Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Neural Networks

Lecture 3

Single-layer models

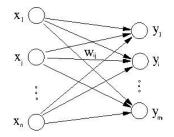
Igor Farkaš 2021

Linear NN models

Input vector: $\mathbf{x} = [x_{1,} x_{2,\dots}, x_{n}]^{T}$

Output vector: $\mathbf{y} = [y_1, y_2, ..., y_m]^T$

Weight matrix: $\mathbf{W} \sim \text{type } [m \times n]$



Linear transformation $\varphi : \Re^n \to \Re^m$, $y = \mathbf{W} \mathbf{x}$

gignores saturation property of neurons

allows to find analytic solutions using linear algebra.

(Kohonen, 1970; Anderson, 1972; Cooper, 1973)

- Adding layers in a linear NN does not appear reasonable (since no complexity is added).
- But: It allows nonlinear learning dynamics in linear deep nets (Saxe, 2015).

Analytic solution

Let's consider the train set: $A_{\text{train}} = \{(x^{(p)}, y^{(p)}), p = 1, 2, ..., N\}.$

We look for a matrix **W** that satisfies $y^{(p)} = \mathbf{W} x^{(p)}$, for each p.

In matrix notation: Y = W X

$$[\mathbf{y}^{(1)} \ \mathbf{y}^{(2)} \dots \mathbf{y}^{(N)}] = \mathbf{W} \times [\mathbf{x}^{(1)} \ \mathbf{x}^{(2)} \dots \mathbf{x}^{(N)}]$$

$$(m \times N) \qquad (m \times n) \qquad (n \times N)$$

If **X** was regular (i.e., square matrix with N = n, linearly independent rows) then \mathbf{X}^{-1} would exist and $\mathbf{W} = \mathbf{Y}\mathbf{X}^{-1}$.

However, in general we cannot assume N = n, nor linear independence of input vectors ($\Rightarrow \mathbf{X}^{-1}$ does not exist). Only generalized solutions exists:

$$W = YX^+$$

 X^+ is called (Moore-Penrose) pseudoinverse matrix of X. Theorem: $\forall X, \exists X^+$ with properties: 1) $XX^+X = X$, 2) $X^+XX^+ = X^+$, 3) symmetric XX^+ and X^+X .

a)
$$X^+ = X^T (XX^T)^{-1}$$
, if $n \le N$ and $rank(X) = n$.

b)
$$X^+ = (X^TX)^{-1}X^T$$
, if $n > N$ and $rank(X) = N$.

Auto-association in a linear network

Let us now look at autoassociation: $y^{(p)} \equiv x^{(p)}$, $\dim(y) = \dim(x) = n$

This can be useful for a memory, if n > N (i.e. few examples of large dimension). We want to remember N prototypes $[x^{(1)} x^{(2)} ... x^{(N)}]$.

Goal: train a linear model on prototypes and then submit a corrupted version of a prototype. Model should be able to reconstruct it.

Since $Y \equiv X$, then $W = XX^+$. How to interpret W?

In a special, restrictive case (N = n, linearly independent inputs), we would have a trivial solution W = I (identity).

How about a general case?

2

Basics of linear vector spaces

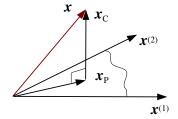
Let's have a linear space \Re^n .

Orthogonal complement $\mathcal{L}^{\perp} = \{x \in \Re^n \mid x \perp \mathcal{L}\}$

Hence, $\mathscr{L} \oplus \mathscr{L}^{\perp} = \Re^n$

Each vector $x \in \Re^n$ can be uniquely decomposed: $x = x_P + x_C$

where $x_{p} \in \mathscr{L}$ and $x_{c} \in \mathscr{L}^{\perp}$.



What does an autoassociative NN do?

Training set $A_{\text{train}} = \{x^{(p)}, p = 1, 2, ..., N\}$ forms the linear manifold \mathcal{L} .

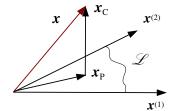
NN considers every departure x from \mathscr{L} as added noise that needs to be filtered out by projecting x to \mathscr{L} :

We need to show that output $\mathbf{W}x = \mathbf{X}\mathbf{X}^{+}x = x_{\mathrm{p}}$ (filtered version of x), i.e. that operator $\mathbf{W} = \mathbf{X}\mathbf{X}^{+}$ makes an orthogonal projection to \mathscr{L} .

