Faculty of Mathematics, Physics and Informatics Comenius University Bratislava

Neural Networks

Lecture 9

Expansion of hidden-layer dimension

Igor Farkaš

Changes in data dimensionality

- Neural networks process data by nonlinearly transforming them over layers
- Dimensionality reduction has many advantages:
 - allows to extract features
 - leads to abstraction(s)
 - allows robustness against noise
 - simplifies agent's control (in RL)
- Dimensionality expansion leads to what?
 - supports better linear separability of inputs
 - enables to encode temporal dependences

Combined learning in NN models

- combination of unsupervised (or no learning) and supervised learning
- independent optimization, can be much faster than gradient descent, with similar results
- unsupervised learning → clustering
- more hidden units may be needed (compared to a fully supervised model)
- Examples:
 - learning vector quantization (Kohonen, 1990)
 - classifier on top of trained SOM
 - radial-basis-function networks (Moody & Darken, 1989)
 - semi-supervised learning \rightarrow transductive learning
 - reservoir computing (e.g. echo-state networks)

Part 1: Radial-Basis-Function neural network

 $\mathbf{X}_1 \subset$

Xi

0

h₁

 $\mathbf{h}_{\mathbf{k}}$

W_{ik}

V_{kj}

- Inputs *x* , weights *w*, outputs *y*
- Output activation:

$$y_i = \sum_{k=1}^{K} w_{ik} h_k(\boldsymbol{x}) + w_{i0}$$

- $h_k = \text{radial activ. function, e.g.}$ $h_k(x) = \phi_k(||x-v_k||) = \exp(-||x-v_k||^2/\sigma_k^2)$ $v_k \sim \text{center } k, \sigma_k \sim \text{its width}$ $\phi(d) \text{ are (usually) local functions because for } d \to \infty \phi(d) \to 0$ $\sigma \text{ affects generalization}$
- v_k used for approximation of unconditional probability density of input data p(x)
- RBF as a neuron's receptive field (easier than that of an MLP)

 \mathbf{y}_1

y_i

Separability of patterns

- Data projection into high-dim. space: A complex pattern classification problem cast in a high-dim. space nonlinearly is more likely to be linearly separable than in a low-dim. space (Cover, 1965).
- Consider binary partitioning (dichotomy) for $x_1, x_2, ..., x_N$ (classes C_1, C_2). Dichotomy $\{C_1, C_2\}$ is φ -separable, where $\varphi(x) = [\varphi_1(x), \varphi_2(x), ..., \varphi_K(x)]$, if $\exists w \in \Re^K$ such that for $\forall x \in C_1$: $w^T \cdot \varphi(x) > 0$ and for $\forall x \in C_2$: $w^T \cdot \varphi(x) < 0$.
- { $\phi_k(x)$ } feature functions (hidden space), k = 1, 2, ..., K
- Sometimes, non-linear transformation can result in linear separability without having to increase data dimension (e.g. XOR problem):

$$\varphi_k(\mathbf{x}) = \exp(-\|\mathbf{x} - \mathbf{v}_k\|^2) \qquad \mathbf{v}_1 = [0 \ 0], \ \mathbf{v}_2 = [1 \ 1]$$

Input Pattern x	First Hidden Function $\varphi_1(\mathbf{x})$	Second Hidden Function $\varphi_2(\mathbf{x})$
(1,1)	1	0.1353
(0,1)	0.3678	0.3678
(0,0)	0.1353	1
(1,0)	0.3678	0.3678

Interpolation problem

- Mapping data into higher dimensions can be useful:
- Then we can deal with multivariate interpolation in high-dim. space (Davis, 1963):

Given the sets $\{h_i \in \Re^K, d_i \in \Re\}$, find a function *F* that satisfies the condition: $F(h_i) = d_i$, i=1,2,...,N. (in strict sense)

