Faculty of Mathematics, Physics and Informatics Comenius University Bratislava

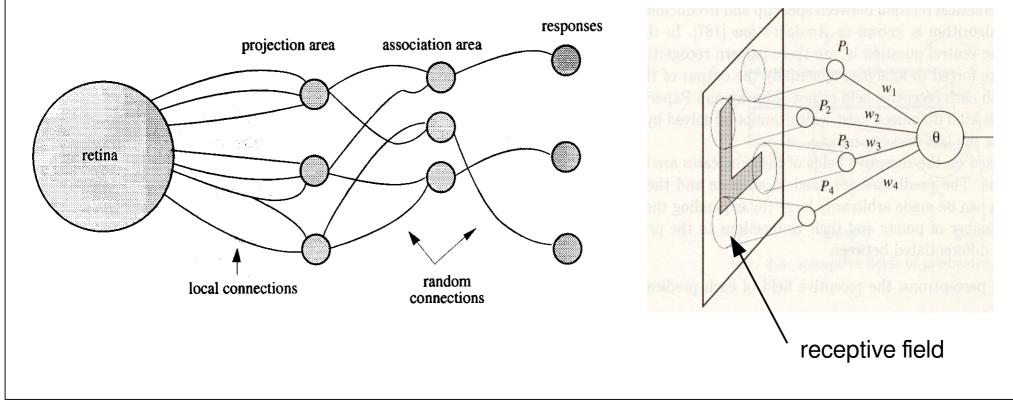
Neural Networks

Lecture 2

Simple perceptron

Classical perceptron

In 1958, F. Rosenblatt (American psychologist) proposed perceptron, a more general computational model (than McCulloch-Pitts' TL units) with free parameters, stochastic connectivity and threshold element.



In 1950, Hubel & Wiesel "decoded" the structure of retina and receptive fields.

Discrete perceptron

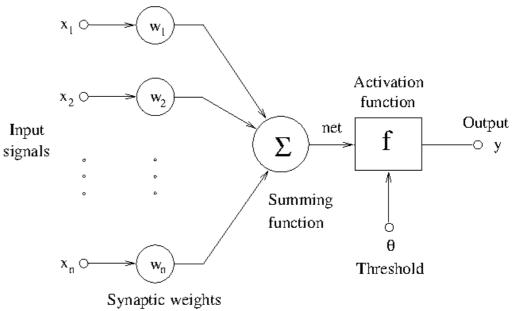
- Inputs **x** , weights **w**, output y
- Function:

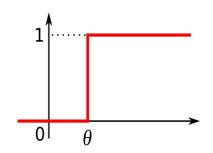
$$y = f\left(\sum_{j=1}^{n} w_{j} x_{j} - \theta\right)$$
$$y = f\left(\sum_{j=1}^{n+1} w_{j} x_{j}\right) \qquad x_{n+1} = -1$$
$$w_{n+1} = \theta$$

- f = threshold (step) function
- Supervised learning with teacher d
- e.g. d = 1 for $\forall x \in C1$, d = 0 for $\forall x \in C2$
- Learning: if $w^T x \le 0$ but $x \in C1$, then w(t+1) = w(t) + xif $w^T x > 0$ but $x \in C2$, then w(t+1) = w(t) - x

Or:
$$w_j(t+1) = w_j(t) + \alpha (d-y) x_j$$
 α = learning rate

Rosenblatt F. (1962). Principles of Neurodynamics, Spartan, New York.





