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Required for tasks with temporal structure – where the same 
input can be associated with different outputs
e.g.  A, B, B, B, ...

Types of tasks:
➔ Sequence recognition (classification)
➔ Sequence prediction
➔ Sequence generation

Incorporating time into a NN:
● tapped-delay input ~ time as spatial dimension
● using recurrent NN architecture

● associative memory
● temporal input-output mapping

● new: attention

Temporal processing with neural networks
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Time as spatial dimension: NETtalk

● training on 1024 words, intelligible speech after 10 epochs, 95% accuracy 
after 50 epochs

● 78% generalization accuracy, quite intelligible speech
● NN first learned gross features (e.g. word boundaries) and then gradually 

refined its discrimination (psycholinguistic plausibility).
● graceful degradation
● meaningful internal representations (e.g. vowel-consonant distinction)
● General question: How to estimate delay from training data?

(Sejnowski & Rosenberg, 1987)

NN learns to read English text

Input 7×29 units encoding 7 chars, 
80 hidden and 26 output units 
encoding phonemes.
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Focused neuronal filter

● focused because all memory comes from the input 
● can be trained as ordinary feedforward NN

● corresponds to a 
nonlinear finite 
impulse response 
(FIR) filter (in digital 
signal processing)
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Focused time feedforward NN

● usable for stationary input-output mapping tasks
● can be trained as ordinary feedforward NN
● time a as spatial dimension
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Link to statistical n-gram models

● Assume 1D time series X = x1, x2, …, xt-1, …
● Autoregressive predictive model: p(xt | xt-1, …, x1) 
● Simplified under Markov assumption: p(xt | xt-1, …, xt-n) for n >0 
● Useful in language models: estimate p(w1,w2, …, wT) 
● Probability of the next word (in text): wt  ~ p(wt | wt-1, …, wt-n) 

(Zhang et al, 2020)

● Zipf’s law governs the word 
distribution for not only unigrams 
but also the other n-grams:

● high accuracy of NLP models
thank to large corpora

● time-lagged NNs ~ n-grams 
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Tasks for time-lagged NNs

● time series prediction (single-step, multi-step) 
● noise cancellation
● adaptive control
● speech recognition
● system identification

BUT... what if the required memory may be unlimited?
● time-lagged NNs have no feedback
● global feedback = facilitator of computational intelligence 

(Haykin, 2009)
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Example: Mealy automaton

● Inputs: {A,B}, outputs: {,}
● Training set: A, A, B, B, B, A, A, A 

● no sufficient tapped-line can reliably be set, so as to learn 
the behavior

● State representation of temporal context is more appropriate 
than “past window” → recurrent models

(Tiňo, 1997)



9

Simple recurrent network (SRN)

(Elman, 1990)

hk (t )= f (∑ j
wkj x j( t)+∑l

ckl hl (t−1))

yit = f ∑k
vik hk t 

Can be trained by various gradient algorithms (BP, BPTT, RTRL,…)
● SRN is a partially recurrent, state-space model
● time is implicitly represented

f u= 1
1exp−u

Unit's activation function:
Hidden state activation:

Output activation:

=

Latent variable model: p(xt | xt-1, …, x1) ≈ p(xt | ht-1)  
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Example: Next letter prediction task

(Elman, 1990)

Task: letter-in-word prediction (sequence of symbols), 5-bit inputs 
Data: 200 sentences, 4 to 9 words in a sentence
SRN: 5-20-5 units, trained by back-propagation (Rumelhart, Hinton & Williams, 1986) 
- SRN discovers the notion of “word”

Many years ago boy and girl lived by the sea ...
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Example: Next word prediction task

(Elman, 1990)

Categories of lexical items used

Templates for sentence generator

SRN: 
31-150-31, 
localist 
encoding 
of words

Averaged hidden-unit activation vectors
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Properties of hidden-unit activations after training

● activations show structure (clusters) in 150-dim. space
● types/tokens distinction:  types = centroids of tokens
● representations are hierarchically structured
● representation space would not grow with a growing lexicon
● type vector for a novel word (zog) consistent with previous knowledge

(Elman, 1990)
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Input–output recurrent model (NARX)

● Generic single-input single-output recurrent architecture
● NARX (nonlinear autoregressive model with exogenous inputs 

(Chen et al, 1990)

MLP

z-1

z-1

z-1

z-1

x(t)

x(t–1)

x(t–q) ⋮

y(t–r)
y(t)

y(t–1)

⋮

⋮

⋮

y(t) = F(x(t), x(t–1), …, x(t–q), y(t–1),…, y(t–r))
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Learning algorithms for fully recurrent NNs

● dynamically driven RNNs, with a global feedback
– acquire (internal) state representations

● (similarly to spatial tasks) two modes: (Williams & Zipser, 1995)

– epochwise training: epoch = sequence
– continuous training

● We mention two gradient based algorithms: 
– BPTT (epochwise or continuous), and RTRL (continuous)

● Heuristics: (Giles, 1996)
– start with shorter sequences, then increase length
– update weights only if training error is larger than threshold
– consider regularization (e.g. weight decay)
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Example of a fully recurrent NN

(Haykin, 2009)

Wa

Wb

Wc

Feedback connections are global
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Back-propagation through time

● extension of standard BP algorithm – 
unfolding in time into a feedforward NN 
with identical weights (Werbos, 1990)

