#### Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava



### **Neural Networks**

#### Lecture 8

# **Expansion of hidden-layer dimension**

# Changes in data dimensionality

- Neural networks process data by nonlinearly transforming them over layers
- Dimensionality reduction has many advantages:
  - allows to extract features
  - leads to abstraction(s)
  - allows robustness against noise
- Dimensionality expansion leads to what?
  - allows linear separability of inputs
  - hence, their better separability

lgor Farkaš 2020 2

#### Combined NN models

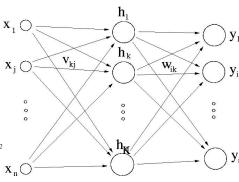
- · combination of unsupervised and supervised learning
- independent optimization, can be much faster than gradient descent, with similar results
- unsupervised learning → clustering
- more hidden units may be needed (compared to a completely supervised model)
- Examples:
  - learning vector quantization (Kohonen, 1990)
    - · classifier on top of trained SOM
  - radial-basis-function networks (Moody & Darken, 1989)

#### Radial-Basis-Function neural network

- Inputs x, weights w, outputs y
- · Output activation:

$$y_i = \sum_{k=1}^{K} w_{ik} h_k(x) + w_{i0}$$

•  $h_k$  = radial activ. function, e.g.  $h_k(x) = \varphi_k(\|x - v_k\|) = \exp(-\|x - v_k\|^2 / \sigma_k^2)$   $v_k \sim \text{center } k, \ \sigma_k \sim \text{its width}$ 



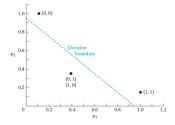
 $\varphi(d)$  are (usually) local functions because for  $d \to \infty$   $\varphi(d) \to 0$   $\sigma$  affects generalization

- $v_k$  used for approximation of unconditional probability density of input data p(x)
- RBF as a receptive field (easier than that of an MLP)

#### Separability of patterns

- Data projection into high-dim. space:

  A complex pattern classification problem cast in a high-dim. space nonlinearly is more likely to be linearly separable than in a low-dim. space (Cover, 1965).
- Consider binary partitioning (dichotomy) for  $x_1, x_2, ..., x_N$  (classes  $C_1, C_2$ ). Dichotomy  $\{C_1, C_2\}$  is  $\phi$ -separable, where  $\phi(x) = [\phi_1(x), \phi_2(x), ..., \phi_K(x)]$ , if  $\exists w \in \Re^K$  such that for  $\forall x \in C_1$ :  $w^T. \phi(x) > 0$  and for  $\forall x \in C_2$ :  $w^T. \phi(x) < 0$ .
- $\{\varphi_k(x)\}$  feature functions (hidden space), k = 1, 2, ..., K
- Sometimes, non-linear transformation can result in linear separability without having to increase data dimension (e.g. XOR problem):



$$\varphi_{\nu}(x) = \exp(-\|x - v_{\nu}\|^2)$$
  $v_1 = [0 \ 0], v_2 = [1 \ 1]$ 

| Input Pattern<br>x | First Hidden Function $\varphi_1(\mathbf{x})$ | Second Hidden Function $\varphi_2(\mathbf{x})$ |
|--------------------|-----------------------------------------------|------------------------------------------------|
| (1,1)              | 1                                             | 0.1353                                         |
| (0,1)              | 0.3678                                        | 0.3678                                         |
| (0,0)              | 0.1353                                        | 1                                              |
| (1,0)              | 0.3678                                        | 0.3678                                         |

# Training RBF networks

- · two-stage process
- nonlinear (layer 1) and linear (layer 2) optimization strategies are applied to different learning tasks
- Approaches for layer 1:
  - fixed centers selected at random
  - self-organized selection of centers
- · Approaches for layer 2
  - via pseudoinverse  $\mathbf{H}^+$ : then  $\mathbf{w} = \mathbf{H}^+ \mathbf{d}$
  - online stochastic optimization (delta rule),
  - online deterministic algorithm (RLS)
- Yet another method: supervised selection of centers and output weight setting (not described here)

#### Interpolation problem

- Mapping data into higher dimensions can be useful:
- Then we can deal with multivariate interpolation in high-dim. space (Davis, 1963):

