

1

Lecture 2

Simple perceptron

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2024

2

Classical perceptron

In 1958, F. Rosenblatt (American psychologist) proposed perceptron,
a more general computational model (than McCulloch-Pitts’ TL units)
with free parameters, stochastic connectivity and threshold element.

receptive field

In 1950, Hubel & Wiesel “decoded” the
structure of retina and receptive fields.

3

Discrete perceptron

● Inputs x , weights w, output y
● Function:

● f = threshold (step) function
● Supervised learning – with teacher d
● e.g. d = 1 for ∀x ∈ C1, d = 0 for ∀x∈C2
● Learning:

y= f (∑ j=1

n+1
w j x j) xn+1=−1

wj(t+1) = wj(t) +  (d – y) xj

Rosenblatt F. (1962). Principles of Neurodynamics, Spartan, New York.

y= f (∑ j=1

n
w j x j−θ)

wn+1=θ

 if wTx ≤0 but x ∈ C1, then w(t+1) = w(t) + x
 if wTx > 0 but x ∈ C2, then w(t+1) = w(t) – x

 = learning rateOr:

4

Perceptron algorithm

1. choose next input x, compute output y

2. evaluate error function, e(t) = ½ (d(p) – y(p))2, E = E + e(t)

3. if e(t) > 0, adjust weights using perceptron rule

4. if not all inputs used, then goto 1, else goto 5

5. if E == 0 (all inputs in the set classified correctly), then end
else reshuffle the pairs, E =0, go to 1.

Given: input-target {x(p), d(p)} pairs, unipolar perceptron
Initialization: randomize weights, shuffle the pairs, set learning

rate, set E = 0.
Training:

5

Perceptron classification capacity

linear separability of two classes

linear
decision
boundary

w1x1 + w2x2 + ... + wnxn = 

Fixed-increment convergence theorem (Rosenblatt, 1962): “Let the classes A
and B are finite and linearly separable, then perceptron learning algorithm
converges (updates its weight vector) in a finite number of steps.”

2D case

x1

x2

6

Finding a solution

easy more difficult

wTx > 0 for C1
wTx ≤0 for C2

(Hertz et al, 1990)

7

Continuous perceptron

● Nonlinear unit with activation function: y = f(net) = 1 / (1+e-net)
● Has nice properties:

● boundedness
● monotonicity
● differentiability

● Error function (e.g. quadratic): E(w) = p e(p) = ½ p(d(p) – y(p))2

over dataset p , also called loss function (objective function)
● We want to minimize the error function: necessary conditions

e(w*) ≤ e(w) and ∇e(w*) = 0, gradient operator
∇ = [∂/∂w1, ∂/∂w2, ...]T. Minimizing E(w) leads to

● (stochastic, online) gradient descent learning:

 wj(t+1) = wj(t) +  (d(p) – y(p)) f '(net) xj = wj(t) + (p) xj
(p)

(unipolar)
sigmoid

8

 Error surface for a continuous perceptron

weight space
w1

w2

● Assume 1 neuron, linear or with a sigmoid function

● The output error e = f(w1,w2, ..., wn), assume quadratic error

● For a linear neuron with n inputs, we have a convex function
(quadratic bowl); vertical cross-sections are parabolas; horizontal
cross-sections are ellipses.

err

w
1-dim. 2-dim.

err = 3rd dim.

9

Effect of learning rate

E=w1
2+20 w2

2

w1

w2

(Hertz et al, 1990)

 0.02 0.0476 0.049 0.0505

10

Linear neuron as a least-squares filter

● Consider: y = wTx = xTw, input-target pairs {x(p), d(p)} , p = 1, ..., N

● Collect inputs X = [x(1) x(2) x(N)]T (N×n matrix)

● Let e = [e(1) e(2) ... e(N)]T then output error e = d – X.w

● Gauss-Newton method: E(w) = ½ p(d(p) – y(p))2, compute ∇e (n×N)

● jpk = ∂e(p)/∂wk  Jacobian J(t) = [jpk] is (N×n) J(t) = –X(t) = [∇eT]
● e'(w)(N) = e(w) + J(N).(w – w(N)). [linearity assumption of error f.]