Perceptron algorithm

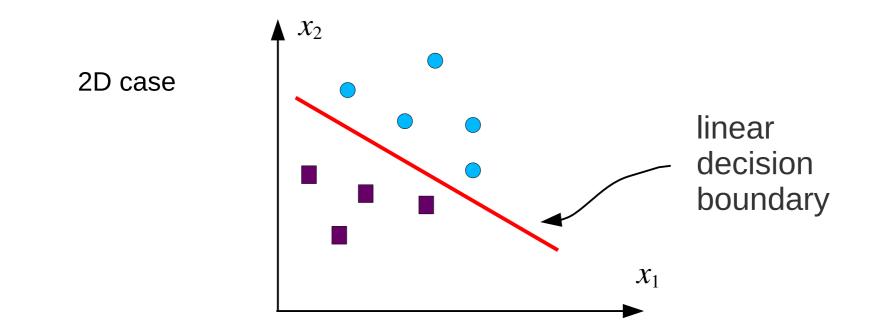
Given: input-target { $x^{(p)}$, $d^{(p)}$ } pairs, unipolar perceptron *Initialization:* randomize weights, shuffle the pairs, set learning rate, set E = 0. *Training:*

- 1. choose next input *x*, compute output *y*
- **2.** evaluate error function, $e(t) = \frac{1}{2} (d^{(p)} y^{(p)})^2$, E = E + e(t)
- **3.** if e(t) > 0, adjust weights using perceptron rule
- 4. if not all inputs used, then goto 1, else goto 5
- 5. if E == 0 (all inputs in the set classified correctly), then end else reshuffle the pairs, E = 0, go to 1.

Perceptron classification capacity

 $w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \theta$

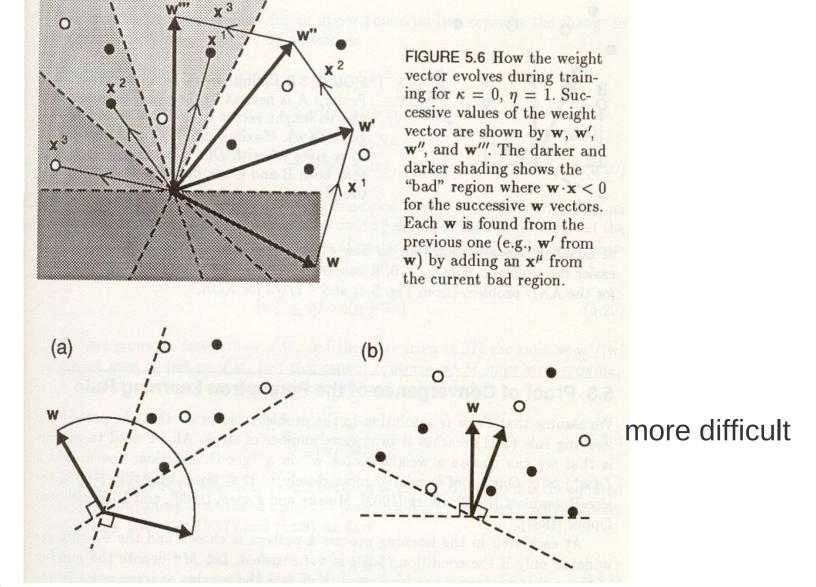
linear separability of two classes



Fixed-increment convergence theorem (Rosenblatt, 1962): "Let the classes A and B are finite and linearly separable, then perceptron learning algorithm converges (updates its weight vector) in a finite number of steps."

Finding a solution

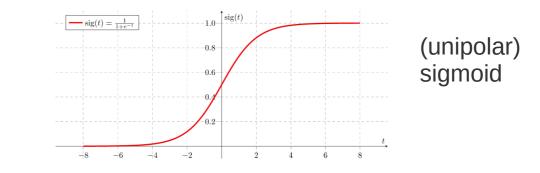
 $w^T x > 0$ for C1 $w^T x \le 0$ for C2



