lgor Farkas

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Lecture 7

Sequential modeling

2024

Temporal processing with neural networks

Required for tasks with temporal structure — where the same
Input can be associated with different outputs
e.g. A—»x, B—B, B—x, By, ...

Types of tasks:

> Sequence recognition (classification)
> Sequence prediction
> Sequence generation

Incorporating time into a NN:
* tapped-delay input ~ time as spatial dimension
* using recurrent NN architecture
* associative memory
* temporal input-output mapping
* new: attention

Time as spatial dimension: NETtalk

NN learns to read English text

Input 7x29 units encoding 7 chars,

80 hidden and 26 output units
encoding phonemes.

€&— T h i

\z\ Output units

/ \ (phoneme code)

Hidden units

AN\

e training on 1024 words, intelligible speech after 10 epochs, 95% accuracy

after 50 epochs

* 78% generalization accuracy, quite intelligible speech

* NN first learned gross features (e.g. word boundaries) and then gradually
refined its discrimination (psycholinguistic plausibility).

e graceful degradation

* meaningful internal representations (e.g. vowel-consonant distinction)

* General question: How to estimate delay from training data?

(Sejnowski & Rosenberg, 1987)

Focused neuronal filter

Input

x(n)

Activation
z1 function
v;(n) Output
x(n - 2) + > #() y;(n)
!
x(n-p+1) t
771
x(n - p) > Synaptic . cor_respono!s toa
weights nonlinear finite

_ Impulse response
* focused because all memory comes from the input (FIR) filter (in digital

e can be trained as ordinary feedforward NN signal processing)

Focused time feedforward NN

Input
rgz) _ I . .
= \\/

x(n - p)

 usable for stationary input-output mapping tasks
 can be trained as ordinary feedforward NN
* time a as spatial dimension

Output
y(n)

Link to statistical n-gram models

 Zipf's law governs the word
distribution for not only unig
but also the other n-grams:

* high accuracy of NLP models

thank to large corpora

* time-lagged NNs ~ n-grams

rams

frequency

109 4

(Zhang et al, 2020)

Assume 1D time series X = x1, x2, ..., Xt-1, ...

Autoregressive predictive model: p(x: | x¢1, ..., x1)
Simplified under Markov assumption: p(x¢| x«1, ..., xen) for n >0
Useful in language models: estimate p(wi,w2, ..., wr)

Probability of the next word (in text): wt ~ p(we | we-1, ..., Wen)

——— unigram
—== bigram
—= trigram

Tasks for time-lagged NNs

* time series prediction (single-step, multi-step)
* noise cancellation

e adaptive control

* Speech recognition

e system identification

BUT... what if the required memory may be unlimited?
* time-lagged NNs have no feedback

* global feedback = facilitator of computational intelligence
(Haykin, 2009)

Example: Mealy automaton

Alo. AlB

(Tiflo, 1997)
Inputs: {A,B}, outputs: {o,B}

Training set: A—»x, A—x, B—B, B—B, B—x, A—B, A—=B, A—PB

no sufficient tapped-line can reliably be set, so as to learn
the behavior

State representation of temporal context is more appropriate
than “past window” — recurrent models

Simple recurrent network (SRN)

Context
output units O O O O units
Bank of
unit-time
hidden units delays
00000 o | |
ﬁ % Szﬂtse)(t — ;E:> Hidden Output :E::> Output
inpus QOO O000 O0O000 o e = I fyer 1 veetor
Hidden state activation:
Z Z Unit's activation function:
. . — u)—
Output activation: y,- 4 —f(zk V,-khk(t)) f(u) 1+exp(—u)

Latent variable model: p(x: | xt-1, ..., x1) = p(xt| ht-1)

Can be trained by various gradient algorithms (BP, BPTT, RTRL,...)
* SRN is a partially recurrent, state-space model

e time is implicitly represented
(Elman, 1990)

Example: Next letter prediction task

Task: letter-in-word prediction (sequence of symbols), 5-bit inputs

Data: 200 sentences, 4 to 9 words in a sentence

SRN: 5-20-5 units, trained by back-propagation (Rumelhart, Hinton & Williams, 1986)
- SRN discovers the notion of “word”

Many years ago boy and girl lived by the sea ... (Elman, 1990)

3.5

3

2.5 1

2

Error

1.5 4

1 4

(v)

0.5 1

(s)

