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* Neural networks process data by nonlinearly transforming them
over layers

* Dimensionality reduction has many advantages:
- allows to extract features

Neural Networks - leads to abstraction(s)

- allows robustness against noise

Lecture 8 * Dimensionality expansion leads to what?
- allows linear separability of inputs
Expansion of hidden-layer dimension - hence, their better separability
Igor Farka$ 2020 2
Combined NN models Radial-Basis-Function neural network
hl

« combination of unsupervised and supervised learning * Inputs x , weights w, outputs y %0 () — v,
* independent optimization, can be much faster than gradient * Output activation: h,

descent, with similar results K X0 m O Vi 7 Q Y,

. | . v= T Wl (X, N/ N/

* unsupervised learning - clustering Pok=1 i
* more hidden units may be needed (compared to a . . . 4 ‘ ‘

completely supervised model) * h,= radial activ. function, e.g.
* Examples: h(x) = @l ll) = exp(~lle—v,ll2/a2 &15 O %

- learning vector quantization (Kohonen, 1990) v, ~ center k, o, ~ its width X, O~

* classifier on top of trained SOM

- radial-basis-function networks (Moody & Darken, 1989)

p(d) are (usually) local functions because for d — oo ¢(d) = 0
o affects generalization
* v, used for approximation of unconditional probability density of input data p(x)

* RBF as a receptive field (easier than that of an MLP)



Separability of patterns

Data projection into high-dim. space:
A complex pattern classification problem cast in a high-dim. space nonlinearly is
more likely to be linearly separable than in a low-dim. space (Cover, 1965).

Dichotomy {C,,C,} is ¢-separable, where ¢(x) = [@,(x), @y(x),...,0xx)], if
Iw eRK such that for VxeC,: wr.$p(x) > 0 and for VxeC,: wT.¢(x) < 0.

Consider binary partitioning (dichotomy) for x,,x,,...,.xy (classes C,,C,).

{pu(x)} - feature functions (hidden space), k= 1,2,...,.K

Sometimes, non-linear transformation can result in linear separability
without having to increase data dimension (e.g. XOR problem):

W e @,(x) = exp(_”x_vknz) vy=[00],v, =[11]

osf ™

Input Pattern First Hidden Function  Second Hidden Function

x atey) ©(x)
0.4
(1,1) 1 01353
b 0,1) 03678 03678
o1 (0.0) 0.1353 1
(1,0 03678 03678

Training RBF networks

two-stage process

nonlinear (layer 1) and linear (layer 2) optimization strategies are
applied to different learning tasks

Approaches for layer 1:
- fixed centers selected at random
- self-organized selection of centers

Approaches for layer 2

- via pseudoinverse H+: then w = H+d

- online stochastic optimization (delta rule),
- online deterministic algorithm (RLS)

Yet another method: supervised selection of centers and output
weight setting (not described here)

Interpolation problem

Mapping data into higher dimensions can be useful:

Then we can deal with multivariate interpolation in high-dim. space
(Davis, 1963):

Given the sets {h,€RK, d,€ R}, find a function F that satisfies
the condition: F(h) =d,, i=1,2,...,.N. (in strict sense)
For RBF, we get the set of linear equations: wth,=d,, i = 1,2,...,N.
If Hexists, the solutionis w=H-'d

How can we be sure that interpolation matrix H is nonsingular?

Theorem: Let {x,€%Rn} be a set of distinct points (i=1,2,...,N). Then H
[NXN] with elements h;= @, (||x;—x,||), is nonsingular. (Michelli, 1986)

a large class of RBFs satisfies this condition

Fixed centers selected at random

“sensible” approach if training data are distributed in a
representative manner:

G(|lx = v,[|2) = exp(—K||x —v,||%/d2,, )
K — number of centers, d,,,, = max,{||[v,— v/}, => 0=d,,/(2K)”2

RBFs become neither too flat nor too wide

Alternative: individual widths o,, inversely proportional to density
p(x) — requires experimentation with data

relatively insensitive to regularization, for larger data sets



Self-organized selection of centers

Self-organization: K-means clustering:
Initialization: randomize {v, (0), v,(0), ..., v(0)}
Two steps: (until stopping criterion is met)
1. minimize J(C)=minmz,ilzc(i)=k||x(i)—vk||2 for given encoder C
- by updating cluster centers: {v, ()}
2. optimize the encoder:  Cl(i)=argmin,||x (i) = v
- by reassigning inputs to clusters
Given a set of N observations, find the encoder C that assigns these observations
to the K clusters in such a way that, within each cluster, the average measure of

dissimilarity of the assigned observations from the cluster mean is minimized.
* no guarantee for finding an optimum

Example using an RBF network

Two-moons classification task: 20 Gaussian units, 1000 points
used for training, 2000 for testing. Different widths (o) used.

0=26 0=24

Classification using RBF with distance = —5, radius = 10, and width = 6 Classification using RBF with distance = —6, radius = 10, and width = 6

1. P(t)=P(t—1)-

Recursive Least Squares (RLS)

* RBF centers can be updated recursively
* How to compute optimal output weights, recursively, too?

* RLS algorithm summary: given {$(p), d(p)}, p=1,2,...,N; p=t
* Initialize: w(0) = 0, P(0) = A I, with A>0, A~0, regularizer Yah|lw|2

* Repeat:

P(t—1)®(t)®" (t)P(t—1)
1+®" (1) P(t—1)®(t)

2. g()=P(1).p@) (gain)
3. a(t) =d(t) —wT(t—1) d(r) (prior estimation error)

4. w(t) =w(t-1) + g(t).a(r)
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Approximation properties of RBF networks

Theorem: (Park & Sandberg, 1991) Let G: Rk — R be an integrable
bounded function such that G is continuous and [ % G(x) dx # 0. The
family of RBF networks consists of functions F: Rk — R:

F(x) = 2K w, G((x—v,)/0)
where o > 0, w,€R and v, eRK.