Alternatively, the NN model with operator $\mathbf{W} = \mathbf{I} - \mathbf{X}\mathbf{X}^+$ is called novelty detector, where $\mathbf{W}x = x_{\mathbf{C}} \in \mathcal{L}^\perp$.

Now assume: you learned N patterns, and want to add (N+1)-st pattern.

How to change **W** efficiently?



6

Gram-Schmidt orthogonalization process

Let's have a base $u^{(1)}, u^{(2)}, ..., u^{(k)} \in \mathcal{L}$, for which we want to create an orthogonal base $v^{(1)}, v^{(2)}, ..., v^{(k)} \in \mathcal{L}$.

Procedure:

Let $v^{(1)} \equiv u^{(1)}$. In space with base formed by $v^{(1)}$, $u^{(2)}$ let's find vector $v^{(2)}$ such that $v^{(2)} \perp v^{(1)}$. Hence, $v^{(2)} = a_1 v^{(1)} + a_2 u^{(2)}$.

$$v^{(2)} = u^{(2)} - \frac{v^{(1)T}u^{(2)}}{|v^{(1)}|^2}v^{(1)}$$

Recursive formula: we have $v^{(1)}, v^{(2)}, ..., v^{(k-1)}$ and compute $v^{(k)}$ such that $v^{(k)} \perp v^{(i)}, i = 1, 2, ..., k-1$

$$v^{(k)} = u^{(k)} - \sum_{i=1}^{k-1} \frac{v^{(i)T}u^{(k)}}{|v^{(i)}|^2} v^{(i)}$$

 $u^{(3)}$ $v^{(2)}$ $v^{(1)} = u^{(1)}$

How to use this recursion for a GI model?

General Inverse model

We have patterns $x^{(1)}, x^{(2)}, ..., x^{(N)}$ and the associated orthogonal base (via Gram-Schmidt process) $z^{(1)}, z^{(2)}, ..., z^{(N)}$

 \mathbf{W} is computed recursively, upon adding a new input x.

1. Initialize $W^{(0)} = 0$, i = 1

$$z^{(i)} = x^{(i)} - W^{(i-1)} x^{(i)}$$

$$\boldsymbol{W}^{(i)} = \boldsymbol{W}^{(i-1)} + \frac{z^{(i)}z^{(i)T}}{|z^{(i)}|^2}$$

i = i+1

2.

Example: 8 faces from CMU image data repository

ace 1

tace 4

tace 7

tace :

tace 5

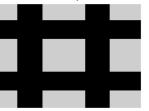
tace 8

tace 3

tace t

tace 1 - corrupt

Recall by GI and novelty detection



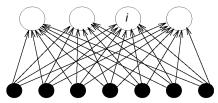
Novelty detection

Restoration - GI

1

Supervised Single-layer perceptrons

- i = 1,2,..., m neurons can work independently
- then each neuron independently splits input space into two half-spaces



- For sigmoidal neurons we get learning rule: $(net_i \equiv o_i)$ $w_{ij}(t+1) = w_{ij}(t) + \alpha (d_i - y_i) f'(o_i) x_j$
- for linear neurons we get the least-means-square (LMS) learning rule $w_{ii}(t+1) = w_{ii}(t) + \alpha \ (d_i y_i) \ x_i$
- analytic solution also possible via pseudoinverse: for a linear model $\mathbf{W} = \mathbf{X}^+ \mathbf{D}$, or $\mathbf{W} = \mathbf{X}^+ f^{-1}(\mathbf{D})$, if a nonlinearity is used $[f^{-1}(d_i) = o_i]$

Softmax regression

- In classification tasks, where #output_neurons = #classes, it is convenient to interpret outputs as (conditional) probabilities
- hard assignment vs soft assignment (of classes)
- Softmax activ. function (Luce, 1959) enables that (by normalization): all nonnegative values sum up to one

$$y_i = \frac{\exp(o_i)}{\sum_{i} \exp(o_i)} \qquad \operatorname{argmax}_i y_i = \operatorname{argmax}_i o_i$$

- Important: the model remains differentiable
- Despite nonlinearity of softmax function, the outputs of softmax regression are still determined by an affine transformation of input features; thus, softmax regression is a linear model.