Categories of lexical items used

Example: Next word prediction task

Averaged hidden-unit activation vectors

Category Examples
NOUN-HUM man, woman smell
NOUN-ANIM cat, mouse move
NOUN-INANIM book, rock] —see think
SRN: -|:exist intransitive (always)
NOUN-AGRESS dragon, monster 31 150 31
NOUN-FRAG glass, plate) ! — e
, | localist break VERBS
NOUN-FOOD cookie, sandwich enCOdin N smash transitive (sometimes)
VERB-INTRAN think, sleep g _
of words ike
VERB-TRAN see, chase L hase transitive (always)
VERB-AGPA move, break
—=at
VERB-PERCEPT smell, see
VERB-DESTROY break, smash mouse
VERB-EA eat —|__|:;:g animals
_[I]-‘IOI]STJBI’
Templates for sentence generator lion ANIMATES
L__dragon
woman
WORD 1 WORDS WORD 3 {:gm)
umans
NOUN-HUM VERB-EAT NOUN-FOOD :‘a“
boy
NOUN-HUM VERB-PERCEPT NOUN-INANIM NOUNS
NOUN-HUM VERB-DESTROY NOUN-FRAG — o
NOUN-HUM VERB-INTRAN ﬁ book
NOUN-HUM VERB-TRAN NOUN-HUM rock INANIMATES
sandwicl
NOUN-HUM VERB-AGPAT NOUN-INANIM ﬁ At
food
NOUN-HUM VERB-AGPAT bread
NOUN-ANIM VERB-EAT NOUN-FOOD 4[51? breakables
NOUN-ANIM VERB-TRAN NOUN-ANIM

(Elman, 1990)

11

Properties of hidden-unit activations after training

activations show structure (clusters) in 150-dim. space
types/tokens distinction: types = centroids of tokens
representations are hierarchically structured

representation space would not grow with a growing lexicon

* type vector for a novel word (zog) consistent with previous knowledge

_|—m ouse
~at

dog

_I—monstcr
lion

—dragon

_|7\-’V0I1]Ell]

airl

boy
Z0G

car
book

roclk

_I—szmdwich

ookie

bread

(Elman, 1990)

12

Input—output recurrent model (NARX)

x(1) o

Y

]
©i-1) ZI_» W(6) = FOe(t), x(t=1), .., x(=q), Y(i=D)...., y(i—r))
: z!
?
e ({1 - S ()
y(t—f’) :—>
i
71
W)
7z

* Generic single-input single-output recurrent architecture

* NARX (nonlinear autoregressive model with exogenous inputs
(Chen et al, 1990)

13

Learning algorithms for fully recurrent NNs

dynamically driven RNNs, with a global feedback
— acquire (internal) state representations

(similarly to spatial tasks) two modes: (williams & Zipser, 1995)
— epochwise training: epoch = sequence

— continuous training

We mention two gradient based algorithms:

- BPTT (epochwise or continuous), and RTRL (continuous)
Heuristics: (Giles, 1996)

- start with shorter sequences, then increase length

— update weights only if training error is larger than threshold
— consider regularization (e.g. weight decay)

14

Example of a fully recurrent NN

Unit-time delays

Input Computation
layer layer

X1 n+

W

Feedback connections are global

(Haykin, 2009)

15

Back-propagation through time

* extension of standard BP algorithm —
unfolding in time into a feedforward NN
with identical weights (Werbos, 1990) X0)

e sequence with inputs x(1), x(2), ..., x(T)

State equation:

s(t+1) =f (2w, s (1) + x(D), X,
lin example i, j € {1,2}]

i

R P
/! \ ! \
h ' h(l.l‘) L * e @ h' h(lll.) ‘
/ /
\ - ’ f f f f\ - -
Unfold

(Goodfellow et al, 2016)

X

(Tiffo, 1997)

1)

16

BPTT algorithm

applied after processing each sequence (of length 7)
during single forward pass through a sequence: x(1), x(2), ..., x(T)

- record inputs, local gradients §
Overallerror: £ (1) ="2 2" | 2. ;.. €’ (D

total
fort=T: 6,(t)=f(0,) e(?)
for1 <:<T: 8.()=f(0)[e(t)+ ZleOutpmwﬂ o (t+1)]
Update weights: A w,=—a0E_ (T)/ow, =« 2" 8.(1) s (1=1)

total

Impractical for longer sequences (of unknown length)

truncated BPTT possible (williams and Peng, 1990)

17

Real-time recurrent learning (RTRL)

Units In discrete time: s (+1) =f(Yy. WUS](I)+x(t))

Instantaneous output error: e(¢) = d(¢) — s(t); i€E0 (where targets exist)
Et)=Y%22.,_, e

_ 5 _ ask(t)
Update weights: Aw,(t) = - aw Oﬁéek ow,
oSt . 85 t—1
61\(4/(> = f'(o.(t)).] 6i(k51 t—1 Zwkl l@w)

1j

[€ units feeding to unit k, and 6kfik: 1,if k=1, elseO.