Given the sets  $\{h_i \in \Re^K, d_i \in \Re\}$ , find a function F that satisfies the condition:  $F(h_i) = d_i$ , i=1,2,...,N. (in strict sense)

- For RBF, we get the set of linear equations:  $\mathbf{w}^{\mathrm{T}}\mathbf{h}_{i} = d_{i}$ , i = 1, 2, ..., N.
- If  $\mathbf{H}^{-1}$  exists, the solution is  $\mathbf{w} = \mathbf{H}^{-1}\mathbf{d}$
- How can we be sure that interpolation matrix H is nonsingular?
- Theorem: Let  $\{x_i \in \Re^n\}$  be a set of distinct points (i=1,2,...,N). Then **H**  $[N \times N]$  with elements  $h_{ii} = \varphi_{ii}(||x_i x_i||)$ , is nonsingular. (Michelli, 1986)
- · a large class of RBFs satisfies this condition

6

#### Fixed centers selected at random

• "sensible" approach if training data are distributed in a representative manner:

$$G(||x - v_i||^2) = \exp(-K||x - v_i||^2/d^2_{\text{max}})$$

K – number of centers,  $d_{\max} = \max_{kl} \{ \| \mathbf{v}_k - \mathbf{v}_l \| \}$ ,  $\Rightarrow \sigma = d_{\max} / (2K)^{1/2}$ 

- · RBFs become neither too flat nor too wide
- Alternative: individual widths  $\sigma_j$ , inversely proportional to density p(x) requires experimentation with data
- relatively insensitive to regularization, for larger data sets

# Self-organized selection of centers

Self-organization: *K*-means clustering:

Initialization: randomize  $\{v_1(0), v_2(0), ..., v_K(0)\}$ 

Two steps: (until stopping criterion is met)

- 1. minimize  $J(C) = \min_{|\mathbf{v}_k|} \sum_{k=1}^K \sum_{C(i)=k} ||\mathbf{x}(i) \mathbf{v}_k||^2$  for given encoder C
- by updating cluster centers:  $\{v_k(t)\}$
- 2. optimize the encoder:  $C(i) = arg \min_{k} ||x(i) v_k||^2$
- by reassigning inputs to clusters

Given a set of N observations, find the encoder C that assigns these observations to the K clusters in such a way that, within each cluster, the average measure of dissimilarity of the assigned observations from the cluster mean is minimized.

no guarantee for finding an optimum

# Recursive Least Squares (RLS)

- · RBF centers can be updated recursively
- · How to compute optimal output weights, recursively, too?
- RLS algorithm summary: given  $\{\phi(p), d(p)\}, p=1,2,...,N; p\equiv t$
- *Initialize:*  $w(0) = \mathbf{0}$ ,  $\mathbf{P}(0) = \lambda^{-1}\mathbf{I}$ , with  $\lambda > 0$ ,  $\lambda \approx 0$ , regularizer  $\frac{1}{2}\lambda \|\mathbf{w}\|^2$
- Repeat:

9

1: 
$$\mathbf{P}(t) = \mathbf{P}(t-1) - \frac{\mathbf{P}(t-1)\mathbf{\Phi}(t)\mathbf{\Phi}^{T}(t)\mathbf{P}(t-1)}{1+\mathbf{\Phi}^{T}(t)\mathbf{P}(t-1)\mathbf{\Phi}(t)}$$

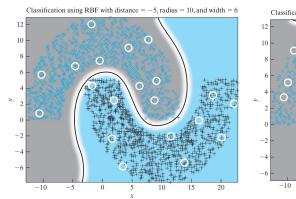
- 2.  $g(t) = P(t).\phi(t)$  (gain)
- 3.  $a(t) = d(t) \mathbf{w}^{T}(t-1) \, \phi(t)$  (prior estimation error)
- 4. w(t) = w(t-1) + g(t).a(t)

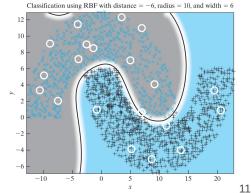
10

# Example using an RBF network

Two-moons classification task: 20 Gaussian units, 1000 points used for training, 2000 for testing. Different widths ( $\sigma$ ) used.

