Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Neural Networks

Lecture 5

Gradient-based learning and optimization

Igor Farka$ 2021

Optimization vs NN learning

* Although optimization provides a way to minimize the loss
function for NN learning, the goals are fundamentally different:

» goal of optimization = to reduce the training error

» goal of NN learning (statistical inference) = to reduce expected
generalization error (risk) => ML acts indirectly

* We have only access to a finite training data sample (not the
whole data distribution)

« Empirical risk minimization: Ex g)~p(data)l LOSS(f(x;w),d)]

* ..is based on a finite training sample {x,d}, rather than known
data distribution, hence is prone to overfitting.

(Goodfellow et al, 2015)

Surrogate loss function

Sometimes, the loss function we actually care about (e.g. classification
error) is not one that can be optimized efficiently.

Exactly minimizing expected 0-1 loss is typically intractable
(exponential in the input dimension)

In such situations, one typically optimizes a surrogate loss function
instead, which acts as a proxy, but has advantages:

e.g. the negative log-likelihood of the correct class is used (-log P(y;))

test set 0-1 loss often continues to decrease for a long time after the
training set 0-1 loss has reached zero, which improves the robustness
of the classifier by further pushing the classes apart from each other

This leads to extracting more information from the training data (than
would have been possible by simply minimizing the average 0-1 loss
on training set).

Problems in gradient-based NN learning

Local minima Saddle points

X = weights,
F =loss f.

f(x)

lll-conditioning of Hessian matrix H, i.e.

rate of its change for small Aw

* given by condition number (CN) =
ratio of its max/min eigenvalues

« for large CN, H™is particularly
sensitive to error in the input

These problems slow down or hinder convergence.

Early modifications of gradient descent learning

Adding a momentum: Aw(t) = - «VE(w(t)) + yAw(t-1)
* helps speed up SGD and dampen oscillations

0<|yl<1

momentum
step
actual step

gradient
step

w/out with

Nesterov accelerated gradient (Nesterov, 1983)
Aw(t) = — cVE[w(t) + yAw(t=1)] + yAw(t-1)

“lookahead” gradient
step (bit different than
original)

momentum

* helps adjust speed by looking step
into the near future

actual step

Role of the Hessian matrix

* Hplays an important role in supervised training of neural networks:

H=

2
0*E(w) /WO]
ij

ow,0w;

* Eigenvalues of H have a profound influence on the dynamics of back-
propagation learning (condition number = ratio of max/min eigenvalues)

* The inverse of H provides a basis for pruning (i.e., deleting) insignificant
synaptic weights from a multilayer perceptron.

* His basic to the formulation of second-order optimization methods as an
alternative to BP learning.

* Typical profile of H in BP learning (LeCun et al., 1998): a few small
eigenvalues, many medium-sized eigenvalues, and a few large
eigenvalues => a wide spread in the eigenvalues of the Hessian.

Towards second-order optimization methods

Ew)=E(w,) +g"(wy)Aw +12 AwTH(w))Aw + O3+(Aw)

Aw=w-w, ‘
Taylor expansion:

Gradient vector: o f(”(xo))
¢ ID:f(x)=2 = (x—x,)
(wo)=V E(w)= a—E/w a—E/w =
g\wo)= 0)= ow, 0’""5W‘W‘ 0
« Error back-propagation is a linear approximation of E: Aw(t) = — o g()

« Quadratic approx. of E(w) = Newton's method: Aw = — H-\(¢) g(¢)
« Quasi-Newton method approximates H-1() with a positive definite matrix

* Conjugate-gradients methods are intermediate between the steepest
descent and the Newton’s method, by achieving faster convergence
(than the former) and lower computational complexity (than the latter).

Conjugate-gradient methods

e 2nd grder optimization methods

» minimize the quadratic function f(x) =% xTAx + b’x + ¢ (¥)

» ->set of linear egations: Ax =b (A = positive definite and symmetric)
e Solution: x*=A-1b

» Given the matrix A, a set of nonzero vectors s(0), s(1), ..., (up to

dim(A)) is A-conjugate (i.e., non-interfering with each other in the
context of A) if: s(i)T As(j) = 0. (for A = Id, conjugacy = orthogonality).