- if j pertains to an external input, xj(t—l) is used instead of sj(t—l)

Teacher forcing — replace actual output with desired whenever
available (may lead to faster training and enhance learning capability)

Very large time and memory requirements (with N neurons, each
iteration): N3 derivatives, O(N?) updates to maintain

(Williams & Zipser, 1989)

18

RNN state space organization

* y = F(h) is a squashed version of a | y
linear transformation => it is smooth oupatents O O O
and monotonic N h

* Activations h leading to the OO0000
same/similar output y are forced to ﬁ % contex
lie close to each other in the RNN nputs OO00000 00000

State space

* Heuristics for enhancing RNN generalization: cluster RNN state
space into a finite number of clusters

* Each cluster will represent an abstract information-processing
state => knowledge extraction from RNN (e.g. learning finite state
automata with RNNSs)

 Symbolic dynamics helps understand RNNs

19

Example: Learning a finite state automaton

« State-space activations in RNN - neural memory - code the entire history of
symbols we have seen so far.

 To latch a piece of information for a potentially unbounded number of time
steps, we need attractive sets.

RNN
State
space
Tiflo (2003)
Grammatical:
all strings containing odd number of 2's

20

Architectural bias

 Structured hidden-unit activations in RNN exist prior to training, I.e.

model predictions overcome random guess:

* clusters of recurrent activations that emerge prior to training

J4ar

1.8 -

Uy

jﬁ_

a4

k]

a2k

a4k

correspond to Markov prediction contexts — histories of symbols are

grouped according to number of symbols they share in their suffix (Tio,
Cerfiansky, Befiuskova, 2004)

RNNs can outperform finite
memory models, but to
assess the contribution of
training, RNN accuracy

{ 2D hidden unit Should be compared with

| activations, that of variable-length
| 4 symbols in Markov models extracted
| input alphabet

before training as the “null”
base models.

¥ %" (Cernansky, 2006) o1

Computational power of recurrent networks |

recurrent NNs (e.g. NARX, SRN...) are able to simulate finite-state
automata, e.g. by learning

- regular grammars

- context-free grammars (e.g. a"b"~ saddle-point attractive set)

- simple context-sensitive grammars (LSTM)

“Every finite-state machine is equivalent to, and can be ‘simulated’ by,
some neural net (NN). That is, given any finite-state machine M, we
can build a certain NN which, regarded as a black-box machine, will
behave precisely like M!” (Minsky, 1967)

Pivotal work of learning Reber grammar with a SRN (Cleeremans,
Servan-Schreiber & McClelland, 1989)

Theorem I: “All Turing machines may be simulated by fully connected
recurrent networks built on neurons with sigmoidal activation
functions.” (Siegelmann & Sontag, 1991)

- TM is a more abstract mathematical model than FSM

22

Computational power of recurrent networks |

 Theorem II: “NARX networks with one layer of hidden neurons with
bounded, one-sided saturated activation functions and a linear output
neuron can simulate fully connected RNN with bounded, one-sided

saturated (BOSS) activation functions, except for a linear slowdown.”
(Siegelmann, 1997)

- A‘“linear slowdown” means that if the fully connected RNN with N
neurons computes a task of interest in time T, then the total time
taken by the equivalent NARX network is (N+1)T.

e Corollary: NARX networks with one hidden layer of neurons with
BOSS activation functions and a linear output neuron are Turing
equivalent.

: Fully connected
Turing NARX
. recurrent
machine network

network

Summary

two classes of architectures (time-lagged, partially or fully recurrent)
time-lagged models are good for tasks with limited memory
link to statistical n-gram models

recurrent models with global feedback learn internal state
representations

links to nonlinear dynamical systems, signal processing and control
theory

more complex learning algorithms: BPTT, RTRL (gradient-based)
despite theoretical potential, difficulties to learn more complex tasks
architectural bias allows Markovian predictions

remaining problem: long-term dependencies

24

	Title
	Slide 2
	Time as space: NETtalk
	Focused neuronal filter
	Focused time fwd NN
	Slide 6
	Applications of time-lagged NNs
	Example: Mealy automaton
	Simple recurrent network
	Example: Letter prediction
	Example: Word prediction
	Properties of hidden-unit activations
	NARX model
	Learning in fully recurrent NNs
	Fully recurrent NN
	BPTT
	BPTT algorithm
	RTRL algorithm
	RNN state space organization
	Example: Learning a FSA
	Architectural bias
	Comp. power of RNNs I.
	Comp. power of RNNs II.
	Slide 24

