
  

1

 

Lecture 3 

Supervised single-layer models 

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2024



  

2

Linear NN models

Input vector:

Output vector:

Weight matrix:

y=[ y1, y2,. .. , ym ]
T

x=[ x1, x2,.... , xn]
T

W ~ type [m´n]

Linear transformation  j   : ℜn ℜm ,  y = Wx

☹ ignores saturation property of neurons
☺  allows to find analytic solutions using linear algebra.

● Adding layers in a linear NN does not appear reasonable (since no 
complexity is added).

● But: It allows nonlinear learning dynamics in linear deep nets (Saxe, 2015).

(Kohonen, 1970; 
Anderson, 1972; 
Cooper, 1973)



  

3

Let's consider the data set: Atrain= {(x(p), y(p)), p = 1,2,...,N}. 
We look for a matrix W that satisfies y(p) = Wx(p), for each p.
In matrix notation:  Y = W X

 [y(1)  y(2) ... y(N)] =   W   ´   [x(1)  x(2) ... x(N)]
(mN)               (mn)           (nN)

If X was regular (i.e., square matrix with N = n, with linearly independent rows)  
then X-1  would exist and W = YX-1.

However, in general we cannot assume N = n, nor linear independence of input 
vectors ( X-1 does not exist). Only generalized solutions exists:

W = YX+

X+ is called (Moore-Penrose) pseudoinverse matrix of X.  Theorem:  X,  X+

with properties: 1) XX+X = X, 2) X+XX+ = X+, 3) symmetric XX+ and X+X.
a) X+ = XT (XXT)-1 ,  if n < N   and  rank(X) = n.
b) X+ = (XTX)-1XT  ,  if n > N   and  rank(X) = N. 

Closed-form solution



  

4

Auto-association in a linear network

Let us now look at autoassociation: y(p) ≡x(p), dim(y) = dim(x) = n

This can be useful for a memory, if n > N (i.e. few examples of large 
dimension). 

Consider the task: to remember N prototypes [x(1)  x(2) ... x(N)].

Goal: train a linear model on prototypes and then submit a corrupted 
version of a prototype. Model should be able to reconstruct it.

 Since Y ≡ X, then W = XX+.  How to interpret W?

In a special, restrictive case (N = n, linearly independent inputs), we 
would have a trivial solution W = I (identity).

How about a general (non-trivial) case?  



  

5

Basics of linear vector spaces

Let's have a linear space ℜn.

Linear manifold  ℒ = {x ∈ ℜn | x = a1 x(1) + a2
 x(2) + ... + aN x(N) , ap≠ 0}

   ℒ ⊂ ℜn

Orthogonal complement  ℒ = {x ∈ ℜn | x ℒ}

Hence, ℒ⊕ℒ =  ℜn 

Each vector x ∈ ℜn can be 
uniquely decomposed: 

x = xP + xC

where xP ∈ ℒ and  xC ∈ ℒ.

x(1)

x(2)

x

xP

xC



  

6

What does an autoassociative NN do?

Training set Atrain= {x(p), p = 1,2,...,N} forms the linear manifold ℒ.

NN considers every departure x from ℒ as added noise that needs to be 
filtered out by projecting x to ℒ:

We need to show that output Wx = XX+x = xP  (filtered version of x), i.e. that 

operator W = XX+ makes an orthogonal projection to ℒ.

Alternatively, the NN model with operator W = I – XX+ is called novelty 
detector, where Wx = xC ∈ℒ.

x
xC

ℒ
xP

Now assume: you learned N patterns, and 
you want to add (N+1)-st pattern. 
How to change W efficiently?

x(1)

x(2)



  

7

Gram-Schmidt orthogonalization process

Let's have a base u(1), u(2), ..., u(k) ∈ ℒ, for which we want to create an 
orthogonal base v(1), v(2) , ..., v(k)  ∈ ℒ.

Procedure:
Let v(1) ≡ u(1). In space with base formed by v(1),  u(2)  let's find vector v(2) 

such that v(2)  v(1). Hence, v(2) = a1v
(1) + a2 u

(2).

Recursive formula: we have v(1), v(2) , ..., v(k-1) and compute v(k) such that 
    v(k)  v(i), i = 1,2, ... , k-1

v(2) = u(2)−
v(1)T u( 2)

|v(1)|2
v(1)

v(k) = u( k)−∑i=1

k−1 v( i)T u(k )

|v( i)|2
v( i)

v(1) = u(1)

u(2)v(2)v(3)

u(3)

How to use this recursion for a GI model?