● sequence with inputs x(1), x(2), ..., x(T)
State equation:
     si(t+1) = f (∑j wijsj(t) + xi(t)),    

[in example  i, j  {1,2}]

T = 3

(Tiňo, 1997)

(Goodfellow et al, 2016 )
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BPTT algorithm

● applied after processing each sequence (of length T)
● during single forward pass through a sequence: x(1), x(2), ..., x(T)

– record inputs, local gradients 

● Overall error: Etotal (T) = ½ ∑T
t=1

 ∑i∈Output ei
2(t)

● for t = T: i (t) = f'(oi) ei(t)

    for 1 < t < T: i (t) = f'(oi) [ei(t) + ∑l∈Output wil l(t+1)]

● Update weights: ∆ wij = –  Etotal (T) / wij  =  ∑T
t=2 i (t) sj(t–1)

● impractical for longer sequences (of unknown length)
● truncated BPTT possible (Williams and Peng, 1990)
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Real-time recurrent learning (RTRL)

● Units in discrete time: si(t+1) = f (∑j wij sj(t) + xi(t))   

● Instantaneous output error: ei(t) = di(t) – si(t);  i∈O  (where targets exist)

E(t) = ½ ∑k∈O ek
2(t)

● Update weights:
    

l ∈ units feeding to unit k, and kr
ik = 1, if k = i, else 0.

- if j pertains to an external input,  xj(t–1) is used instead of sj(t–1)

● Teacher forcing – replace actual output with desired whenever 
available (may lead to faster training and enhance learning capability)

● Very large time and memory requirements (with N neurons, each 
iteration): N3  derivatives,  O(N4) updates to maintain

(Williams & Zipser, 1989)

Δ wij (t ) = −α
∂ E( t)
∂w ij

= α∑
k∈O

ek (t )
∂ sk (t)
∂w ij

∂ sk (t)
∂w ij

= f '(ok (t )). [δ ik
kr s j(t−1)+∑

l
wkl

∂ sl(t−1)
∂w ij

]
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RNN state space organization

● Heuristics for enhancing RNN generalization: cluster RNN state 
space into a finite number of clusters

● Each cluster will represent an abstract information-processing 
state => knowledge extraction from RNN (e.g. learning finite state 
automata with RNNs)

● Symbolic dynamics helps understand RNNs

y

h

● y = F(h) is a squashed version of a 
linear transformation => it is smooth 
and monotonic

● Activations h leading to the 
same/similar output y are forced to 
lie close to each other in the RNN 
state space
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Example: Learning a finite state automaton

● State-space activations in RNN – neural memory – code the entire history of 
symbols we have seen so far.
● To latch a piece of information for a potentially unbounded number of time 
steps, we need attractive sets.

Tiňo (2003)

RNN 
state 
space

Grammatical: 
all strings containing odd number of 2's
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Architectural bias

● Structured hidden-unit activations in RNN exist prior to training, i.e. 
model predictions overcome random guess:

● clusters of recurrent activations that emerge prior to training 
correspond to Markov prediction contexts – histories of symbols are 
grouped according to number of symbols they share in their suffix (Tiňo, 
Čerňanský, Beňušková, 2004)

2D hidden unit 
activations, 
4 symbols in 
input alphabet

(Čerňanský, 2006)

RNNs can outperform finite 
memory models, but to 
assess the contribution of 
training, RNN accuracy 
should be compared with 
that of variable-length 
Markov models extracted 
before training as the “null” 
base models.
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Computational power of recurrent networks I

● recurrent NNs (e.g. NARX, SRN...) are able to simulate finite-state 
automata, e.g. by learning
– regular grammars
– context-free grammars (e.g. anbn ~ saddle-point attractive set)
– simple context-sensitive grammars (LSTM)

● “Every finite-state machine is equivalent to, and can be ‘simulated’ by, 
some neural net (NN). That is, given any finite-state machine M, we 
can build a certain NN which, regarded as a black-box machine, will 
behave precisely like M!” (Minsky, 1967)

● Pivotal work of learning Reber grammar with a SRN (Cleeremans, 
Servan-Schreiber & McClelland, 1989)

● Theorem I: “All Turing machines may be simulated by fully connected 
recurrent networks built on neurons with sigmoidal activation 
functions.” (Siegelmann & Sontag, 1991)

– TM is a more abstract mathematical model than FSM
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Computational power of recurrent networks II

● Theorem II: “NARX networks with one layer of hidden neurons with 
bounded, one-sided saturated activation functions and a linear output 
neuron can simulate fully connected RNN with bounded, one-sided 
saturated (BOSS) activation functions, except for a linear slowdown.” 
(Siegelmann, 1997)

– A “linear slowdown” means that if the fully connected RNN with N 
neurons computes a task of interest in time T, then the total time 
taken by the equivalent NARX network is (N+1)T.

● Corollary: NARX networks with one hidden layer of neurons with 
BOSS activation functions and a linear output neuron are Turing 
equivalent.
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Summary

● two classes of architectures (time-lagged, partially or fully recurrent)
● time-lagged models are good for tasks with limited memory
● link to statistical n-gram models
● recurrent models with global feedback learn internal state 

representations
● links to nonlinear dynamical systems, signal processing and control 

theory
● more complex learning algorithms: BPTT, RTRL (gradient-based)
● despite theoretical potential, difficulties to learn more complex tasks
● architectural bias allows Markovian predictions
● remaining problem: long-term dependencies
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