Then for any continuous function f(x) there exists an RBF network with
a set of centers v, R« and a common width o > 0 such that F(x)
realized by RBF network is close to f(x) in L, norm, p €[1,x].

Note: Theorem does not require radial symmetry for kernel G: Rk — R.
» Useful constraint in RBF design: K < N (number of patterns)
* Gaussian centers as kernels: [4KG(x) dx = 1

Kernel G(x) = continuous, bounded, and real function of x, symmetric
about the origin, where it attains its maximum value.
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Comparison of RBF and MLP

both are nonlinear layered feedforward networks

both are universal approximators, using parametrized
compositions of functions of single variables.

localized vs. distributed representations on hidden layer =>
- convergence of RBF may be faster

- MLPs are global, RBF are local => MLP need fewer
parameters

different designs of a supervised network:

- MLP = stochastic approximation problem

- RBF = hypersurface-fitting problem in a high-dim. space
one-stage (MLP) vs. two-stage (RBF) training scheme
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Example: binary classification with a growing RBF net

] (Fritzke, 1994)
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Alternative self-organizing modules for
center allocation

* Can be useful for input data

- with varying dimensionality across input domain (e.g.
Topology Representing Network)

- with non-stationary distributions — dynamic networks
(Dynamic Cell Structures, Growing CS)

* to be coupled with dynamic linear part

 all based on competitive learning

Reservoir computing

A relatively new framework for computation derived from a RNN
that maps input signals into higher dimensional computational
spaces through the dynamics of a fixed, non-linear system
called a reservoir (Schrauwen et al, 2007).

After the input signal is fed into the reservoir, which is treated as
a "black box," a simple readout mechanism is trained to read
the state of the reservoir and map it to the desired output.

This has two benefits: (1) training is performed only at the
readout stage, (2) computational efficiency, with very good
accuracy in many tasks.

Best known models are echo state network (with classical
neurons) and liquid state machines (with spiking neurons).
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Echo-state network

hidden layer

Neunite (Jaeger, 2001)

input layer output layer
K-units L-units
ESN can have an SRN
O” X | ¥« architecture, but also
u i = -~ additional connections are
7 D y possible (useful for some
o4 < O tasks).
T A_,.‘-""’

Reservoir units: usually
nonlinear (tanh), can also
be linear.

System equations:

F(W x(e=1)+ W™ u(t) + WPy ¢)
(t)=f° (W (1)
[x(e);u(0)]

Note:\the's’e pathways (dotted lines in figure) will not be considered. 17

W ~ L X (N+K)]

ESN training

¢ |nitialize the ESN

- create the reservoir with (asymptotic

properties of reservoir dynamics are given by driving signal):
(Jaeger, 2001)

Network F: X x U - X (with compactness condition) has the echo state
property w.r.t. U, if for any left infinite input sequence u-~e U~ and any two
state vector sequences x-=,y- € X- compatible with u->, it holds that x,=y,.

- small random input weights (with uniform or gaussian distribution)

» Collect reservoir states
- feed the input sequence into the network (recursively apply
the state equation)
* Compute output weights
- Supervised learning, via pseudoinverse of X, or RLS

» ESN reservoir has a Markov property (in symbolic dynamics)
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Echo State Network (ctd)
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* studied issues: memory capacity, information transfer, ...
* edge of stability = interesting regime (may be optimal w.r.t. info processing)
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ESN properties

Echo-state property (ESP): depends on spectral properties of W = (typically) random
Sparse matrix, measures:

- spectral radius: p(W) = |A__ |, i.e. largest absolute eigenvalue,

- spectral norm: s__ (W) = largest singular value , relation: 0 <p(W)<s__(W)

» Criteriafor ESP:s (W) <1 - too strict, p(W) < 1 not sufficient

« New recipe (Yildiz & Jaeger, 2012): (i) random w, 2 0, (ii) scale W so that p(W) < 1, (iii)
change the signs of a desired number of entries to get some w, < 0 as well.

* p(W) =1 tends to be a “turning point” in behavior (e.g. memory capacity)

Memory capacity (MC): reflects the ability to retrieve input data from the reservoir
* scalar i.i.d. inputs assumed, MC depends on W, W™, reservoir size N, sparsity,...

Kmax Fma 2 yp(t) = wiitx(t) = a(t — k)
e ’ - cov?(ul(t — k), yp (1)) ke
MCE = ; MGy = ; var(u(t)) - var(ye(t)) Fmax = L

Reservoir stability — measured by characteristic Lyapunov exponent (Sprott, 2003), that

guantifies the average divergence of state space trajectories under perturbations.
20



memory capacity

Memory capacity — calculated

* MC depends on spectral radius p and grows with reservoir size N (left)

— for p > 1 the dynamics may become unstable

* MC degrades very gracefully for sparse reservoirs (middle)
* MC can be increased by (iterative) reservoir orthogonalization (right)
— reaching the theoretical limit (N)
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(Farkas et al, 2016)

Summary

* RBF — hybrid feedforward NN model

hidden layer unsupervised (high-dim. projection), output
layer supervised (linear readout)

various training algorithms for setting RBF centers
RLS for computing output weights, or pseudoinverse
universal approximator (like MLP)

applicable for function approximation and classification

* ESN —fast recurrent NN, only linear readout trained

reservoir = high-dim. spatio-temporal embedding

good for time series prediction and memory tasks with
Markov properties

22



