Faculty of Mathematics, Physics and Informatics

 Comenius University Bratislava

Neural Networks

Lecture 9

Expansion of hidden-layer dimension

Changes in data dimensionality

- Neural networks process data by nonlinearly transforming them over layers
- Dimensionality reduction has many advantages:
- allows to extract features
- leads to abstraction(s)
- allows robustness against noise
- simplifies agent's control (in RL)
- Dimensionality expansion leads to what?
- supports better linear separability of inputs
- enables to encode temporal dependences

Combined learning in NN models

- combination of unsupervised (or no learning) and supervised learning
- independent optimization, can be much faster than gradient descent, with similar results
- unsupervised learning \rightarrow clustering
- more hidden units may be needed (compared to a fully supervised model)
- Examples:
- learning vector quantization (Kohonen, 1990)
- classifier on top of trained SOM
- radial-basis-function networks (Moody \& Darken, 1989)
- semi-supervised learning \rightarrow transductive learning
- reservoir computing (e.g. echo-state networks)

Part 1: Radial-Basis-Function neural network

- Inputs x, weights w, outputs y
- Output activation:

$$
y_{i}=\sum_{k=1}^{K} w_{i k} h_{k}(\boldsymbol{x})+w_{i 0}
$$

- $h_{k}=$ radial activ. function, e.g.

$h_{k}(\boldsymbol{x})=\varphi_{k}\left(\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|^{2} / \sigma_{k}^{2}\right)$
$v_{k} \sim$ center $k, \sigma_{k} \sim$ its width
$\varphi(d)$ are (usually) local functions because for $d \rightarrow \infty \quad \varphi(d) \rightarrow 0$
σ affects generalization
- \boldsymbol{v}_{k} used for approximation of unconditional probability density of input data $p(\boldsymbol{x})$
- RBF as a neuron's receptive field (easier than that of an MLP)

Separability of patterns

- Data projection into high-dim. space:

A complex pattern classification problem cast in a high-dim. space nonlinearly is more likely to be linearly separable than in a low-dim. space (Cover, 1965).

- Consider binary partitioning (dichotomy) for $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\left(\right.$ classes $\left.C_{1}, C_{2}\right)$. Dichotomy $\left\{C_{1}, C_{2}\right\}$ is ϕ-separable, where $\phi(x)=\left[\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{K}(x)\right]$, if $\exists \boldsymbol{w} \in \mathfrak{R}^{K}$ such that for $\forall x \in C_{1}: \boldsymbol{w}^{\mathrm{T}} . \boldsymbol{\phi}(\boldsymbol{x})>0$ and for $\forall x \in C_{2}: \boldsymbol{w}^{\mathrm{T}} . \boldsymbol{\phi}(\boldsymbol{x})<0$.
- $\left\{\varphi_{k}(\boldsymbol{x})\right\}$ - feature functions (hidden space), $k=1,2, \ldots, K$
- Sometimes, non-linear transformation can result in linear separability without having to increase data dimension (e.g. XOR problem):

$$
\varphi_{k}(\boldsymbol{x})=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|^{2}\right) \quad \boldsymbol{v}_{1}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

Input Pattern \mathbf{x}	First Hidden Function $\varphi_{1}(\mathbf{x})$	Second Hidden Function $\varphi_{2}(\mathbf{x})$
$(1,1)$	1	0.1353
$(0,1)$	0.3678	0.3678
$(0,0)$	0.1353	1
$(1,0)$	0.3678	0.3678

Interpolation problem

- Mapping data into higher dimensions can be useful:
- Then we can deal with multivariate interpolation in high-dim. space (Davis, 1963):

Given the sets $\left\{\boldsymbol{h}_{i} \in \mathfrak{R}^{K}, d_{i} \in \mathfrak{R}\right\}$, find a function F that satisfies the condition: $F\left(\boldsymbol{h}_{i}\right)=d_{i}, i=1,2, \ldots, N$. (in strict sense)