$$\sigma = \frac{d_{max}}{\sqrt{2R}}$$
 
$$\sigma = 2.6$$
 
$$\sigma = 2.4$$
 F with distance = -5, radius = 10, and width = 6





#### Approximation properties of RBF networks

Theorem: (Park & Sandberg, 1991) Let  $G: \Re^{\kappa} \to \Re$  be an integrable bounded function such that G is continuous and  $\int_{\Re^{\kappa}} G(x) \, dx \neq 0$ . The family of RBF networks consists of functions  $F: \Re^{\kappa} \to \Re$ :

$$F(\mathbf{x}) = \sum_{k=1}^{K} w_k G((\mathbf{x} - \mathbf{v}_k) / \sigma)$$

where  $\sigma > 0$ ,  $w_k \in \Re$  and  $v_k \in \Re^K$ .

Then for any continuous function f(x) there exists an RBF network with a set of centers  $v_k \in \Re^K$  and a common width  $\sigma > 0$  such that F(x) realized by RBF network is close to f(x) in  $L_p$  norm,  $p \in [1,\infty]$ .

*Note:* Theorem does not require radial symmetry for kernel  $G: \Re^K \to \Re$ .

- Useful constraint in RBF design: K < N (number of patterns)
- Gaussian centers as kernels:  $\int_{\Re} K G(x) dx = 1$

Kernel G(x) = continuous, bounded, and real function of x, symmetric about the origin, where it attains its maximum value.

#### Comparison of RBF and MLP

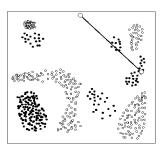
- both are nonlinear layered feedforward networks
- both are universal approximators, using parametrized compositions of functions of single variables.
- localized vs. distributed representations on hidden layer =>
  - convergence of RBF may be faster
  - MLPs are global, RBF are local => MLP need fewer parameters
- different designs of a supervised network:
  - MLP = stochastic approximation problem
  - RBF = hypersurface-fitting problem in a high-dim. space
- one-stage (MLP) vs. two-stage (RBF) training scheme

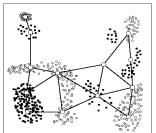
# Alternative self-organizing modules for center allocation

- Can be useful for input data
  - with varying dimensionality across input domain (e.g. Topology Representing Network)
  - with non-stationary distributions dynamic networks (Dynamic Cell Structures, Growing CS)
- to be coupled with dynamic linear part
- all based on competitive learning

13 14

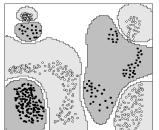
#### Example: binary classification with a growing RBF net









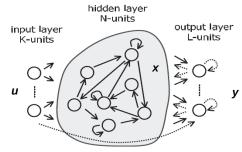


(Fritzke, 1994)

#### Reservoir computing

- A relatively new framework for computation derived from a RNN that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir (Schrauwen et al, 2007).
- After the input signal is fed into the reservoir, which is treated as a "black box," a simple readout mechanism is trained to read the state of the reservoir and map it to the desired output.
- This has two benefits: (1) training is performed only at the readout stage, (2) computational efficiency, with very good accuracy in many tasks.
- Best known models are echo state network (with classical neurons) and liquid state machines (with spiking neurons).

#### Echo-state network



System equations:

(Jaeger, 2001)

ESN can have an SRN architecture, but also additional connections are possible (useful for some tasks).

Reservoir units: usually nonlinear (tanh), can also be linear.

$$x(t) = f(\mathbf{W} x(t-1) + \mathbf{W}^{\text{inp}} \mathbf{u}(t) + \mathbf{W}^{\text{fb}} \mathbf{y}(t))$$

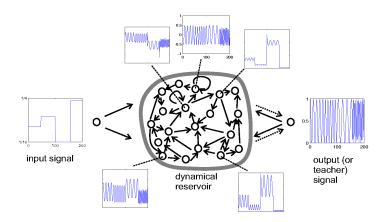
$$y(t) = f^{\text{out}}(\mathbf{W}^{\text{out}} \mathbf{z}(t))$$

$$\mathbf{z}(t) = [\mathbf{x}(t); \underline{\mathbf{u}(t)}]$$

$$\mathbf{w}^{\text{out}} \sim L \times (N+K)$$

Note: these pathways (dotted lines in figure) will not be considered.

