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Changes in data dimensionality

● Neural networks process data by nonlinearly transforming them 
over layers

● Dimensionality reduction has many advantages:

– allows to extract features

– leads to abstraction(s)

– allows robustness against noise

● Dimensionality expansion leads to what?

– allows linear separability of inputs

– hence, their better separability
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Combined NN models

● combination of unsupervised and supervised learning
● independent optimization, can be much faster than gradient 

descent, with similar results
● unsupervised learning → clustering
● more hidden units may be needed (compared to a 

completely supervised model)
● Examples:

– learning vector quantization (Kohonen, 1990)
● classifier on top of trained SOM

– radial-basis-function networks (Moody & Darken, 1989)
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● Inputs x , weights w, outputs y
● Output activation: 

● hk = radial activ. function, e.g. 

hk(x) = k(∥x–vk∥) = exp(–∥x–vk∥2/k2)

vk ~ center k, k ~ its width

(d) are (usually) local functions because for d  ∞ (d)  0

 affects generalization

● vk used for approximation of unconditional probability density of input data p(x)

● RBF as a receptive field (easier than that of an MLP)

yi=∑k=1

K
wik hk (x)+wi 0

Radial-Basis-Function neural network

K
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Separability of patterns

● Data projection into high-dim. space:
A complex pattern classification problem cast in a high-dim. space nonlinearly is 
more likely to be linearly separable than in a low-dim. space (Cover, 1965). 

● Consider binary partitioning (dichotomy) for x1,x2,...,xN  (classes C1,C2).  
Dichotomy {C1,C2} is -separable, where (x) = [1(x), 2(x),...,K(x)], if 
∃w ∈ℜK  such that for ∀x∈C1: wT.(x) > 0  and for ∀x∈C2:  wT.(x) < 0.

● {k(x)} – feature functions (hidden space), k = 1,2,...,K

● Sometimes, non-linear transformation can result in linear separability 
without having to increase data dimension (e.g. XOR problem):

k(x) = exp(–∥x–vk∥
2) v1 = [0 0] , v2  = [1 1]
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Interpolation problem

● Mapping data into higher dimensions can be useful:
● Then we can deal with multivariate interpolation in high-dim. space 

(Davis, 1963):

Given the sets {hi ∈ℜK, di ∈ ℜ}, find a function F that satisfies 

the condition: F(hi) = di , i=1,2,...,N.   (in strict sense)
● For RBF, we get the set of linear equations: wT hi = di

 , i = 1,2,...,N.
● If  H-1 exists, the solution is  w = H-1 d
● How can we be sure that interpolation matrix H is nonsingular?

● Theorem: Let {xi ∈ℜn} be a set of distinct points (i=1,2,...,N). Then H 
[N×N] with elements hij = ij (∥xi – xj∥), is nonsingular. (Michelli, 1986)

● a large class of RBFs satisfies this condition
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Training RBF networks

● two-stage process

● nonlinear (layer 1) and linear (layer 2) optimization strategies are 
applied to different learning tasks

● Approaches for layer 1:
– fixed centers selected at random
– self-organized selection of centers

● Approaches for layer 2

– via pseudoinverse H+:  then w = H+ d
– online stochastic optimization (delta rule), 

– online deterministic algorithm (RLS)

● Yet another method: supervised selection of centers and output 
weight setting (not described here)
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Fixed centers selected at random

● “sensible” approach if training data are distributed in a 
representative manner:

G(∥x – vj∥2) = exp(–K∥x – vj∥2/d2max )

K – number of centers, dmax = maxkl{∥vk – vl∥},  => =dmax/(2K)1/2

● RBFs become neither too flat nor too wide

● Alternative: individual widths j, inversely proportional to density 
p(x) – requires experimentation with data

● relatively insensitive to regularization, for larger data sets
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Self-organized selection of centers

Self-organization: K-means clustering:

Initialization: randomize {v1 (0), v2(0) , ..., vK(0)}

Two steps: (until stopping criterion is met)

1. minimize

– by updating cluster centers:  {vk (t)}

2. optimize the encoder:

– by reassigning inputs to clusters  

for given encoder CJ (C )=min
{v k }∑k=1

K

∑C(i)=k
‖x( i)−v k‖

2

Given a set of N observations, find the encoder C that assigns these observations 
to the K clusters in such a way that, within each cluster, the average measure of 
dissimilarity of the assigned observations from the cluster mean is minimized.
● no guarantee for finding an optimum

C (i)=arg mink‖x (i)−vk‖
2
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Recursive Least Squares (RLS)

● RBF centers can be updated recursively

● How to compute optimal output weights, recursively, too?

● RLS algorithm summary: given {(p), d(p)}, p= 1,2,…,N;  p≡t

● Initialize: w(0) = 0, P(0) = λ-1 I,  with λ>0, λ≈0,  regularizer ½λ∥w∥2  
● Repeat:

1.

2.  g(t) = P(t).(t) (gain) 

3.  a(t) = d(t) – wT(t–1) (t)    (prior estimation error)

4.  w(t) = w(t–1) + g(t).a(t)

P (t)=P(t−1)−
P(t−1)Φ( t)ΦT

(t)P (t−1)

1 +ΦT
(t)P(t−1)Φ(t )

1.
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Example using an RBF network

Two-moons classification task: 20 Gaussian units, 1000 points 
used for training, 2000 for testing. Different widths (σ) used.
  

σ = 2.6 σ = 2.4
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Approximation properties of RBF networks

Theorem: (Park & Sandberg, 1991) Let G: ℜK  ℜ be an integrable 

bounded function such that G is continuous and ∫ℜ
K

 G(x) dx ≠ 0. The 

family of RBF networks consists of functions F: ℜk  ℜ:
F(x) =  ∑Kk=1 wk G((x–vk)/) 

where  > 0,  wk ∈ℜ and vk ∈ℜK. 

