $\quad\left(\right.$ net $\left._{i} \equiv o_{i}\right)$

$$
w_{i j}(t+1)=w_{i j}(t)+\alpha \cdot\left(d_{i}-y_{i}\right) \cdot f^{\prime}\left(o_{i}\right) \cdot x
$$

- for linear neurons we get the least-means-square (LMS) learning rule

$$
w_{i j}(t+1)=w_{i j}(t)+\alpha \cdot\left(d_{i}-y_{i}\right) \cdot x_{j}
$$

- closed-form solution may exist via pseudoinverse: for a linear model

$$
\boldsymbol{W}=\boldsymbol{D} \cdot \boldsymbol{X}^{+}, \text {or } \boldsymbol{W}=f^{-1}(\boldsymbol{D}) \cdot \boldsymbol{X}^{+} \text {, if a nonlinearity is used }\left[f^{-1}\left(d_{i}\right)=o_{i}\right]
$$

Softmax regression

- In classification tasks, where \#output_neurons = \#classes, it is convenient to interpret outputs as (conditional) probabilities
- hard assignment vs soft assignment (of classes)
- Softmax activ. function (Luce, 1959) enables that (by normalization): all nonnegative values sum up to one

$$
y_{i}=\frac{\exp \left(o_{i}\right)}{\sum_{k} \exp \left(o_{k}\right)} \quad \operatorname{argmax}_{i} y_{i}=\operatorname{argmax}_{i} o_{i} \quad o_{i}=\sum_{j} w_{i j} x_{j}+b_{i}
$$

- Important: the model remains differentiable
- Despite nonlinearity, the outputs of softmax regression are still determined by an affine transformation of input features (\rightarrow logits)
- Hence, softmax regression is a linear model.

Log-likelihood estimation

- Assume a training set $\{\boldsymbol{X}, \boldsymbol{D}\}$, consisting of N pairs of input vectors $\boldsymbol{x}^{(p)}$ and one-hot label vectors $\boldsymbol{d}^{(p)}$. Let NN model predictions be $\boldsymbol{y}^{(p)}$.
- We compare the predictions with ground truth by checking how probable the actual classes are according to our model, given the features:

$$
P(\boldsymbol{D} \mid \boldsymbol{X})=\prod_{p=1}^{N} P\left(\boldsymbol{d}^{(p)} \mid \boldsymbol{x}^{(p)}\right)
$$

- According to maximum likelihood estimation, we maximize $P(\boldsymbol{D} \mid \boldsymbol{X})$, which is equivalent to minimizing the negative log-likelihood, i.e. $-\log P(\boldsymbol{D} \mid \boldsymbol{X})$

$$
-\log P(\boldsymbol{D} \mid \boldsymbol{X})=-\sum_{p=1}^{N} \log P\left(\boldsymbol{d}^{(p)} \mid \boldsymbol{x}^{(p)}\right)=\sum_{p=1}^{N} \operatorname{loss}\left(\boldsymbol{d}^{(p)}, \boldsymbol{y}^{(p)}\right)
$$

- For each pattern p (with m classes assumed)

$$
\operatorname{loss}_{C E}^{(p)}=C E^{(p)}=-\sum_{i=1}^{m} d_{i}^{(p)} \log y_{i}^{(p)}
$$

Cross-entropy loss calculation

- $C E=-\log P(\boldsymbol{d} \mid \boldsymbol{x})=-\sum_{i} d_{i} \log y_{i}$,
- $i, k=1,2, \ldots, m$

$$
y_{i}=\frac{\exp \left(o_{i}\right)}{\sum_{k} \exp \left(o_{k}\right)}
$$

$$
C E=\sum_{i} d_{i} \log \Sigma_{k} \exp \left(o_{k}\right)-\sum_{i} d_{i} o_{i}=\log \sum_{k} \exp \left(o_{k}\right)-\sum_{i} d_{i} o_{i}
$$

- The derivative:

$$
\frac{d e_{C E}}{d o_{i}}=\frac{\exp \left(o_{i}\right)}{\sum_{k} \exp \left(o_{k}\right)}-d_{i}=P(y=i \mid x)-d_{i}
$$

- has the same effect as in case of the squared error
- allows easy gradient computation
- provides a useful link to information theory

Basics of information theory

- assume a random discrete event that can take values j
- Entropy: $H(p)=-\Sigma_{j} p_{j} \log p_{j}$, reaches max. for uniform distribution
- In order to encode data drawn randomly from the distribution p, we need at least $H(p)$ "nats" to encode it (analogy to a "bit").
- $-\log q_{j}$ quantifies surprisal observing an event j having assigned it a (subjective) probability q_{j}
- Cross entropy $H(p, q)$ is the expected surprisal of an observer with subjective probabilities q upon seeing data that was actually generated according to probabilities p.
- Kullback-Leibler divergence measures the distance b/w two distributions: $D_{K L}(p, q)=H(p, q)-H(p)=-\sum_{j} p_{j} \log \left(p_{j} / q_{j}\right)$
- hence, minimizing $D_{K L}(p, q)$ corresponds to minimizing $H(p, q)$

Model learning: Sequential or batch mode

Sequential mode

- on line (example-by-example), stochastic
- able to track small changes in training data
- easier to implement, requires less local storage
- difficult to establish theoretical conditions for convergence

Batch mode

- adaptation performed at the end of each epoch, deterministic
- provides an accurate estimate of gradient vector
- parallelization possible

$$
E_{a v}=1 /(2 N) \sum_{p=0}^{N}\left(d^{(p)}-y^{(p)}\right)^{2} \quad \Delta w_{i} \propto-\partial E_{a v}(t) / \partial w_{i}
$$

Mini-batches - best of two "worlds" (typical minibatch size 50-256)

Online versus batch learning in param. space

Batch learning - does steepest descent on the error surface

Online learning - zig-zags around the direction of steepest descent

Example: training a single-layer perceptron

- MNIST data set, 10 classes of hand-written digits, images 28×28
- Accuracy 90+ \%, check also http://yann.lecun.com/exdb/mnist/

Input examples

Weights after training

Summary

- Linear models - studied in 1970s but concepts still useful
- Single-layer models are linear in parameters
- Hence, analytic solutions possible (via pseudoinverse)
- Tasks: (self-supervised) autoassociation, (supervised) regression, classification
- General Inverse model (projection to linear manifold)
- Data classification - soft assignment (softmax)
- Cross-entropy error used for classification
- Link to information theory (via entropy)
- Batch vs online learning