● Substitute [N ≡ t] w(t+1) = arg minw {1/2 ||e'(t,w)||2} …
● Update w(t+1) = w(t) – (JT(t) J(t))-1J(t) e(t) = w(t) + (XT(t) X(t))-1X(t)[d(t) –

X(t) w(t)] = [XT(t) X(t))-1X(t)] d(t)  w(t+1) = X+(t) d(t)
● “The weight vector w(t+1) solves the least-squares problem in an observation

interval until time t.”

● neuron as a linear regressor

11

Alternative loss function: cross entropy

● Useful for classification, leads to probability (uncertainty)
● Error function – cross-entropy (for one output):

[relative entropy b/w empirical probability distribution (d(p),1– d(p)) and output
distribution (y,1–y)]

ECE (w) = p E(p) = – p [d(p) ln y(p) + (1 – d(p)) ln (1 – y(p))]

● → negative log-likelihood (in probabilistic models)
● minimization of E(p) results in a learning rule:

wj(t+1) = wj(t) +  (d(p) – y(p)) xj
(p)

● Note: In case of 2 classes one can use logistic unit (for C1: d = 1; C2: d =0),

● then the output y can be interpreted as P(C1 | x) = 1 – P(C2 | x)

12

Bayes classifier for two classes

● (linear) Bayes classifier for a 1D Gaussian environment
● for convenience, decision border is at x = 0

13

Perceptron link to Bayes classifier

Assumptions:

● random vector X, two classes C1: E[X] = m1, C2: E[X] = m2

● covariance matrix C = E[(X – m1)(X – m1)T] = E[(X – m2)(X – m2)T]
We can express conditional probability density function:
 f (x∣Ci) = [(2)m/2det(C)1/2]-1 exp[–½(x – mi)TC-1(x – mi)]

 x – observation vector, i ={1,2}

● the 2 classes are equiprobable, i.e. p1 = p2 (a priori probs)

● (mis)classifications carry the same cost, i.e. 12 = 21, 11 = 22= 0

Bayes classifier: “If p1(21 – 11) f (x∣C1) > p2(12 – 22) f (x∣C2),
assign the observation vector x to C1. Otherwise, assign it to C2.”

14

Bayes classifier (ctd)

● Define likelihood ratio (x) = f (x∣C1) / f (x∣C2) and
threshold  = [p2(12 – 22)] / [p1(21 – 11)]. Then:

● log (x) = – ½ (x – m1)TC-1(x – m1) + ½(x – m2)T C-1(x – m2)
● log  = 0
● Then: we get a linear Bayes classifier y = wT x + b where

y = log (x), w = C-1(m1 – m2), b = ½ (m2
TC-1m2 – m1

TC-1m1) 
log-likelihood test: If y > 0, then x ∈C1, else C2.

● Differences b/w Perceptron (P) and Bayes classifier (BC):
– P assumes linear separability, BC does not
– P convergence algorithm is non-parametric, unlike BC
– P convergence algorithm is adaptive and simple, unlike BC.

15

Perceptron limits - XOR
1. 3.2. 4.

• Consider a perceptron classifying shapes as connected or
disconnected and taking inputs from shape ends (shown as dashed
circles for pattern 1)

• The problem arises because a single layer of processing local
knowledge cannot be combined into global knowledge

• No feature-weighing machine (such as a simple perceptron) can do
this type of separation, because information about the relation
between the bits of evidence is lost (proven by Minsky & Papert, 1969)

• This problem caused the loss of interest in connectionism (in 1970s),
since many real problems are not linearly separable.

16

Summary

● binary and continuous perceptron
● single perceptron can linearly separate two classes:
● perceptron as a detector (of half input space)
● optimization: gradient descent learning
● link to adaptive filtering – error correction learning
● two types of error (loss) functions
● link to statistics: probabilistic Bayes classifier
● limitations of a simple perceptron
● a single neuron model, with any activation function, is linear in

its parameters.

	2. Simple perceptrons
	Classical perceptron
	Discrete perceptron
	Perceptron algorithm
	Linear separability of classes
	Finding a solution
	Continuous perceptron
	Error surface
	Effect of learning rate
	Linear neuron as LS filter
	Cross-entropy error function
	Bayes classifier
	Link to perceptron
	Bayes classifier (ctd)
	Problem behind XOR
	Perceptron summary