- For RBF, we get the set of linear equations: $w^T h_i = d_i$, i = 1, 2, ..., N.
- If \mathbf{H}^{-1} exists, the solution is $w = \mathbf{H}^{-1} d$
- How can we be sure that interpolation matrix H is nonsingular?
- Theorem: Let $\{x_i \in \mathbb{R}^n\}$ be a set of distinct points (i=1,2,...,N). Then **H** $[N \times N]$ with elements $h_{ii} = \varphi_{ii}(||x_i x_i||)$, is nonsingular. (Michelli, 1986)
- a large class of RBFs satisfies this condition

Training RBF networks

- two-stage process
- nonlinear (layer 1) and linear (layer 2) optimization strategies are applied to different learning tasks
- Approaches for layer 1:
 - fixed centers selected at random
 - self-organized selection of centers
- Approaches for layer 2
 - via pseudoinverse \mathbf{H}^+ : then $w = \mathbf{H}^+ d$
 - online stochastic optimization (delta rule),
 - online deterministic algorithm (RLS)
- Yet another method: supervised selection of centers and output weight setting (not described here)

Fixed centers selected at random

• "sensible" approach if training data are distributed in a representative manner:

 $G(||\mathbf{x} - \mathbf{v}_j||^2) = \exp(-K||\mathbf{x} - \mathbf{v}_j||^2/d_{\max}^2)$

K-number of centers, $d_{\max} = \max_{kl} \{ \| v_k - v_l \| \}, \Rightarrow \sigma = d_{\max} / (2K)^{1/2}$

- RBFs become neither too flat nor too wide
- Alternative: individual widths σ_j , inversely proportional to density $p(\mathbf{x})$ requires experimentation with data
- relatively insensitive to regularization, for larger data sets

Self-organized selection of centers

Self-organization: *K*-means clustering:

Initialization: randomize { $v_1(0), v_2(0), ..., v_k(0)$ }

Two steps: (until stopping criterion is met)

- 1. minimize $J(C) = min_{[\mathbf{v}_k]} \sum_{k=1}^{K} \sum_{C(i)=k} ||\mathbf{x}(i) \mathbf{v}_k||^2$ for given encoder C
- by updating cluster centers: $\{v_k(t)\}$
- 2. optimize the encoder: $C(i) = \arg \min_k ||\mathbf{x}(i) \mathbf{v}_k||^2$
 - by reassigning inputs to clusters

Given a set of N observations, find the encoder C that assigns these observations to the K clusters in such a way that, within each cluster, the average measure of dissimilarity of the assigned observations from the cluster mean is minimized.

• no guarantee for finding an optimum

Recursive Least Squares (RLS)

- RBF centers can be updated recursively
- How to compute optimal output weights, recursively, too?
- RLS algorithm summary: given $\{\phi^{(p)}, d^{(p)}\}, p = 1, 2, ..., N; x^{(p)} \equiv x(t)$
- *Initialize:* w(0) = 0, $P(0) = \lambda^{-1} I$, with $\lambda > 0$, $\lambda \approx 0$, regularizer $\frac{1}{2}\lambda \|w\|^2$
- Repeat:

1.
$$\mathbf{P}(t) = \mathbf{P}(t-1) - \frac{\mathbf{P}(t-1)\mathbf{\Phi}(t)\mathbf{\Phi}^{T}(t)\mathbf{P}(t-1)}{1+\mathbf{\Phi}^{T}(t)\mathbf{P}(t-1)\mathbf{\Phi}(t)}$$

2. $g(t) = P(t).\phi(t)$ (gain)

3.
$$a(t) = d(t) - w^{T}(t-1) \phi(t)$$
 (prior estimation error)
4. $w(t) = w(t-1) + g(t) \cdot a(t)$

Example using an RBF network

Two-moons classification task: 20 Gaussian units, 1000 points used for training, 2000 for testing. Different widths (σ) used.