- For RBF, we get the set of linear equations: $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{h}_{i}=d_{i}, i=1,2, \ldots, N$.
- If \mathbf{H}^{-1} exists, the solution is $\boldsymbol{w}=\mathbf{H}^{-1} \boldsymbol{d}$
- How can we be sure that interpolation matrix \mathbf{H} is nonsingular?
- Theorem: Let $\left\{\boldsymbol{x}_{i} \in \mathfrak{R}^{n}\right\}$ be a set of distinct points $(i=1,2, \ldots, N)$. Then \mathbf{H} [$N \times N$] with elements $h_{i j}=\varphi_{i j}\left(\left\|x_{i}-x_{j}\right\|\right)$, is nonsingular. (Michelli, 1986)
- a large class of RBFs satisfies this condition

Training RBF networks

- two-stage process
- nonlinear (layer 1) and linear (layer 2) optimization strategies are applied to different learning tasks
- Approaches for layer 1:
- fixed centers selected at random
- self-organized selection of centers
- Approaches for layer 2
- via pseudoinverse \mathbf{H}^{+}: then $\boldsymbol{w}=\mathbf{H}^{+} \boldsymbol{d}$
- online stochastic optimization (delta rule),
- online deterministic algorithm (RLS)
- Yet another method: supervised selection of centers and output weight setting (not described here)

Fixed centers selected at random

- "sensible" approach if training data are distributed in a representative manner:

$$
G\left(\left\|\boldsymbol{x}-\boldsymbol{v}_{j}\right\|^{2}\right)=\exp \left(-K\left\|\boldsymbol{x}-\boldsymbol{v}_{j}\right\|^{2} / d_{\text {max }}^{2}\right)
$$

K - number of centers, $d_{\max }=\max _{k l}\left\{\left\|\boldsymbol{v}_{k}-v_{l}\right\|\right\},=>\sigma=d_{\max } /(2 K)^{1 / 2}$

- RBFs become neither too flat nor too wide
- Alternative: individual widths $\sigma_{j j}$, inversely proportional to density $p(\boldsymbol{x})$ - requires experimentation with data
- relatively insensitive to regularization, for larger data sets

Self-organized selection of centers

Self-organization: K-means clustering:
Initialization: randomize $\left\{\boldsymbol{v}_{1}(0), \boldsymbol{v}_{2}(0), \ldots, \boldsymbol{v}_{K}(0)\right\}$
Two steps: (until stopping criterion is met)

1. minimize $\quad J(C)=\min _{\boldsymbol{v}_{k} \mid} \sum_{k=1}^{K} \sum_{C(i)=k}\left\|\boldsymbol{x}(i)-\boldsymbol{v}_{k}\right\|^{2} \quad$ for given encoder C

- by updating cluster centers: $\left\{\boldsymbol{v}_{k}(t)\right\}$

2. optimize the encoder: $\quad C(i)=\arg \min _{k}\left\|\boldsymbol{x}(i)-\boldsymbol{v}_{k}\right\|^{2}$

- by reassigning inputs to clusters

Given a set of N observations, find the encoder C that assigns these observations to the K clusters in such a way that, within each cluster, the average measure of dissimilarity of the assigned observations from the cluster mean is minimized.

- no guarantee for finding an optimum

Recursive Least Squares (RLS)

- RBF centers can be updated recursively
- How to compute optimal output weights, recursively, too?
- RLS algorithm summary: given $\left\{\boldsymbol{\phi}^{(p)}, d^{(p)}\right\}, p=1,2, \ldots, N ; x^{(p)} \equiv x(t)$
- Initialize: $\boldsymbol{w}(0)=\mathbf{0}, \mathbf{P}(0)=\lambda^{-1} \mathbf{I}$, with $\lambda>0, \lambda \approx 0$, regularizer $1 / 2 \lambda\|\boldsymbol{w}\|^{2}$
- Repeat:

1. $\mathbf{P}(t)=\mathbf{P}(t-1)-\frac{\mathbf{P}(t-1) \boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{T}(t) \mathbf{P}(t-1)}{1+\boldsymbol{\Phi}^{T}(t) \mathbf{P}(t-1) \boldsymbol{\Phi}(t)}$
2. $\boldsymbol{g}(t)=\mathbf{P}(t) \cdot \boldsymbol{\phi}(t)$ (gain)
3. $a(t)=d(t)-\boldsymbol{w}^{\mathrm{T}}(t-1) \boldsymbol{\phi}(t)$ (prior estimation error)
4. $\boldsymbol{w}(t)=\boldsymbol{w}(t-1)+\boldsymbol{g}(t) \cdot a(t)$

