Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Lecture 2

Simple perceptron

|gor Farkas 2024

Classical perceptron

In 1958, F. Rosenblatt (American psychologist) proposed perceptron,
a more general computational model (than McCulloch-Pitts’ TL units)
with free parameters, stochastic connectivity and threshold element.

In 1950, Hubel & Wiesel “decoded” the
structure of retina and receptive fields.

responses
projection area association area

local connections random

connections

receptive field

Discrete perceptron

Inputs x , weights w, output y

X O—
Function:
M Activation
Xy O = function
y f(z W; 'x]_ 8) Input f Output
n+1 signals ©y
y:f(ZjZI ijj> Sumting
— 8 function
Ko O Threshold
f = threshold (step) function Synamti weights
Supervised learning — with teacher d
e.g.d=1forVx € Cl,d =0 for VxeC2 \
1
Learning: jf wZx <0 butx € C1, then w(t+1) = w(t) + x
if wix > 0butx € C2, then w(t+1) = w(t) — x R
o g

or: wit+l)=wi(t)+x (d—y) x; X = learning rate

Rosenblatt F. (1962). Principles of Neurodynamics, Spartan, New York.

Perceptron algorithm

Given: input-target {x», d»} pairs, unipolar perceptron

Initialization: randomize weights, shuffle the pairs, set learning
rate, set £=0.

Training:

1. choose next input x, compute output y
2. evaluate error function, e(r) = V2 (d» — y»)2, E = E + e(?)
3. If ¢(t) > 0, adjust weights using perceptron rule

4. if not all inputs used, then goto 1, else goto 5

5.1f E==0 (all inputs in the set classified correctly), then end
else reshuffle the pairs, £ =0, go to 1.

Perceptron classification capacity

Wik W+t wx, =0 linear separability of two classes

2D case

linear
decision
boundary

Fixed-increment convergence theorem (Rosenblatt, 1962): “Let the classes A
and B are finite and linearly separable, then perceptron learning algorithm
converges (updates its weight vector) in a finite number of steps.”

w'x> 0 for C1
w'x < 0 for C2

easy

(Hertz et al, 1990)

Finding a solution

FIGURE 5.6 How the weight
vector evolves during train-
ing for £ = 0, n = 1. Suc-
cessive values of the weight
vector are shown by w, w’,
w”, and w”. The darker and
darker shading shows the
“bad” region where w-x < 0
for the successive w vectors.
Each w is found from the
previous one (e.g., w’ from
w) by adding an x* from
the current bad region.

%
%
-

A
i

0O @
w O
s 0
&
uh“ @
Ty
-.o ®
“.'\u
_______ Toadmteathey X
Sy
%
‘."“l&
Sy
.‘.“I-

more difficult

Continuous perceptron

Nonlinear unit with activation function: y = f(net) = 1/ (1+e")

Has nice properties:

ﬁ (unipolar)
* boundedness sigmoid
* monotonicity /
* differentiability _—

Error function (e.g. quadratic): E(w) = 2,e? = %5 2,(d?») — y»)?
over dataset p , also called loss function (objective function)

We want to minimize the error function: necessary conditions
e(w*) < e(w) and Ve(w*) =0, gradient operator

V =[0/ow,, dlow,, ...]". Minimizing E(w) leads to

(stochastic, online) gradient descent learning:
wit+1) = wi(t) + & (d» —y») f'(net) x; = wit) + xOP x»

Error surface for a continuous perceptron

 Assume 1 neuron, linear or with a sigmoid function
e The output error e = f(w,w,, ..., w,), assume quadratic error

* For alinear neuron with n inputs, we have a convex function

(quadratic bowl); vertical cross-sections are parabolas; horizontal
cross-sections are ellipses.

err = 3 dim.

err A

?,

1-dim. 2-dim.

weight space

w2

Effect of learning rate

0.02

o0
3 7
wl
0.0476 0.049 0.0505

(Hertz et al, 1990)

Linear neuron as a least-squares filter

Consider: y = w'x = x™w, input-target pairs {x®», d?} ,p=1, ... N
Collect inputs X = [xD x® ... x™]T (Nxn matrix)

Lete = [e!) €@ ... e™]T then output error e=d - X.w

Gauss-Newton method: E(w) = %2 X,(d” — y»)2, compute Ve (nXN)
J = 0e®[ow, = Jacobian J(r) = [j] is (Nxn) J(#) = -X(7) = [Ve']
e'w)™M =ew)+ JM.(w—-wP). [linearity assumption of error f.]
Substitute [N = ¢] w(+1) =arg min {1/2 |le'(z,w)||*} ...

