Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Neural Networks

Lecture 2

Simple perceptron

Igor Farkaš 2021

Classical perceptron

In 1958, F. Rosenblatt (American psychologist) proposed perceptron, a more general computational model (than McCulloch-Pitts units) with free parameters, stochastic connectivity and threshold elements.

In 1950, Hubel & Wiesel "decoded" the structure of retina and receptive fields.

Discrete perceptron

- Inputs x, weights w, output y
- · Activation:

$$y = f(\sum_{j=1}^{n} w_{j} x_{j} - \theta)$$

$$y = f(\sum_{j=1}^{n+1} w_{j} x_{j}) \quad x_{n+1} = -1$$

- f = threshold function: unipolar {0,1} or bipolar {-1,+1}
- Supervised learning uses teacher signal *d*
- · Learning rule:

$$w_j(t+1) = w_j(t) + \alpha (d-y) x_j$$

Activation

function

Threshold

Σ

Rosenblatt F. (1962). Principles of Neurodynamics, Spartan, New York.

Perceptron algorithm

Given: training data: input-target $\{x, d\}$ pairs, unipolar perceptron *Initialization:* randomize weights, set learning rate, set E = 0.

Training:

- 1. choose input *x*, compute output *y*
- **2.** evaluate error function, $e(t) = \frac{1}{2}(d y)^2$, E = E + e(t)
- **3.** if e(t) > 0, adjust weights using perceptron rule
- 4. if not all inputs used, then goto 1, else goto 5
- 5. if E == 0 (all inputs in the set classified correctly), then end else shuffle inputs, E = 0, go to 1

,

Perceptron classification capacity

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \theta$$

linear separability of two classes

Fixed-increment convergence theorem (Rosenblatt, 1962): "Let the classes A and B are finite and linearly separable, then perceptron learning algorithm converges (updates its weight vector) in a finite number of steps."

Finding a solution

 $\mathbf{w}^{\mathsf{T}}\mathbf{x} > 0$ for C1 $\mathbf{w}^{\mathsf{T}}\mathbf{x} < 0$ for C2

(Hertz et al, 1990)

easy

5

Continuous perceptron

- Nonlinear unit with activation function: $y = f(net) = 1/(1+e^{-net})$
- Has nice properties:
 - boundedness
 - monotonicity
 - differentiability

- Error function (e.g. quadratic): $E(w) = \sum_p e^{(p)} = \frac{1}{2} \sum_p (d^{(p)} y^{(p)})^2$ over inputs p, also called loss function (objective function)
- We want to minimize the error function: necessary conditions $e(\mathbf{w}^*) \le e(\mathbf{w})$ and $\nabla e(\mathbf{w}^*) = 0$, gradient operator $\nabla = [\partial/\partial w_1, \partial/\partial w_2, ...]^T$. Minimizing $E(\mathbf{w})$ leads to
- (stochastic, online) gradient descent learning: $w_i(t+1) = w_i(t) + \alpha (d^{(p)} - y^{(p)}) f'(net) x_i = w_i(t) + \alpha \delta^{(p)} x_i$

Error surface for a continuous perceptron

- Assume 1 neuron, linear or with a sigmoid function
- The output error $e = f(w_1, w_2, ..., w_n)$, assume quadratic error
- For a linear neuron with *n* inputs, we have a convex function (quadratic bowl); vertical cross-sections are parabolas; horizontal cross-sections are ellipses.

7

Effect of learning rate

(Hertz et al, 1990)

Linear neuron as a least-squares filter

- Consider: $y = \mathbf{w}^T \mathbf{x} = \mathbf{x}^T \mathbf{w}$, input-target pairs $\{\mathbf{x}(p), d(p)\}$, p = 1, ..., N
- Collect inputs $\mathbf{X} = [\mathbf{x}(1) \ \mathbf{x}(2) \ ... \ \mathbf{x}(N)]^T$ ($N \times n$ matrix)
- Let $e = [e(1) \ e(2) \ ... \ e(N)]^T$ then output error $e = d \mathbf{X}.w$
- Gauss-Newton method: $E(w) = \frac{1}{2} \sum_{p} (d^{(p)} y^{(p)})^2$, compute ∇e $(n \times N)$
- $j_{pk} = \partial e(p)/\partial w_k \Rightarrow \text{Jacobian } \mathbf{J}(t) = [j_{pk}] \text{ is } (N \times n) \quad \mathbf{J}(t) = -\mathbf{X}(t) = [\nabla e^{\mathrm{T}}]$
- e'(N,w) = e(w) + J(N).(w w(N)). [linearity assumption of error f.]
- Substitute $[N \equiv t]$ $w(t+1) = \arg\min_{w} \{1/2 ||e'(t,w)||^2\} \dots$
- Update $w(t+1) = w(t) (\mathbf{J}^{\mathsf{T}}(t)\mathbf{J}(t))^{-1}\mathbf{J}(t)e(t) = w(t) + (\mathbf{X}^{\mathsf{T}}(t)\mathbf{X}(t))^{-1}\mathbf{X}(t)[d(t) \mathbf{X}(t)w(t)] = [\mathbf{X}^{\mathsf{T}}(t)\mathbf{X}(t))^{-1}\mathbf{X}(t)]d(t) \Rightarrow w(t+1) = \mathbf{X}^{\mathsf{T}}(t)d(t)$
- "The weight vector $\mathbf{w}(t+1)$ solves the least-squares problem in an observation interval until time t."

