
1

Lecture 7

Sequential modeling

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2024

2

Required for tasks with temporal structure – where the same
input can be associated with different outputs
e.g. A, B, B, B, ...

Types of tasks:
➔ Sequence recognition (classification)
➔ Sequence prediction
➔ Sequence generation

Incorporating time into a NN:
● tapped-delay input ~ time as spatial dimension
● using recurrent NN architecture

● associative memory
● temporal input-output mapping

● new: attention

Temporal processing with neural networks

3

Time as spatial dimension: NETtalk

● training on 1024 words, intelligible speech after 10 epochs, 95% accuracy
after 50 epochs

● 78% generalization accuracy, quite intelligible speech
● NN first learned gross features (e.g. word boundaries) and then gradually

refined its discrimination (psycholinguistic plausibility).
● graceful degradation
● meaningful internal representations (e.g. vowel-consonant distinction)
● General question: How to estimate delay from training data?

(Sejnowski & Rosenberg, 1987)

NN learns to read English text

Input 7×29 units encoding 7 chars,
80 hidden and 26 output units
encoding phonemes.

4

Focused neuronal filter

● focused because all memory comes from the input
● can be trained as ordinary feedforward NN

● corresponds to a
nonlinear finite
impulse response
(FIR) filter (in digital
signal processing)

5

Focused time feedforward NN

● usable for stationary input-output mapping tasks
● can be trained as ordinary feedforward NN
● time a as spatial dimension

6

Link to statistical n-gram models

● Assume 1D time series X = x1, x2, …, xt-1, …
● Autoregressive predictive model: p(xt | xt-1, …, x1)
● Simplified under Markov assumption: p(xt | xt-1, …, xt-n) for n >0
● Useful in language models: estimate p(w1,w2, …, wT)
● Probability of the next word (in text): wt ~ p(wt | wt-1, …, wt-n)

(Zhang et al, 2020)

● Zipf’s law governs the word
distribution for not only unigrams
but also the other n-grams:

● high accuracy of NLP models
thank to large corpora

● time-lagged NNs ~ n-grams

7

Tasks for time-lagged NNs

● time series prediction (single-step, multi-step)
● noise cancellation
● adaptive control
● speech recognition
● system identification

BUT... what if the required memory may be unlimited?
● time-lagged NNs have no feedback
● global feedback = facilitator of computational intelligence

(Haykin, 2009)

8

Example: Mealy automaton

● Inputs: {A,B}, outputs: {,}
● Training set: A, A, B, B, B, A, A, A

● no sufficient tapped-line can reliably be set, so as to learn
the behavior

● State representation of temporal context is more appropriate
than “past window” → recurrent models

(Tiňo, 1997)

9

Simple recurrent network (SRN)

(Elman, 1990)

hk (t)= f (∑ j
wkj x j(t)+∑l

ckl hl (t−1))

yit = f ∑k
vik hk t

Can be trained by various gradient algorithms (BP, BPTT, RTRL,…)
● SRN is a partially recurrent, state-space model
● time is implicitly represented

f u= 1
1exp−u

Unit's activation function:
Hidden state activation:

Output activation:

=

Latent variable model: p(xt | xt-1, …, x1) ≈ p(xt | ht-1)

10

Example: Next letter prediction task

(Elman, 1990)

Task: letter-in-word prediction (sequence of symbols), 5-bit inputs
Data: 200 sentences, 4 to 9 words in a sentence
SRN: 5-20-5 units, trained by back-propagation (Rumelhart, Hinton & Williams, 1986)
- SRN discovers the notion of “word”

Many years ago boy and girl lived by the sea ...

11

Example: Next word prediction task

(Elman, 1990)

Categories of lexical items used

Templates for sentence generator

SRN:
31-150-31,
localist
encoding
of words

Averaged hidden-unit activation vectors

12

Properties of hidden-unit activations after training

● activations show structure (clusters) in 150-dim. space
● types/tokens distinction: types = centroids of tokens
● representations are hierarchically structured
● representation space would not grow with a growing lexicon
● type vector for a novel word (zog) consistent with previous knowledge

(Elman, 1990)

13

Input–output recurrent model (NARX)

● Generic single-input single-output recurrent architecture
● NARX (nonlinear autoregressive model with exogenous inputs

(Chen et al, 1990)

MLP

z-1

z-1

z-1

z-1

x(t)

x(t–1)

x(t–q) ⋮

y(t–r)
y(t)

y(t–1)

⋮

⋮

⋮

y(t) = F(x(t), x(t–1), …, x(t–q), y(t–1),…, y(t–r))

14

Learning algorithms for fully recurrent NNs

● dynamically driven RNNs, with a global feedback
– acquire (internal) state representations

● (similarly to spatial tasks) two modes: (Williams & Zipser, 1995)

– epochwise training: epoch = sequence
– continuous training

● We mention two gradient based algorithms:
– BPTT (epochwise or continuous), and RTRL (continuous)

● Heuristics: (Giles, 1996)
– start with shorter sequences, then increase length
– update weights only if training error is larger than threshold
– consider regularization (e.g. weight decay)

15

Example of a fully recurrent NN

(Haykin, 2009)

Wa

Wb

Wc

Feedback connections are global

16

Back-propagation through time

● extension of standard BP algorithm –
unfolding in time into a feedforward NN
with identical weights (Werbos, 1990)

● sequence with inputs x(1), x(2), ..., x(T)
State equation:
 si(t+1) = f (∑j wijsj(t) + xi(t)),

[in example i, j {1,2}]

T = 3

(Tiňo, 1997)

(Goodfellow et al, 2016)