Then for any continuous function f(x) there exists an RBF network with 

a set of centers vk ∈ℜK and a common width  > 0 such that F(x) 
realized by RBF network is close to f(x) in Lp norm, p ∈[1,∞].

Note: Theorem does not require radial symmetry for kernel G: ℜK  ℜ.

● Useful constraint in RBF design: K < N (number of patterns) 
● Gaussian centers as kernels: ∫ℜ

K
 G(x) dx = 1

Kernel G(x) = continuous, bounded, and real function of x, symmetric 
about the origin, where it attains its maximum value.
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Comparison of RBF and MLP

● both are nonlinear layered feedforward networks

● both are universal approximators, using parametrized 
compositions of functions of single variables.

● localized vs. distributed representations on hidden layer =>

– convergence of RBF may be faster

– MLPs are global, RBF are local => MLP need fewer 
parameters

● different designs of a supervised network:

– MLP = stochastic approximation problem

– RBF = hypersurface-fitting problem in a high-dim. space

● one-stage (MLP) vs. two-stage (RBF) training scheme
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Alternative self-organizing modules for 
center allocation

● Can be useful for input data

– with varying dimensionality across input domain (e.g. 
Topology Representing Network)

– with non-stationary distributions – dynamic networks 
(Dynamic Cell Structures, Growing CS)

● to be coupled with dynamic linear part

● all based on competitive learning
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Example: binary classification with a growing RBF net

(Fritzke, 1994)
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Reservoir computing

● A relatively new framework for computation derived from a RNN 
that maps input signals into higher dimensional computational 
spaces through the dynamics of a fixed, non-linear system 
called a reservoir (Schrauwen et al, 2007).

● After the input signal is fed into the reservoir, which is treated as 
a "black box," a simple readout mechanism is trained to read 
the state of the reservoir and map it to the desired output. 

● This has two benefits: (1) training is performed only at the 
readout stage, (2) computational efficiency, with very good 
accuracy in many tasks.

● Best known models are echo state network (with classical 
neurons) and liquid state machines (with spiking neurons).
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Echo-state network

(Jaeger, 2001)

ESN can have an SRN 
architecture, but also 
additional connections are 
possible (useful for some 
tasks).

x( t)=f (W x( t−1)+W inp u( t)+W fb y ( t))

u y

x

y ( t)=f out
(Wout z ( t))

System equations:

Wout  ~ L  (N+K)]

Reservoir units: usually 
nonlinear (tanh), can also 
be linear.

z ( t)=[ x( t) ;u(t )]

Note: these pathways (dotted lines in figure) will not be considered.
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Echo State Network (ctd)

●  studied issues: memory capacity, information transfer, ...
●  edge of stability = interesting regime (may be optimal w.r.t. info processing)
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ESN training
● Initialize the ESN

– create the reservoir with echo-state property (asymptotic 
properties of reservoir dynamics are given by driving signal): 
(Jaeger, 2001)

Network F: X × U → X (with compactness condition) has the echo state 
property w.r.t. U, if for any left infinite input sequence u-∞∈ U-∞ and any two 
state vector sequences x-∞,y-∞ ∈ X-∞ compatible with u-∞, it holds that x0 = y0 .

– small random input weights (with uniform or gaussian distribution)

●  Collect reservoir states
– feed the input sequence into the network (recursively apply 

the state equation) 

●  Compute output weights
– Supervised learning, via pseudoinverse of X, or RLS

● ESN reservoir has a Markov property (in symbolic dynamics)   
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ESN properties

Echo-state property (ESP): depends on spectral properties of W = (typically)  random 
sparse matrix, measures:

   - spectral radius: ρ(W) = |λ
max

|, i.e. largest absolute eigenvalue,

  - spectral norm: s
max

(W) = largest singular value , relation:   0 ≤ ρ(W) ≤ s
max

(W)

● Criteria for ESP: s
max

(W) < 1  → too strict,  ρ(W) < 1 not sufficient

● New recipe (Yildiz & Jaeger, 2012): (i) random w
ij
 ≥ 0, (ii) scale W so that ρ(W) < 1, (iii) 

change the signs of a desired number of entries to get some w
ij
 < 0 as well.

● ρ(W) ≈ 1 tends to be a “turning point” in behavior (e.g. memory capacity)
 

Reservoir stability – measured by characteristic Lyapunov exponent (Sprott, 2003), that
    quantifies the average divergence of state space trajectories under perturbations.

Memory capacity (MC): reflects the ability to retrieve input data from the reservoir
● scalar i.i.d. inputs assumed, MC depends on W, Winp, reservoir size N, sparsity,...
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Memory capacity – calculated

● MC depends on spectral radius ρ and grows with reservoir size N (left)
– for ρ > 1 the dynamics may become unstable

● MC degrades very gracefully for sparse reservoirs (middle)
● MC can be increased by (iterative) reservoir orthogonalization (right)

– reaching the theoretical limit (N)

(Farkas et al, 2016)

(N=100)

(N=100)
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Summary

● RBF – hybrid feedforward NN model

– hidden layer unsupervised (high-dim. projection), output 
layer supervised (linear readout)

– various training algorithms for setting RBF centers 

– RLS for computing output weights, or pseudoinverse

– universal approximator (like MLP)

– applicable for function approximation and classification

● ESN – fast recurrent NN, only linear readout trained

– reservoir = high-dim. spatio-temporal embedding

– good for time series prediction and memory tasks with 
Markov properties