Example using an RBF network

Two-moons classification task: 20 Gaussian units, 1000 points used for training, 2000 for testing. Different widths (σ) used.

$$
\sigma=\frac{d_{\max }}{\sqrt{2 K}}
$$

$$
\sigma=2.6
$$

$$
\sigma=2.4
$$

Classification using RBF with distance $=-5$, radius $=10$, and width $=6$

Classification using RBF with distance $=-6$, radius $=10$, and width $=6$

Approximation properties of RBF networks

Theorem: (Park \& Sandberg, 1991) Let $G: \mathfrak{R}^{K} \rightarrow \mathfrak{R}$ be an integrable bounded function such that G is continuous and $\int_{\Re}{ }^{K} G(x) d x \neq 0$. The family of RBF networks consists of functions $F: \mathfrak{R}^{k} \rightarrow \mathfrak{R}$:

$$
F(\boldsymbol{x})=\sum_{k=1}^{K} w_{k} G\left(\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right) / \sigma\right)
$$

where $\sigma>0, w_{k} \in \mathfrak{R}$ and $\boldsymbol{v}_{k} \in \mathfrak{R}^{K}$.
Then for any continuous function $f(x)$ there exists an RBF network with a set of centers $\boldsymbol{v}_{k} \in \mathfrak{R}^{K}$ and a common width $\sigma>0$ such that $F(\boldsymbol{x})$ realized by RBF network is close to $f(x)$ in L_{p} norm, $p \in[1, \infty]$.
Note: Theorem does not require radial symmetry for kernel $G: \mathfrak{R}^{K} \rightarrow \mathfrak{R}$.

- Useful constraint in RBF design: $K<N$ (number of patterns)
- Gaussian centers as kernels: $\int_{\Re}{ }^{K} G(\boldsymbol{x}) d \boldsymbol{x}=1$

Kernel $G(x)=$ continuous, bounded, and real function of \boldsymbol{x}, symmetric about the origin, where it attains its maximum value.

Comparison of RBF and MLP

- both are nonlinear layered feedforward networks
- both are universal approximators, using parametrized compositions of functions of single variables.
- localized vs. distributed representations on hidden layer =>
- convergence of RBF may be faster
- MLPs are global, RBF are local => MLP need fewer parameters (=> different consequences for generalization)
- different designs of a supervised network:
- MLP = stochastic approximation problem
- RBF = hypersurface-fitting problem in a high-dim. space
- one-stage (MLP) vs. two-stage (RBF) training scheme

Alternative self-organizing modules for center allocation

- Can be useful for input data
- with varying dimensionality across input domain (e.g. Topology Representing Network)
- with non-stationary data distributions - dynamic networks (Dynamic Cell Structures, Growing CS)
- to be coupled with dynamic linear part
- all based on (unsupervised) competitive learning

Example: binary classification with a growing RBF net

(Fritzke, 1994)

Part 2: Reservoir computing

- A relatively new framework for computation derived from a RNN that maps input signals into high-dimensional spaces through the dynamics of a fixed, non-linear system called a reservoir (Schrauwen et al, 2007).
- After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.
- This has two benefits: (1) training is performed only at the readout stage, (2) computational efficiency, with very good accuracy in many tasks.
- Best known models are echo state network (with classical neurons) and liquid state machines (with spiking neurons).

Echo-state network

System equations:
$\boldsymbol{x}(t)=f\left(\mathbf{W} \boldsymbol{x}(t-1)+\mathbf{W}^{\text {inp }} \boldsymbol{u}(t)+\mathbf{W}^{\text {fb }} \boldsymbol{y}(t)\right)$
$\boldsymbol{y}(t)=f^{\text {out }}\left(\mathbf{W}^{\text {out }} \mathbf{z}(t)\right)$

$$
\left.\mathbf{W}^{\text {out }} \sim L \times(N+K)\right]
$$

$\mathbf{z}(t)=[\boldsymbol{x}(t) ; \underline{\boldsymbol{u}(t)}]$.

Echo State Network (ctd)

- studied issues: memory capacity, information transfer, ...
- edge of stability = interesting regime (may be optimal w.r.t. info processing)

ESN training

- Initialize the ESN
- create the reservoir with echo-state property (asymptotic properties of reservoir dynamics are given by driving signal): (Jaeger, 2001)

Network F: $X \times U \rightarrow X$ (with compactness condition) has the echo state property w.r.t. U, if for any left infinite input sequence $u^{-\infty} \in U^{-\infty}$ and any two state vector sequences $x^{-\infty}, y^{-\infty} \in X^{-\infty}$ compatible with $u^{-\infty}$, it holds that $x_{0}=y_{0}$.