10

Alternative loss function: cross entropy

- Useful for classification, leads to probability (uncertainty)
- Error function cross-entropy (for one output): [relative entropy b/w empirical probability distribution $(d^{(p)}, 1-d^{(p)})$ and output distribution (y, 1-y)]

$$E_{CE}(\mathbf{w}) = \sum_{p} E^{(p)} = -\sum_{p} [d^{(p)} \log y^{(p)} + (1 - d^{(p)}) \log (1 - y^{(p)})]$$

• minimization of $E^{(p)}$ results in learning rule:

$$w_i(t+1) = w_i(t) + \alpha (d^{(p)} - y^{(p)}) x_i$$

- *Note*: In case of 2 classes one can use logistic unit (for C_1 : d = 0; C_2 : d = 1),
- then the output y can be interpreted as $P(C_2|x) = 1 P(C_1|x)$
- · Link to logistic regression

Bayes classifier for two classes

• (linear) Bayes classifier for a 1D Gaussian environment

Perceptron link to Bayes classifier

Assumptions:

- random vector X, two classes C_1 : $E[X] = m_1$, C_2 : $E[X] = m_2$
- covariance matrix $\mathbf{C} = E[(X \mathbf{m}_1)(X \mathbf{m}_1)^{\mathsf{T}}] = E[(X \mathbf{m}_2)(X \mathbf{m}_2)^{\mathsf{T}}]$ We can express conditional probability density function: $f(\mathbf{x} \mid \mathbf{C}_i) = [(2\pi)^{m/2} \det(\mathbf{C})^{1/2}]^{-1} \exp[-\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^{\mathrm{T}} \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m}_i)]$ x – observation vector, $i = \{1,2\}$
- the 2 classes are equiprobable, i.e. $p_1 = p_2$ (a priori probs)
- (mis)classifications carry the same cost, i.e. $\omega_{12} = \omega_{21}$ $\omega_{11} = \omega_{22} = 0$ Bayes classifier: "If $p_1(\omega_{21} - \omega_{11}) f(x | C_1) > p_2(\omega_{12} - \omega_{22}) f(x | C_2)$, assign the observation vector \mathbf{x} to C_1 . Otherwise, assign it to C_2 .

Bayes classifier (ctd)

- Define likelihood ratio $\Lambda(x) = f(x \mid C_1) / f(x \mid C_2)$ and threshold $\xi = [p_2(\omega_{12} - \omega_{22})] / [p_1(\omega_{21} - \omega_{11})]$. Then:
- $\log \Lambda(x) = -\frac{1}{2} (x m_1)^{\mathsf{T}} \mathbf{C}^{-1} (x m_1) + \frac{1}{2} (x m_2)^{\mathsf{T}} \mathbf{C}^{-1} (x m_2)$
- $\log \xi = 0$
- *Then*: we get a linear Bayes classifier $y = w^{T}x + b$ where $y = \log \Lambda(x), \ w = \mathbf{C}^{-1}(m_1 - m_2), \ b = \frac{1}{2}(m_2 + \mathbf{C}^{-1}m_2 - m_1 + \mathbf{C}^{-1}m_1) \rightarrow$ log-likelihood test: If y > 0, then $x \in C_1$, else C_2 .
- Differences b/w Perceptron (P) and Bayes classifier (BC):
 - P assumes linear separability, BC does not
 - P convergence algorithm is non-parametric, unlike BC
 - P convergence algorithm is adaptive and simple, unlike BC.

Perceptron limits - XOR

1.

2.

3.

- · Consider a perceptron classifying shapes as connected or disconnected and taking inputs from shape ends (shown as dashed circles for pattern 1)
- The problem arises because single layer of processing local knowledge cannot be combined into global knowledge
- No feature-weighing machine (such as a simple perceptron) can do this type of separation, because information about the relation between the bits of evidence is lost (proven by Minsky & Papert, 1969)
- This problem caused the loss of interest in connectionism (in 1970s), since many real problems are not linearly separable.

Summary

- single perceptron can separate two linearly separable classes
- binary (McCulloch & Pitts) and continuous (Rosenblatt) perceptron
- perceptron as a detector
- gradient descent learning
- link to adaptive filtering error correction learning
- two types of error (loss) functions
- · link to statistics: probabilistic Bayes classifier
- simple perceptron limitations