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Classical perceptron

In 1958, F. Rosenblatt (American psychologist) proposed perceptron,
a more general computational model (than McCulloch-Pitts units) with
free parameters, stochastic connectivity and threshold elements.

In 1950, Hubel & Wiesel “decoded” the
structure of retina and receptive fields.
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Discrete perceptron

* Inputs x , weights w, output y
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e Learning rule:

wj(t+1) = wj(t) +x (d-y) X,

Rosenblatt F. (1962). Principles of Neurodynamics, Spartan, New York.

Perceptron algorithm

Given: training data: input-target {x, d} pairs, unipolar perceptron
Initialization: randomize weights, set learning rate, set E = 0.
Training:

1. choose input x, compute output y

. evaluate error function, e(t) = Y2 (d — y)?, E = E + e(t)

.if ¢(t) > 0, adjust weights using perceptron rule

.if not all inputs used, then goto 1, else goto 5
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.if E==0 (all inputs in the set classified correctly), then end
else shuffle inputs, E= 0,goto 1




Perceptron classification capacity
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Fixed-increment convergence theorem (Rosenblatt, 1962): “Let the classes A
and B are finite and linearly separable, then perceptron learning algorithm
converges (updates its weight vector) in a finite number of steps.”

Finding a solution

FIGURE 5.6 How the weight
vector evolves during train-
ing for k = 0, n = 1. Sue-

cessive values of the weight

w'x> 0 for C1
w'x< 0 for C2

vector are shown by w, w’,
w" and w'”. The darker and
darker shading shows the
“bad” region where w-x < 0
for the successive w vectors.
Each w is found from the
previous one (e.g., w* from
w) by adding an x* from
the current bad region.
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(Hertz et al, 1990)

Continuous perceptron

« Nonlinear unit with activation function: y = f(net) =1/ (1+e"*)

* Has nice properties:

(unipolar)
sigmoid

* boundedness
* monotonicity
 differentiability

« Error function (e.g. quadratic): E(w) = X e® =% 2 (dP) — y»)?
over inputs p , also called loss function (objective function)

* We want to minimize the error function: necessary conditions
e(w*) < e(w) and Ve(w*) =0, gradient operator

V =[0/ow,, 0/dw,, ...]T. Minimizing E(w) leads to

* (stochastic, online) gradient descent learning:
w(t+]) = w() + o (d» —y») f(net) x; = wit) + xdPx;

Error surface for a continuous perceptron

* Assume 1 neuron, linear or with a sigmoid function
« The output error e = filw,,w,, ..., w,), assume quadratic error

* For a linear neuron with n inputs, we have a convex function
(quadratic bowl); vertical cross-sections are parabolas; horizontal
cross-sections are ellipses.
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Effect of learning rate
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(Hertz et al, 1990)

Linear neuron as a least-squares filter

» Consider: y =wTx = xTw, input-target pairs {x(p), d(p)} ,p=1, ... N
Collect inputs X = [x(1) x(2) .... x(N)]T
Lete =[e(1) e(2) ... e(N)]T then output error e =d — X.w

(Nxn matrix)

» Gauss-Newton method: E(w) = %2 X (d» — y»)?, compute Ve (nxN)

* Jju = Oe(p)low,= Jacobian J(1) = [j,] is (Nxn) J(?) = -X(¢) = [VeT]
e'(Nw)=ew) +JWN).(w —w(N)). [linearity assumption of error f.]
Substitute [N = 7] w(t+1) = arg min,, {1/2 |le'(z,w)|]?} ...

* Update w(i+1) = w(n) - JT@) J(0) ' J () e(t) = w(t) + (XT(1) X (1) ' X(D)[ d(1) -
Xy w@)] = [X1(0) X(0)'X(D)] d(r) = w(t+]) = X+ (1) d(D)

o “The weight vector w(t+1) solves the least-squares problem in an observation
interval until time t.”
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Alternative loss function: cross entropy

» Useful for classification, leads to probability (uncertainty)
* Error function — cross-entropy (for one output):

[relative entropy b/w empirical probability distribution (d,1- d®) and output
distribution (y,1—y)]

Ecp (W) = 2 E® = -3 [d» log y» + (1 —d») log (1 — y»)]
* minimization of E® results in learning rule:
wit+1) = w0 + & (d» - y») x;
« Note: In case of 2 classes one can use logistic unit (for C,: d =0; C,: d =1),
- then the output y can be interpreted as P(C,|x) = 1 — P(C,| x)

* Link to logistic regression
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Bayes classifier for two classes

* (linear) Bayes classifier for a 1D Gaussian environment
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Perceptron link to Bayes classifier

Assumptions:
» random vector X, two classes C,: E[X]=m,, C,: E[X]=m,
« covariance matrix C = E[(X —m )(X —m )] = E[(X —m,)(X —m,)T]

We can express conditional probability density function:
fx|C) = [2m)m2det(C)2] ! exp[-Ya(x —m)TC(x —m,)]

x — observation vector, i ={1,2}
« the 2 classes are equiprobable, i.e. p, = p, (a priori probs)
» (mis)classifications carry the same Cost, i.e. W, = Wy Wy = Wy=0

Bayes classifier: “If p,(wy—w;)) f(x|C)) > py(w,— wy) f (x] ),
assign the observation vector x to C,. Otherwise, assign it to C,.”
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Bayes classifier (ctd)

Define likelihood ratio A(x) =f(x | C,)/ f(x|C,) and
threshold € = [py(w,— wy)] / [p1(wy — wyy)]. Then:

log Ax)=—Y2(x —m,)TC-'(x —m,) + Va(x —m,)TC(x —m,)

log€ =0

Then: we get a linear Bayes classifier y = wTx + b where

y=log Ax), w=Clm,—m,), b="Y2m,"C'm,—m,7C'm,)—
log-likelihood test: If y > 0, then x €C,, else C,.

Differences b/w Perceptron (P) and Bayes classifier (BC):

- P assumes linear separability, BC does not

- P convergence algorithm is non-parametric, unlike BC

- P convergence algorithm is adaptive and simple, unlike BC.
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Perceptron limits - XOR

1. 2. 3. 4.

» Consider a perceptron classifying shapes as connected or
disconnected and taking inputs from shape ends (shown as dashed
circles for pattern 1)

» The problem arises because single layer of processing local
knowledge cannot be combined into global knowledge

* No feature-weighing machine (such as a simple perceptron) can do
this type of separation, because information about the relation
between the bits of evidence is lost (proven by Minsky & Papert, 1969)

* This problem caused the loss of interest in connectionism (in 1970s), since
many real problems are not linearly separable.

Summary

single perceptron can separate two linearly separable classes

binary (McCulloch & Pitts) and continuous (Rosenblatt)
perceptron

perceptron as a detector

gradient descent learning

link to adaptive filtering — error correction learning
two types of error (loss) functions

link to statistics: probabilistic Bayes classifier

simple perceptron limitations
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