Update w(r+1) =w(t) - (J' (0 J@)) J (@) e(r) = w(t) + (XN(1) X (1))'X()[d(7) —
XOw®] = [X'(OX©®))'XOd@®) = w(t+]) =X(1) d(1)

“The weight vector w(t+1) solves the least-squares problem in an observation
interval until time t.”

neuron as a linear regressor

Alternative loss function: cross entropy

Useful for classification, leads to probabillity (uncertainty)

Error function — cross-entropy (for one output):

[relative entropy b/w empirical probability distribution (d®,1—- d®) and output
distribution (y,1—y)]

E, W) =Z3,E”=-3,[d”Iny”+ (1-d?)In (1 -y»)]
— negative log-likelihood (in probabilistic models)

minimization of E» results in a learning rule:
wit+1) = wit) + & (dP —y») x»

Note: In case of 2 classes one can use logistic unit (for C,: d=1; C: d =0),

then the output y can be interpreted as P(C,|x) = 1 - P(C,| x)

Bayes classifier for two classes

* (linear) Bayes classifier for a 1D Gaussian environment
e for convenience, decision borderisatx =0

Decision
boundary

M1 0 \ 2%}
Class Class
6, 6

12

Perceptron link to Bayes classifier

Assumptions:

random vector X, two classes C: E[X|=m,, C, E|X]=m,

« covariance matrix C = E[(X —m))(X —m))"] = E[(X —m,)(X —m,)"]

We can express conditional probability density function:
f(x|C) = [(2m)2det(C)"2]! exp[-Ya(x — m)"C'(x — m,)]
X — observation vector, i ={1,2}

- the 2 classes are equiprobable, i.e. p, = p, (a priori probs)
« (mis)classifications carry the same cost, i.e. w_,=w,, w,=w,=0

Bayes classifier: “If p,(w,,—w,) f(x|C)) > p,(w,,—w,) f(x|C),
assign the observation vector x to C,. Otherwise, assign it to C,.”

Bayes classifier (ctd)

Define likelihood ratio A(x) = f(x | C,)/ f(x|C,) and
threshold € = [p,(w ,— w,)]/ [p,(w,,— w,)]. Then:

log Ax) =—12(x —m)'C'(x —m,) + Va(x —m,)" C-'(x —m,)
logg =0
Then: we get a linear Bayes classifier y = w'x + b where

y=log Ax), w=Clm,—m,), b="2(m,'C'm,—m,"C'm,) -
log-likelihood test: If vy > 0, then x €C,, else C,.

Differences b/w Perceptron (P) and Bayes classifier (BC):

- P assumes linear separability, BC does not

— P convergence algorithm is non-parametric, unlike BC

- P convergence algorithm is adaptive and simple, unlike BC.

14

Perceptron limits - XOR

« Consider a perceptron classifying shapes as connected or
disconnected and taking inputs from shape ends (shown as dashed
circles for pattern 1)

» The problem arises because a single layer of processing local
knowledge cannot be combined into global knowledge

* No feature-weighing machine (such as a simple perceptron) can do
this type of separation, because information about the relation
between the bits of evidence is lost (proven by Minsky & Papert, 1969)

 This problem caused the loss of interest in connectionism (in 1970s),
since many real problems are not linearly separable.

Summary

binary and continuous perceptron

single perceptron can linearly separate two classes:
perceptron as a detector (of half input space)
optimization: gradient descent learning

link to adaptive filtering — error correction learning
two types of error (loss) functions

link to statistics: probabilistic Bayes classifier
limitations of a simple perceptron

a single neuron model, with any activation function, is linear in
Its parameters.

	2. Simple perceptrons
	Classical perceptron
	Discrete perceptron
	Perceptron algorithm
	Linear separability of classes
	Finding a solution
	Continuous perceptron
	Error surface
	Effect of learning rate
	Linear neuron as LS filter
	Cross-entropy error function
	Bayes classifier
	Link to perceptron
	Bayes classifier (ctd)
	Problem behind XOR
	Perceptron summary