easy

Continuous perceptron

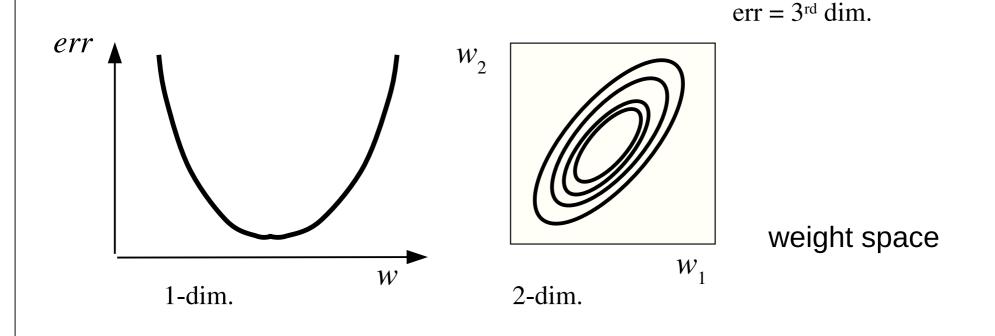
- Nonlinear unit with activation function: $y = f(net) = 1 / (1 + e^{-net})$
- Has nice properties:
 - boundedness
 - monotonicity
 - differentiability

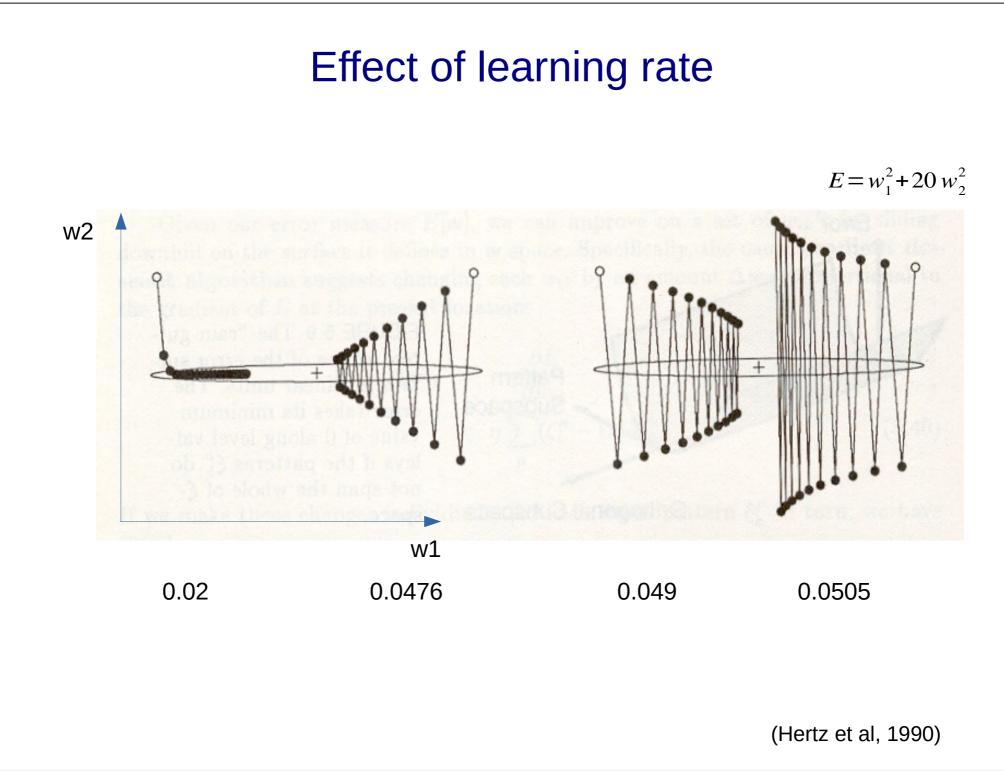


- Error function (e.g. quadratic): $E(w) = \sum_{p} e^{(p)} = \frac{1}{2} \sum_{p} (d^{(p)} y^{(p)})^2$ over dataset p, also called loss function (objective function)
- We want to minimize the error function: necessary conditions $e(\mathbf{w}^*) \leq e(\mathbf{w})$ and $\nabla e(\mathbf{w}^*) = 0$, gradient operator $\nabla = [\partial/\partial w_1, \partial/\partial w_2, ...]^{\mathrm{T}}$. Minimizing $E(\mathbf{w})$ leads to
- (stochastic, online) gradient descent learning: $w_j(t+1) = w_j(t) + \alpha \ (d^{(p)} - y^{(p)}) f'(net) x_j = w_j(t) + \alpha \delta^{(p)} x_j^{(p)}$

Error surface for a continuous perceptron

- Assume 1 neuron, linear or with a sigmoid function
- The output error $e = f(w_1, w_2, ..., w_n)$, assume quadratic error
- For a linear neuron with *n* inputs, we have a convex function (quadratic bowl); vertical cross-sections are parabolas; horizontal cross-sections are ellipses.





