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Linear NN models
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® ignores saturation property of neurons
© allows to find analytic solutions using linear algebra.

* Adding layers in a linear NN does not appear reasonable (since no

complexity is added).
* But: It allows nonlinear learning dynamics in linear deep nets (saxe, 2015).

Analytic solution

Let's consider the train set: A . = {(x?”, y?), p=1,2,...,N}.
We look for a matrix W that satisfies y» = Wx, for each p.
In matrix notation: 'Y=WX
YO y?  y¥M = W X [xDx® . x™]
(mXN) (mXn) (nXN)
If X was regular (i.e., square matrix with N = n, linearly independent rows)
then X! would existand W = YX''.
However, in general we cannot assume N = n, nor linear independence of input
vectors (= X! does not exist). Only generalized solutions exists:
W=YX*

X*is called (Moore-Penrose) pseudoinverse matrix of X. Theorem: V X, 3 X*
with properties: 1) XX*X = X 2) X*XX* = X*, 3) symmetric XX*and X*X.

a) Xr=X"(XX")!, ifn <N and rank(X) = n.

b) X*=(X"™X)'X", ifn>N and rank(X) = N.

Auto-association in a linear network

Let us now look at autoassociation: y» =x®, dim(y) = dim(x) = n

This can be useful for a memory, if n > N (i.e. few examples of large
dimension). We want to remember N prototypes [x(® x@ ... x™].

Goal: train a linear model on prototypes and then submit a corrupted
version of a prototype. Model should be able to reconstruct it.

Since Y = X, then W = XX+. How to interpret W?

In a special, restrictive case (N =n, linearly independent inputs), we
would have a trivial solution W =1 (identity).

How about a general case?




Basics of linear vector spaces

Let's have a linear space R».

Linear manifold 2" = {x € Re|x = a,xV+ a, X2+ ... + ayx™, a,# 0}
< c R

Orthogonal complement £+ = {x € R»|xL £}

Hence, L' ®./1t= Rn

Each vector x € R" can be

uniquely decomposed:
X=X,+X.

x?

where x, € < and x_ € L.

What does an autoassociative NN do?

Training set A,,,;,= {x®, p = 1,2,...,N} forms the linear manifold Z".

NN considers every departure x from 7" as added noise that needs to be
filtered out by projecting x to £

We need to show that output Wx = XX+x=x, (filtered version of x), i.e. that
operator W = XX+ makes an orthogonal projection to .Z".

Alternatively, the NN model with operator W = I — XX+ is called novelty
detector, where Wx = x. €71,

Now assume: you learned N patterns, and
want to add (N+1)-st pattern.

How to change W efficiently?

Gram-Schmidt orthogonalization process

Let's have a base u®,u®, ..., ub € £, for which we want to create an
orthogonal base v,y , ..., vk € Z.

Procedure:

Let v =u®. In space with base formed by v, u® let's find vector v
such that v 1 v, Hence, v@ = a,vO + a,u®.

(Nt (2)
v'u
v(2):u(2) = (1)
]
Recursive formula: we have v, y®@ , ..., vband compute v® such that

v Ly, i=172, .., k-1

NE)

=y 0 Y y
i=1 |v(,-)2

How to use this recursion for a GI model?

General Inverse model

We have patterns x(,x®, ..., x™ and the associated orthogonal base
(via Gram-Schmidt process) z»,z®, ..., z™

W is computed recursively, upon adding a new input x.
1. Initialize WO =0, i=1
2.

z(z):x(z)_w(z—l)x(z)

g
W(l)zw(l*1)+

()2

|2

i=i+l




Example: 8 faces from CMU image data repository
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Supervised Single-layer perceptrons

* j=1,2,..., m neurons can work independently
* then each neuron independently splits input space into two half-spaces

« For sigmoidal neurons we get learning rule: (net; = 0;)
W (e ) = w 0+ & (d,-y) f0)
« for linear neurons we get the least-means-square (LMS) learning rule
WU(H‘l) = WU(t) +o (d—-y) X;
« analytic solution also possible via pseudoinverse: for a linear model
W=X*D, or W=X"f"'(D), if a nonlinearity is used [ f'(d) = o, ]

Softmax regression

In classification tasks, where #output_neurons = #classes, it is
convenient to interpret outputs as (conditional) probabilities

hard assignment vs soft assignment (of classes)

Softmax activ. function (Luce, 1959) enables that (by normalization):
all nonnegative values sum up to one

exp(0;)

Y= argmax, y = argmax, o,
2 exploy)

Important: the model remains differentiable

Despite nonlinearity of softmax function, the outputs of softmax
regression are still determined by an affine transformation of input
features; thus, softmax regression is a linear model.




Log-likelihood estimation

Assume a training set {X,D}, consisting of N pairs of input vectors x»
and one-hot label vectors d». Let NN model predictions be y®.

We compare the predictions with ground truth by checking how probable
the actual classes are according to our model, given the features:

P(D|X) HP

According to maximum likelihood estimation, we maximize P(D|X), which
is equivalent to minimizing the negative log-likelihood, i.e. — log P(D|X)

N
—log P(D|X)= z P(d")x")=Y loss(d"”
p=1
For each pattern p

loss?)=CE"'=— > d\"'1og y'*’
i=1

Cross-entropy loss calculation

exp(o))
CE = - P(d|x) = - %,d; log y;,

L, k=12,...m
CE = X.d;log X, exp(o,) — 2,d;0,=1log X, exp(o,) — 2,d,0,
The derivative:
de.,  expl(o)
do, B Zk exp(ok)

has the same effect as in case of the squared error

—d =P(y=ilx)—d,

allow easy gradient computation

provides a useful link to information theory

7Ty exploy)
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Basics of information theory

assume a random discrete event that can take values j
Entropy: H(p) = - X, p; log p;, reaches max. for uniform distribution

In order to encode data drawn randomly from the distribution p, we
need at least H(p) “nats” to encode it (analogy to a “bit”).

- log p; quantifies surprisal observing an event j having assigned it a
(subjective) probability p;

Cross entropy H(p, q) is the expected surprisal of an observer with
subjective probabilities ¢ upon seeing data that was actually
generated according to probabilities p.

Kullback-Leibler divergence measures the distance b/w two
distributions: D(p,q) = H(p,q) — H(p) = - X, p;log (p;/ q))

Minimizing D(p,q) corresponds to minimizing H(p,q)
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Sequential and batch mode of training

Sequential mode

* on line (example-by-example), stochastic

* able to track small changes in training data

* easier to implement, requires less local storage

« difficult to establish theoretical conditions for convergence
Batch mode

» adaptation performed at the end of each epoch, deterministic
* provides an accurate estimate of gradient vector

* parallelization possible

E, =1/2N)S\ _ (d” - y»y Aw, oc -3, (1)low,

Mini-batches — best of two “worlds” (typical minibatch size 50-256)
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Online versus batch learning

Batch learning - does
steepest descent on the
error surface

Online learning - zig-zags
around the direction of steepest

descent

constraint from
<~ training pattern 1

.

constraint from
training pattern 2
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Summary

* Linear models — studied in 1970s but concepts still useful
* Single layer models are linear in parameters
* Hence, analytic solutions possible (via pseudoinverse)

* Tasks: (self-supervised) autoassociation, (supervised)
regression, classification

* General Inverse model (projects to linear manifold)
* Data classification — soft assignment (softmax)

» Cross-entropy error used for classification

* Link to information theory (via entropy)

* Batch vs online learning
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