17

BPTT algorithm

● applied after processing each sequence (of length T)
● during single forward pass through a sequence: x(1), x(2), ..., x(T)

– record inputs, local gradients

● Overall error: Etotal (T) = ½ ∑T
t=1

 ∑i∈Output ei
2(t)

● for t = T: i (t) = f'(oi) ei(t)

 for 1 < t < T: i (t) = f'(oi) [ei(t) + ∑l∈Output wil l(t+1)]

● Update weights: ∆ wij = – Etotal (T) / wij = ∑T
t=2 i (t) sj(t–1)

● impractical for longer sequences (of unknown length)
● truncated BPTT possible (Williams and Peng, 1990)

18

Real-time recurrent learning (RTRL)

● Units in discrete time: si(t+1) = f (∑j wij sj(t) + xi(t))

● Instantaneous output error: ei(t) = di(t) – si(t); i∈O (where targets exist)

E(t) = ½ ∑k∈O ek
2(t)

● Update weights:

l ∈ units feeding to unit k, and kr
ik = 1, if k = i, else 0.

- if j pertains to an external input, xj(t–1) is used instead of sj(t–1)

● Teacher forcing – replace actual output with desired whenever
available (may lead to faster training and enhance learning capability)

● Very large time and memory requirements (with N neurons, each
iteration): N3 derivatives, O(N4) updates to maintain

(Williams & Zipser, 1989)

Δ wij (t) = −α
∂ E(t)
∂w ij

= α∑
k∈O

ek (t)
∂ sk (t)
∂w ij

∂ sk (t)
∂w ij

= f '(ok (t)). [δ ik
kr s j(t−1)+∑

l
wkl

∂ sl(t−1)
∂w ij

]

19

RNN state space organization

● Heuristics for enhancing RNN generalization: cluster RNN state
space into a finite number of clusters

● Each cluster will represent an abstract information-processing
state => knowledge extraction from RNN (e.g. learning finite state
automata with RNNs)

● Symbolic dynamics helps understand RNNs

y

h

● y = F(h) is a squashed version of a
linear transformation => it is smooth
and monotonic

● Activations h leading to the
same/similar output y are forced to
lie close to each other in the RNN
state space

20

Example: Learning a finite state automaton

● State-space activations in RNN – neural memory – code the entire history of
symbols we have seen so far.
● To latch a piece of information for a potentially unbounded number of time
steps, we need attractive sets.

Tiňo (2003)

RNN
state
space

Grammatical:
all strings containing odd number of 2's

21

Architectural bias

● Structured hidden-unit activations in RNN exist prior to training, i.e.
model predictions overcome random guess:

● clusters of recurrent activations that emerge prior to training
correspond to Markov prediction contexts – histories of symbols are
grouped according to number of symbols they share in their suffix (Tiňo,
Čerňanský, Beňušková, 2004)

2D hidden unit
activations,
4 symbols in
input alphabet

(Čerňanský, 2006)

RNNs can outperform finite
memory models, but to
assess the contribution of
training, RNN accuracy
should be compared with
that of variable-length
Markov models extracted
before training as the “null”
base models.

22

Computational power of recurrent networks I

● recurrent NNs (e.g. NARX, SRN...) are able to simulate finite-state
automata, e.g. by learning
– regular grammars
– context-free grammars (e.g. anbn ~ saddle-point attractive set)
– simple context-sensitive grammars (LSTM)

● “Every finite-state machine is equivalent to, and can be ‘simulated’ by,
some neural net (NN). That is, given any finite-state machine M, we
can build a certain NN which, regarded as a black-box machine, will
behave precisely like M!” (Minsky, 1967)

● Pivotal work of learning Reber grammar with a SRN (Cleeremans,
Servan-Schreiber & McClelland, 1989)

● Theorem I: “All Turing machines may be simulated by fully connected
recurrent networks built on neurons with sigmoidal activation
functions.” (Siegelmann & Sontag, 1991)

– TM is a more abstract mathematical model than FSM

23

Computational power of recurrent networks II

● Theorem II: “NARX networks with one layer of hidden neurons with
bounded, one-sided saturated activation functions and a linear output
neuron can simulate fully connected RNN with bounded, one-sided
saturated (BOSS) activation functions, except for a linear slowdown.”
(Siegelmann, 1997)

– A “linear slowdown” means that if the fully connected RNN with N
neurons computes a task of interest in time T, then the total time
taken by the equivalent NARX network is (N+1)T.

● Corollary: NARX networks with one hidden layer of neurons with
BOSS activation functions and a linear output neuron are Turing
equivalent.

24

Summary

● two classes of architectures (time-lagged, partially or fully recurrent)
● time-lagged models are good for tasks with limited memory
● link to statistical n-gram models
● recurrent models with global feedback learn internal state

representations
● links to nonlinear dynamical systems, signal processing and control

theory
● more complex learning algorithms: BPTT, RTRL (gradient-based)
● despite theoretical potential, difficulties to learn more complex tasks
● architectural bias allows Markovian predictions
● remaining problem: long-term dependencies

	Title
	Slide 2
	Time as space: NETtalk
	Focused neuronal filter
	Focused time fwd NN
	Slide 6
	Applications of time-lagged NNs
	Example: Mealy automaton
	Simple recurrent network
	Example: Letter prediction
	Example: Word prediction
	Properties of hidden-unit activations
	NARX model
	Learning in fully recurrent NNs
	Fully recurrent NN
	BPTT
	BPTT algorithm
	RTRL algorithm
	RNN state space organization
	Example: Learning a FSA
	Architectural bias
	Comp. power of RNNs I.
	Comp. power of RNNs II.
	Slide 24