 $\sigma = 2.6$

 $a_{\rm max}$

Approximation properties of RBF networks

Theorem: (Park & Sandberg, 1991) Let $G: \mathfrak{R}^{K} \to \mathfrak{R}$ be an integrable bounded function such that G is continuous and $\int_{\mathfrak{R}}{}^{K}G(x) dx \neq 0$. The family of RBF networks consists of functions $F: \mathfrak{R}^{k} \to \mathfrak{R}$:

$$F(\mathbf{x}) = \sum_{k=1}^{K} w_k G((\mathbf{x} - \mathbf{v}_k) / \sigma)$$

where $\sigma > 0$, $w_k \in \Re$ and $v_k \in \Re^K$.

Then for any continuous function f(x) there exists an RBF network with a set of centers $v_k \in \Re^K$ and a common width $\sigma > 0$ such that F(x)realized by RBF network is close to f(x) in L_p norm, $p \in [1,\infty]$.

Note: Theorem does not require radial symmetry for kernel $G: \mathfrak{R}^K \to \mathfrak{R}$.

- Useful constraint in RBF design: *K* < *N* (number of patterns)
- Gaussian centers as kernels: $\int_{\Re}^{K} G(x) dx = 1$

Kernel G(x) = continuous, bounded, and real function of x, symmetric about the origin, where it attains its maximum value.

Comparison of RBF and MLP

- both are nonlinear layered feedforward networks
- both are universal approximators, using parametrized compositions of functions of single variables.
- localized vs. distributed representations on hidden layer =>
 - convergence of RBF may be faster
 - MLPs are global, RBF are local => MLP need fewer parameters (=> different consequences for generalization)
- different designs of a supervised network:
 - MLP = stochastic approximation problem
 - RBF = hypersurface-fitting problem in a high-dim. space
- one-stage (MLP) vs. two-stage (RBF) training scheme

Alternative self-organizing modules for center allocation

- Can be useful for input data
 - with varying dimensionality across input domain (e.g. Topology Representing Network)
 - with non-stationary data distributions dynamic networks (Dynamic Cell Structures, Growing CS)
- to be coupled with dynamic linear part
- all based on (unsupervised) competitive learning

Example: binary classification with a growing RBF net

(Fritzke, 1994)

Part 2: Reservoir computing

- A relatively new framework for computation derived from a RNN that maps input signals into high-dimensional spaces through the dynamics of a fixed, non-linear system called a reservoir (Schrauwen et al, 2007).
- After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.
- This has two benefits: (1) training is performed only at the readout stage, (2) computational efficiency, with very good accuracy in many tasks.
- Best known models are echo state network (with classical neurons) and liquid state machines (with spiking neurons).

Echo-state network

System equations:

$$\mathbf{x}(t) = f(\mathbf{W} \mathbf{x}(t-1) + \mathbf{W}^{\text{inp}} \mathbf{u}(t) + \mathbf{W}^{\text{fb}} \mathbf{y}(t))$$
$$\mathbf{y}(t) = f^{\text{out}}(\mathbf{W}^{\text{out}} \mathbf{z}(t))$$
$$\mathbf{x}(t) = [\mathbf{x}(t); \mathbf{u}(t)]$$

(Jaeger, 2001)

ESN can have an SRN architecture, but also additional connections are possible (useful for some tasks).

Reservoir units: usually nonlinear (tanh), can also be linear.

 $\mathbf{W}^{out} \sim L \times (N+K)$]

Note: these pathways (dotted lines in figure) are optional.

Echo State Network (ctd)

- studied issues: memory capacity, information transfer, ...
- edge of stability = interesting regime (may be optimal w.r.t. info processing)

ESN training

- Initialize the ESN
 - create the reservoir with echo-state property (asymptotic properties of reservoir dynamics are given by driving signal): (Jaeger, 2001)

Network $F: X \times U \to X$ (with compactness condition) has the **echo state property** w.r.t. *U*, if for any left infinite input sequence $u^{-\infty} \in U^{-\infty}$ and any two state vector sequences $x^{-\infty}, y^{-\infty} \in X^{-\infty}$ compatible with $u^{-\infty}$, it holds that $x_0 = y_0$.