- small random input weights (with uniform or gaussian distribution)
- Collect reservoir states
- feed input sequence into network (recursively apply state eq.)
- Compute output weights
- Supervised learning, via pseudoinverse of X, or RLS
- ESN reservoir has a Markov property (in symbolic dynamics)

ESN properties

Echo-state property (ESP): depends on spectral properties of $\boldsymbol{W}=$ (typically) random sparse matrix, measures:

- spectral radius: $\rho(W)=\left|\lambda_{\text {max }}\right|$, i.e. largest absolute eigenvalue,
- spectral norm: $s_{\max }(\boldsymbol{W})=$ largest singular value, relation: $0 \leq \rho(\boldsymbol{W}) \leq s_{\max }(\boldsymbol{W})$
- Criteria for ESP: $S_{\max }(W)<1 \rightarrow$ too strict, $\rho(W)<1$ not sufficient
- New recipe (Yildiz \& Jaeger, 2012): (i) rnd $w_{i j} \geq 0$, (ii) scale \boldsymbol{W} for $\rho(\boldsymbol{W})<1$, (iii) change the signs of a desired number of entries to get some $w_{i j}<0$ as well.
- $\rho(W) \approx 1$ tends to be a "turning point" in behavior (e.g. memory capacity)

Memory capacity (MC): reflects the ability to retrieve input data from reservoir

- scalar i.i.d. inputs assumed, MC depends on W, $\boldsymbol{W}^{\text {inp }}$, reservoir size N, sparsity

$$
\mathrm{MC}=\sum_{k=1}^{k_{\max }} \mathrm{MC}_{k}=\sum_{k=1}^{k_{\max }} \frac{\operatorname{cov}^{2}\left(u(t-k), y_{k}(t)\right)}{\operatorname{var}(u(t)) \cdot \operatorname{var}\left(y_{k}(t)\right)} \quad \begin{aligned}
& y_{k}(t)=\mathbf{w}_{k}^{\text {out }} \mathbf{x}(t)=\tilde{u}(t-k) \\
& k_{\max }=L
\end{aligned}
$$

Reservoir stability - measured by characteristic Lyapunov exponent (Sprott, 2003), That quantifies average divergence of state space trajectories under perturbations.

Memory capacity - calculated

- MC depends on spectral radius ρ and grows with reservoir size N (left)
- for $\rho>1$ the dynamics may become unstable
- MC degrades very gracefully for sparse reservoirs (middle)
- MC can be increased by (iterative) reservoir orthogonalization (right)
- reaching the theoretical limit (N)

ESN behavior optimization

- trade-off b/w MC and predictive capacity (PC) in linear ESN (Marzen, 2019)
- small-world reservoir topology improves performance (both MC and PC) (Kawai,Park, Asada, 2019)
- SW property = short average distance b/w nodes
- Importance of ESN operation at the "edge of criticality" (transition b/w stable regime and chaotic dynamics, $(\rho(W) \approx 1)$
- improves MC (but not PC)
- supports efficient information integration (in complex systems)
- flexibility (vs stability, exploration vs exploitation) (Atasoy, Deco, Kringelbach, 2019)

ESN applications

- time-series prediction
- Sequence classification, e.g. human gesture recognition (Jirak et al, 2020) - participants with smartphone and gesture recognition app \rightarrow
- robot control - target reaching (Reinhart \& Steil, 2009)

- Recent challenges for other tasks (speech recognition, machine translation, ...) \rightarrow randomized transformations work well with minimum effort
- Overview of applications and designs (Sun et al, 2020)

Summary

- RBF - hybrid feedforward NN model
- hidden layer unsupervised (high-dim. projection), output layer supervised (linear readout)
- various training algorithms for setting RBF centers
- RLS for computing output weights, or pseudoinverse
- universal approximator (like MLP)
- applicable for function approximation and classification
- ESN - fast recurrent NN, only linear readout trained
- reservoir = high-dim. spatio-temporal embedding
- good for time series prediction and memory tasks with Markov properties