# Echo State Network (ctd)



- studied issues: memory capacity, information transfer, ...
- edge of stability = interesting regime (may be optimal w.r.t. info processing)

### **ESN** training

#### Initialize the ESN

 create the reservoir with echo-state property (asymptotic properties of reservoir dynamics are given by driving signal): (Jaeger, 2001)

Network  $F: X \times U \to X$  (with compactness condition) has the **echo state property** w.r.t. U, if for any left infinite input sequence  $u^{-\infty} \in U^{-\infty}$  and any two state vector sequences  $x^{-\infty}, y^{-\infty} \in X^{-\infty}$  compatible with  $u^{-\infty}$ , it holds that  $x_0 = y_0$ .

- small random input weights (with uniform or gaussian distribution)

#### Collect reservoir states

 feed the input sequence into the network (recursively apply the state equation)

#### Compute output weights

- Supervised learning, via pseudoinverse of X, or RLS

• ESN reservoir has a Markov property (in symbolic dynamics)

#### **ESN** properties

Echo-state property (ESP): depends on spectral properties of  $\mathbf{W}$  = (typically) random sparse matrix, measures:

- spectral radius:  $\rho(\mathbf{W}) = |\lambda_{max}|$ , i.e. largest absolute eigenvalue,
- spectral norm:  $s_{max}(\mathbf{W})$  = largest singular value , relation:  $0 \le \rho(\mathbf{W}) \le s_{max}(\mathbf{W})$
- Criteria for ESP:  $s_{max}(W) < 1 \rightarrow too strict, \ \rho(W) < 1 not sufficient$
- New recipe (Yildiz & Jaeger, 2012): (i) random  $w_{ij} \ge 0$ , (ii) scale **W** so that  $\rho(\mathbf{W}) < 1$ , (iii) change the signs of a desired number of entries to get some  $w_{ij} < 0$  as well.
- $\rho(\mathbf{W}) \approx 1$  tends to be a "turning point" in behavior (e.g. memory capacity)

Memory capacity (MC): reflects the ability to retrieve input data from the reservoir

• scalar i.i.d. inputs assumed, MC depends on **W**, **W**<sup>inp</sup>, reservoir size *N*, sparsity,...

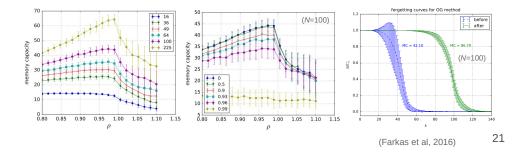
$$MC = \sum_{k=1}^{k_{\text{max}}} MC_k = \sum_{k=1}^{k_{\text{max}}} \frac{cov^2(u(t-k), y_k(t))}{var(u(t)) \cdot var(y_k(t))}$$
 
$$y_k(t) = \mathbf{w}_k^{\text{out}} \mathbf{x}(t) = \tilde{u}(t-k)$$
 
$$k_{\text{max}} = L$$

Reservoir stability – measured by characteristic Lyapunov exponent (Sprott, 2003), that quantifies the average divergence of state space trajectories under perturbations.

18

# Memory capacity – calculated

- MC depends on spectral radius  $\boldsymbol{\rho}$  and grows with reservoir size N (left)
  - for  $\rho > 1$  the dynamics may become unstable
- MC degrades very gracefully for sparse reservoirs (middle)
- MC can be increased by (iterative) reservoir orthogonalization (right)
  - reaching the theoretical limit (N)



### Summary

- RBF hybrid feedforward NN model
  - hidden layer unsupervised (high-dim. projection), output layer supervised (linear readout)
  - various training algorithms for setting RBF centers
  - RLS for computing output weights, or pseudoinverse
  - universal approximator (like MLP)
  - applicable for function approximation and classification
- ESN fast recurrent NN, only linear readout trained
  - reservoir = high-dim. spatio-temporal embedding
  - good for time series prediction and memory tasks with Markov properties