  

8

General Inverse model

If we have patterns x(1), x(2), ..., x(N), we can use Gram-Schmidt 
process to calculate orthogonal base z(1), z(2), ..., z(N) 

Memory model W is computed recursively:

1.    Initialize W(0) = 0, i = 1

2.    Repeat

W (i)=W (i−1)+
z(i) z(i)T

|z(i)|2

z(i)=x(i)−W (i−1) x(i)

i = i+1

Hint:∑i=1

k−1 v( i)T u( k)

|v( i)|2
v( i) = ∑i=1

k−1 v( i) v( i)T

|v( i)|2
u(k)



  

9

Example: 8 faces from CMU image data repository



  

10

Recall by GI and novelty detection



  

11

Supervised single-layer perceptrons

● i = 1,2,..., m neurons, that can work independently
● then each neuron independently splits input space into two subspaces

wij(t+1) = wij(t) + .(di – yi). f'(oi).x
● For sigmoidal neurons we get learning rule:    (neti  ≡ oi)

● for linear neurons we get the least-means-square (LMS) learning rule 
 wij(t+1) = wij(t) + .(di – yi). xj

● closed-form solution may exist via pseudoinverse: for a linear model     
 W=  D.X+ , or W=  f -1(D).X+, if a nonlinearity is used [ f -1(di) = oi]

i



  

12

Softmax regression

● In classification tasks, where #output_neurons = #classes, it is 
convenient to interpret outputs as (conditional) probabilities

● hard assignment vs soft assignment (of classes)
● Softmax activ. function (Luce, 1959) enables that (by normalization): all 

nonnegative values sum up to one

● Important: the model remains differentiable
● Despite nonlinearity, the outputs of softmax regression are still 

determined by an affine transformation of input features (→logits)  
● Hence, softmax regression is a linear model.

yi=
exp(oi)

∑k
exp(ok )

argmaxi yi = argmaxi oi
oi=∑ j

wij x j +bi

logit

(Zhang et al, 2020)



  

13

Log-likelihood estimation

● Assume a training set {X,D}, consisting of N pairs of input vectors x(p) 

and one-hot label vectors d(p). Let NN model predictions be y(p).
● We compare the predictions with ground truth by checking how probable 

the actual classes are according to our model, given the features:

● According to maximum likelihood estimation, we maximize P(D|X), which 
is equivalent to minimizing the negative log-likelihood, i.e. – log P(D|X)

● For each pattern p (with m classes assumed)

P(D∣X )=∏
p=1

N

P(d( p)∣x( p ))

−log P(D∣X)=−∑
p=1

N

log P(d (p )∣x( p))=∑
p=1

N

loss(d ( p) , y( p))

lossCE
( p)=CE(p )=−∑

i=1

m

d i
( p) log y i

( p )



  

14

Cross-entropy loss calculation

● CE = – log P(d|x) = – i di log yi,  

● i, k =1,2,…,m 

CE  = i di log k exp(ok) – i di oi = log k exp(ok) – i di oi

● The derivative:

● has the same effect as in case of the squared error

● allows easy gradient computation

● provides a useful link to information theory

d eCE

d oi
=

exp(oi)

∑k
exp(ok)

−d i = P (y=i∣x)−d i

yi =
exp(oi)

∑k
exp(ok )



  

15

Basics of information theory

● assume a random discrete event that can take values j
● Entropy:  H(p) = – j  pj log pj, reaches max. for uniform distribution
● In order to encode data drawn randomly from the distribution p, we 

need at least H(p) “nats” to encode it (analogy to a “bit”).
● – log qj quantifies surprisal observing an event j having assigned it a 

(subjective) probability qj

● Cross entropy H(p, q) is the expected surprisal of an observer with 
subjective probabilities q upon seeing data that was actually 
generated according to probabilities p.

● Kullback-Leibler divergence measures the distance b/w two 
distributions: DKL(p,q) = H(p,q) – H(p) = – j  pj log (pj / qj)

● hence, minimizing DKL(p,q) corresponds to minimizing H(p,q)

(Zhang et al, 2020)



  

16

Model learning: Sequential or batch mode

Sequential mode
● on line (example-by-example), stochastic
● able to track small changes in training data
● easier to implement, requires less local storage
● difficult to establish theoretical conditions for convergence

Batch mode
● adaptation performed at the end of each epoch, deterministic
● provides an accurate estimate of gradient vector
● parallelization possible

  Mini-batches – best of two “worlds” (typical minibatch size 50–256) 

Eav = 1/(2N) N
p=0 (d(p) - y(p))2 wi ∝ -∂Eav(t)/∂wi 



  

17

Batch learning - does 
steepest descent on the 
error surface

Online learning - zig-zags 
around the direction of steepest 
descent

w1

w2

Online versus batch learning in param. space

constraint from 
training pattern 1

constraint from 
training pattern 2

w1

w2



  

18

Example: training a single-layer perceptron

● MNIST data set, 10 classes of hand-written digits, images 28x28
● Accuracy 90+ %, check also http://yann.lecun.com/exdb/mnist/

https://www.oreilly.com/content/not-another-mnist-tutorial-with-tensorflow/

Input examples Weights after training



  

19

Summary

● Linear models – studied in 1970s but concepts still useful
● Single-layer models are linear in parameters
● Hence, analytic solutions possible (via pseudoinverse)
● Tasks: (self-supervised) autoassociation, (supervised) 

regression, classification
● General Inverse model (projection to linear manifold)
● Data classification – soft assignment (softmax)
● Cross-entropy error used for classification
● Link to information theory (via entropy)
● Batch vs online learning


	Single-layer models
	Linear model
	Pseudoinverse
	Auto-associator
	Linear spaces
	AA function
	Gram-Schmidt orthogonalization
	General Inverse model
	Example data
	Recall
	Single-layer perceptrons
	Softmax regression
	Log-likelihood estimation
	Cross-entropy loss
	Link to information theory
	Sequential vs batch training
	Online vs batch
	Perceptron example
	Summary