Linear neuron as a least-squares filter

- Consider: $y = w^T x = x^T w$, input-target pairs $\{x^{(p)}, d^{(p)}\}$, p = 1, ..., N
- Collect inputs $\mathbf{X} = [x^{(1)} x^{(2)} \dots x^{(N)}]^T$ (*N*×*n* matrix)
- Let $e = [e^{(1)} e^{(2)} \dots e^{(N)}]^T$ then output error $e = d \mathbf{X} \cdot \mathbf{w}$
- Gauss-Newton method: $E(w) = \frac{1}{2} \sum_{p} (d^{(p)} y^{(p)})^2$, compute $\nabla e(n \times N)$
- $j_{pk} = \partial e^{(p)} / \partial w_k \Rightarrow \text{Jacobian } \mathbf{J}(t) = [j_{pk}] \text{ is } (N \times n) \quad \mathbf{J}(t) = -\mathbf{X}(t) = [\nabla e^T]$
- $e'(w)^{(N)} = e(w) + \mathbf{J}^{(N)} \cdot (w w^{(N)})$. [linearity assumption of error f.]
- Substitute $[N \equiv t] \quad w(t+1) = \arg \min_{w} \{ 1/2 ||e'(t,w)||^2 \} \dots$
- Update $w(t+1) = w(t) (\mathbf{J}^{\mathrm{T}}(t) \mathbf{J}(t))^{-1} \mathbf{J}(t) \mathbf{e}(t) = w(t) + (\mathbf{X}^{\mathrm{T}}(t) \mathbf{X}(t))^{-1} \mathbf{X}(t) [\mathbf{d}(t) \mathbf{X}(t) \mathbf{w}(t)] = [\mathbf{X}^{\mathrm{T}}(t) \mathbf{X}(t))^{-1} \mathbf{X}(t) [\mathbf{d}(t) \Rightarrow w(t+1) = \mathbf{X}^{+}(t) \mathbf{d}(t)$
- *"The weight vector* **w**(*t*+1) *solves the least-squares problem in an observation interval until time t."*
- neuron as a linear regressor

Alternative loss function: cross entropy

- Useful for classification, leads to probability (uncertainty)
- Error function cross-entropy (for one output):

[relative entropy b/w empirical probability distribution $(d^{(p)}, 1 - d^{(p)})$ and output distribution (y, 1-y)]

$$E_{CE}(w) = \sum_{p} E^{(p)} = -\sum_{p} \left[d^{(p)} \ln y^{(p)} + (1 - d^{(p)}) \ln (1 - y^{(p)}) \right]$$

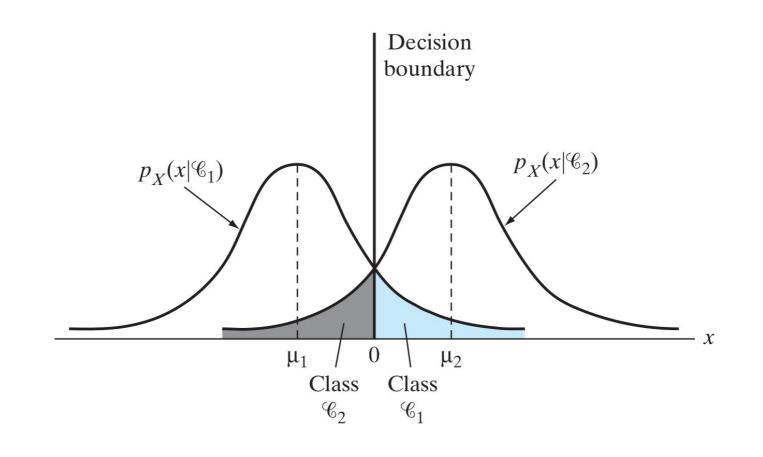
- \rightarrow negative log-likelihood (in probabilistic models)
- minimization of $E^{(p)}$ results in a learning rule:

$$w_j(t+1) = w_j(t) + \alpha (d^{(p)} - y^{(p)}) x_j^{(p)}$$

- *Note*: In case of 2 classes one can use logistic unit (for $C_1: d = 1; C_2: d = 0$),
- then the output *y* can be interpreted as $P(C_1 | \mathbf{x}) = 1 P(C_2 | \mathbf{x})$