Log-likelihood estimation

- Assume a training set $\{X,D\}$, consisting of N pairs of input vectors $x^{(p)}$ and one-hot label vectors $d^{(p)}$. Let NN model predictions be $y^{(p)}$.
- We compare the predictions with ground truth by checking how probable the actual classes are according to our model, given the features:

$$P(\boldsymbol{D}|\boldsymbol{X}) = \prod_{p=1}^{N} P(\boldsymbol{d}^{(p)}|\boldsymbol{x}^{(p)})$$

• According to maximum likelihood estimation, we maximize P(D|X), which is equivalent to minimizing the negative log-likelihood, i.e. $-\log P(D|X)$

$$-\log P(\mathbf{D}|\mathbf{X}) = -\sum_{p=1}^{N} P(\mathbf{d}^{(p)}|\mathbf{x}^{(p)}) = \sum_{p=1}^{N} loss(\mathbf{d}^{(p)}, \mathbf{y}^{(p)})$$

For each pattern p

$$loss_{CE}^{(p)} = CE^{(p)} = -\sum_{i=1}^{m} d_i^{(p)} \log y_i^{(p)}$$

Cross-entropy loss calculation

•
$$CE = -P(\mathbf{d}|\mathbf{x}) = -\sum_{i} d_{i} \log y_{i}$$

• i, k = 1, 2, ..., m $CE = \sum_{i} d_{i} \log \sum_{k} \exp(o_{k}) - \sum_{i} d_{i} o_{i} = \log \sum_{k} \exp(o_{k}) - \sum_{i} d_{i} o_{i}$

The derivative:

$$\frac{d e_{CE}}{d o_{i}} = \frac{\exp(o_{i})}{\sum_{k} \exp(o_{k})} - d_{i} = P(y = i | x) - d_{i}$$

- · has the same effect as in case of the squared error
- · allow easy gradient computation
- provides a useful link to information theory

1.4

 $y_i = \frac{\exp(o_i)}{\sum_{i} \exp(o_k)}$

Basics of information theory

- assume a random discrete event that can take values *j*
- Entropy: $H(p) = -\sum_{i} p_{i} \log p_{i}$, reaches max. for uniform distribution
- In order to encode data drawn randomly from the distribution p, we need at least H(p) "nats" to encode it (analogy to a "bit").
- $-\log p_j$ quantifies surprisal observing an event j having assigned it a (subjective) probability p_j
- Cross entropy H(p, q) is the expected surprisal of an observer with subjective probabilities q upon seeing data that was actually generated according to probabilities p.
- Kullback-Leibler divergence measures the distance b/w two distributions: $D(p,q) = H(p,q) H(p) = -\sum_i p_i \log (p_i / q_i)$
- Minimizing D(p,q) corresponds to minimizing H(p,q)

Sequential and batch mode of training

Sequential mode

- on line (example-by-example), stochastic
- able to track small changes in training data
- easier to implement, requires less local storage
- difficult to establish theoretical conditions for convergence

Batch mode

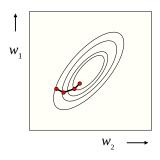
- · adaptation performed at the end of each epoch, deterministic
- · provides an accurate estimate of gradient vector
- parallelization possible

$$E_{av} = 1/(2N) \sum_{p=0}^{N} (d^{(p)} - y^{(p)})^2 \qquad \Delta w_i \propto -\partial E_{av}(t)/\partial w_i$$

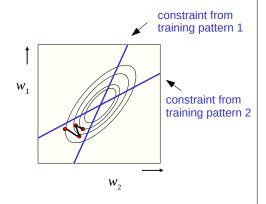
Mini-batches – best of two "worlds" (typical minibatch size 50–256)

Online versus batch learning

Batch learning - does steepest descent on the error surface



Online learning - zig-zags around the direction of steepest descent



Summary

- Linear models studied in 1970s but concepts still useful
- Single layer models are linear in parameters
- Hence, analytic solutions possible (via pseudoinverse)
- Tasks: (self-supervised) autoassociation, (supervised) regression, classification
- General Inverse model (projects to linear manifold)
- Data classification soft assignment (softmax)
- Cross-entropy error used for classification
- Link to information theory (via entropy)
- Batch vs online learning

.7

18