- small random input weights (with uniform or gaussian distribution)
- Collect reservoir states
 - feed input sequence into network (recursively apply state eq.)
- Compute output weights
 - Supervised learning, via pseudoinverse of **X**, or RLS
- ESN reservoir has a Markov property (in symbolic dynamics)

ESN properties

Echo-state property (ESP): depends on spectral properties of W = (typically) random *sparse* matrix, measures:

- spectral radius: $\rho(W) = |\lambda_{max}|$, i.e. largest absolute eigenvalue,

- spectral norm: $s_{max}(W) = \text{largest singular value, relation:} \quad 0 \le \rho(W) \le s_{max}(W)$
- Criteria for ESP: $s_{max}(W) < 1 \rightarrow \text{too strict}, \rho(W) < 1 \text{ not sufficient}$
- New recipe (Yildiz & Jaeger, 2012): (i) rnd $w_{ij} \ge 0$, (ii) scale W for $\rho(W) < 1$, (iii) change the signs of a desired number of entries to get some $w_{ij} < 0$ as well.
- $\rho(W) \approx 1$ tends to be a "turning point" in behavior (e.g. memory capacity)

Memory capacity (MC): reflects the ability to retrieve input data from reservoir

• scalar i.i.d. inputs assumed, MC depends on **W**, **W**^{inp}, reservoir size N, sparsity

$$MC = \sum_{k=1}^{k_{\max}} MC_k = \sum_{k=1}^{k_{\max}} \frac{cov^2(u(t-k), y_k(t))}{var(u(t)) \cdot var(y_k(t))} \qquad \qquad y_k(t) = \mathbf{w}_k^{\text{out}} \mathbf{x}(t) = \tilde{u}(t-k)$$

$$k_{\max} = L$$

Reservoir stability – measured by characteristic Lyapunov exponent (Sprott, 2003), That quantifies average divergence of state space trajectories under perturbations.

Memory capacity – calculated

- MC depends on spectral radius ρ and grows with reservoir size N (left) – for $\rho > 1$ the dynamics may become unstable
- MC degrades very gracefully for sparse reservoirs (middle)
- MC can be increased by (iterative) reservoir orthogonalization (right)
 - reaching the theoretical limit (N)

ESN behavior optimization

- trade-off b/w MC and predictive capacity (PC) in linear ESN (Marzen, 2019)
- small-world reservoir topology improves performance (both MC and PC) (Kawai, Park, Asada, 2019)
 - SW property = short average distance b/w nodes
 - Importance of ESN operation at the "edge of criticality" (transition b/w stable regime and chaotic dynamics, ($\rho(W) \approx 1$)
 - improves MC (but not PC)
 - supports efficient information integration (in complex systems)
 - flexibility (vs stability, exploration vs exploitation) (Atasoy, Deco, Kringelbach, 2019)

ESN applications

- time-series prediction
- Sequence classification, e.g. human gesture recognition (Jirak et al, 2020) participants with smartphone and gesture recognition app \rightarrow
- robot control target reaching (Reinhart & Steil, 2009)

- Recent challenges for other tasks (speech recognition, machine translation, ...) \rightarrow randomized transformations work well with minimum effort
- Overview of applications and designs (Sun et al, 2020)

Summary

- RBF hybrid feedforward NN model
 - hidden layer unsupervised (high-dim. projection), output layer supervised (linear readout)
 - various training algorithms for setting RBF centers
 - RLS for computing output weights, or pseudoinverse
 - universal approximator (like MLP)
 - applicable for function approximation and classification
- ESN fast recurrent NN, only linear readout trained
 - reservoir = high-dim. spatio-temporal embedding
 - good for time series prediction and memory tasks with Markov properties