Bayes classifier for two classes

- (linear) Bayes classifier for a 1D Gaussian environment
- for convenience, decision border is at x = 0



Perceptron link to Bayes classifier

Assumptions:

- random vector X, two classes $C_1: E[X] = m_1$, $C_2: E[X] = m_2$
- covariance matrix $\mathbf{C} = E[(X m_1)(X m_1)^T] = E[(X m_2)(X m_2)^T]$ We can express conditional probability density function: $f(\mathbf{x} | \mathbf{C}_i) = [(2\pi)^{m/2} \det(\mathbf{C})^{1/2}]^{-1} \exp[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m}_i)]$ \mathbf{x} – observation vector, $i = \{1, 2\}$
- the 2 classes are equiprobable, i.e. $p_1 = p_2$ (a priori probs)
- (mis)classifications carry the same cost, i.e. $\omega_{12} = \omega_{21}$, $\omega_{11} = \omega_{22} = 0$ Bayes classifier: "If $p_1(\omega_{21} - \omega_{11}) f(\mathbf{x} | C_1) > p_2(\omega_{12} - \omega_{22}) f(\mathbf{x} | C_2)$, assign the observation vector \mathbf{x} to C_1 . Otherwise, assign it to C_2 ."

Bayes classifier (ctd)

- Define likelihood ratio $\Lambda(\mathbf{x}) = f(\mathbf{x} \mid C_1) / f(\mathbf{x} \mid C_2)$ and threshold $\xi = [p_2(\omega_{12} - \omega_{22})] / [p_1(\omega_{21} - \omega_{11})]$. Then:
- $\log \Lambda(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} \mathbf{m}_1)^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{x} \mathbf{m}_1) + \frac{1}{2} (\mathbf{x} \mathbf{m}_2)^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{x} \mathbf{m}_2)$
- $\log \xi = 0$
- *Then*: we get a linear Bayes classifier $y = w^{T}x + b$ where $y = \log \Lambda(x), \ w = \mathbb{C}^{-1}(m_1 - m_2), \ b = \frac{1}{2}(m_2^{T}\mathbb{C}^{-1}m_2 - m_1^{T}\mathbb{C}^{-1}m_1) \rightarrow$ log-likelihood test: *If* y > 0, *then* $x \in C_1$, *else* C_2 .
- Differences b/w Perceptron (P) and Bayes classifier (BC):
 - P assumes linear separability, BC does not
 - P convergence algorithm is non-parametric, unlike BC
 - P convergence algorithm is adaptive and simple, unlike BC.

Perceptron limits - XOR 1. 2. 3. 4. (_____) ______ _______ _______

• Consider a perceptron classifying shapes as connected or disconnected and taking inputs from shape ends (shown as dashed circles for pattern 1)

• The problem arises because a single layer of processing local knowledge cannot be combined into global knowledge

• No feature-weighing machine (such as a simple perceptron) can do this type of separation, because information about the relation between the bits of evidence is lost (proven by Minsky & Papert, 1969)

• This problem caused the loss of interest in connectionism (in 1970s), since many real problems are not linearly separable.

Summary

- binary and continuous perceptron
- single perceptron can linearly separate two classes:
- perceptron as a detector (of half input space)
- optimization: gradient descent learning
- link to adaptive filtering error correction learning
- two types of error (loss) functions
- link to statistics: probabilistic Bayes classifier
- limitations of a simple perceptron
- a single neuron model, with any activation function, is linear in its parameters.