X1

« Example: x =[xy, x{]

o Letv=A""x

¢ |terative CG method:

Ax =n(@) . s(D) C

(Hestenes & Stiefel, 1952)

plot of eq. *

Regularization

Risk function: R(w) = E(w) + A C(w) [performance + complexity]

=

* Explicit:

Ll(w):ezilw,-| Lz(W):§||W||2 —_

 Implicit: I

- weight decay wpew(f) = e.wpen(z), 0<e<1,
- ...leads to L,-regul. wy

- dropout (Hinton, 2012): random turning off neurons during training

* data augmentation — increasing the size of the training set, e.g. by
elastic distortions

Dropout

* Applied only during training
* Helps to avoid overfitting

* Free parameter = number of (randomly) dropped units

MLP with one hidden layer Hidden layer after dropout

(Zhang et al, 2019)

10

AdaGrad algorithm

Introduces the variable that accumulates gradient variance (vector)

gt)= VEw() s(t) =s(t-1) + g*(t)

Aw(t)=— @

Vs(t)+e

decreases the learning rate dynamically on per-coordinate basis

g(t)

uses the magnitude of the gradient as a means of adjusting how
quickly progress is achieved — coordinates with large gradients are
compensated with a smaller learning rate.

First-order method (the gradient can be a useful proxy)

On deep learning problems Adagrad can sometimes be too
aggressive in reducing learning rates. Mitigating strategies exist.

(Duchi et al, 2011)

11

RMSprop

* decouples rate scheduling from coordinate-adaptive learning
rates

s(t)=ys(t=1)+(1-y) g*(t) e=10"°

Aw(t)=——=%— g(t)

Hove

 coefficient y determines how long the history is when adjusting
the per-coordinate scale.

* RMSprop shares with momentum the leaky averaging.
However, RMSProp uses the technique to adjust the coefficient-
wise preconditioner (for reducing the condition number).

(Tieleman & Hinton, 2012)

12

AdaDelta

Yet another variant of AdaGrad: it decreases the amount by
which the learning rate is adaptive to coordinates

It does not literally have a learning rate since it uses the amount
of change itself as calibration for future change:

Aw(t—1)+e€
s(t)+e

g'(t)= glt)

(Zeiler, 2012)
13

Adam algorithm

* Combines 3 preceeding techniques into one efficient algorithm

* uses leaky averaging to obtain an estimate of both the
momentum and also the second moment of the gradient

vit)= B v(t=1) + (1 =B g@® v = v(t)/(1-PB;) p1=0.9
SO =By s-1)+ (1-B g’ sO=sO/1=F) B, =0.999
AW(I):—ﬁ-V'm (Kingma & Ba, 2014)

« Still, gradients with significant variance may hinder convergence
(s(r) can blow up)

* Yogi algorithm addresses this: s(t) = s(t-1) + (1 - B5) (g°(t) — s(t-1))

Zaheer et al, 2018
() -~

s() = s(t=1) + (1= B,) g°(0) - sgn (¢°() - s(t-1))

14

Natural gradient learning

use Fisher information: a positive semidefinite matrix (jw|x|w|),
defines a Riemannian metric (-> information geometry) (Amari, 1998)

look at p.d.f. via KL(f(x;w) || flx;w+Aw)) = ... ~ V2 (Aw)TF Aw
matrix F is the negative expected Hessian of log f(x;w)

Aw* = arg miny,, {Lw+Aw) + LKL(f(x;w) || fle;w+Aw)) —¢)}
Aw(t) = — x F-1(w(2)) g(2), i.e. natural gradient g,.(t) = F-1(w) g(¢)
can be interpreted as curvature of the log likelihood function f

in NG descent, we control movement in prediction space (rather
than parameter space)

Approximations of F-1 possible (Amari et al, 2019)

15

Summary

* NN learning and classical optimization have different objectives

* NN goal = minimize generalization error (Sometimes using
surrogate loss functions)

* Various known problems hinder first-order gradient methods

* Second-order methods provide more informaton but are much
more costly

* Earlier methods focused on approximating the Hessian
* Recent methods foces only on gradients and its adaptive versions
* Natural gradient learning uses Riemannian metric

» Further improvements possible (found useful in deep learning), to
be mentioned later

16

