Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Neural Networks

Lecture 5

Gradient-based learning and optimization

Igor Farkaš 2021

Optimization vs NN learning

- Although optimization provides a way to minimize the loss function for NN learning, the goals are fundamentally different:
- goal of optimization = to reduce the training error
- goal of NN learning (statistical inference) = to reduce expected generalization error (risk) => ML acts indirectly
- We have only access to a finite training data sample (not the whole data distribution)
- Empirical risk minimization: $E_{(x,d)\sim p(\text{data})}[Loss(f(x;w),d)]$
- ... is based on a finite training sample $\{x,d\}$, rather than known data distribution, hence is prone to overfitting.

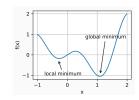
(Goodfellow et al, 2015)

Surrogate loss function

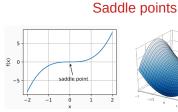
- Sometimes, the loss function we actually care about (e.g. classification error) is not one that can be optimized efficiently.
- Exactly minimizing expected 0-1 loss is typically intractable (exponential in the input dimension)
- In such situations, one typically optimizes a surrogate loss function instead, which acts as a proxy, but has advantages:
- e.g. the negative log-likelihood of the correct class is used $(-\log P(y_i))$
- test set 0-1 loss often continues to decrease for a long time after the training set 0-1 loss has reached zero, which improves the robustness of the classifier by further pushing the classes apart from each other
- This leads to extracting more information from the training data (than would have been possible by simply minimizing the average 0-1 loss on training set).

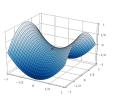
Problems in gradient-based NN learning

Local minima

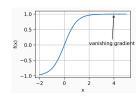


x = weights, F = loss f.





Vanishing gradients



Ill-conditioning of Hessian matrix **H**, i.e. rate of its change for small Δw

- given by condition number (CN) = ratio of its max/min eigenvalues
- for large CN, H⁻¹ is particularly sensitive to error in the input

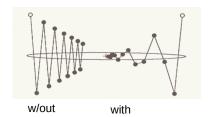
These problems slow down or hinder convergence.

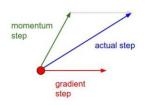
1

Early modifications of gradient descent learning

Adding a momentum: $\Delta w(t) = -\alpha \nabla E(w(t)) + \gamma \Delta w(t-1)$ $0 \le |\gamma| \le 1$

helps speed up SGD and dampen oscillations

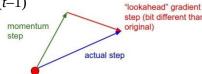




Nesterov accelerated gradient (Nesterov, 1983)

$$\Delta w(t) = -\alpha \nabla E[w(t) + \gamma \Delta w(t-1)] + \gamma \Delta w(t-1)$$

 helps adjust speed by looking into the near future



Role of the Hessian matrix

• H plays an important role in supervised training of neural networks:

$$\mathbf{H} = \left[\frac{\partial^2 E(\mathbf{w})}{\partial w_i \partial w_j} / w_0 \right]_{ij}$$

- Eigenvalues of **H** have a profound influence on the dynamics of backpropagation learning (condition number = ratio of max/min eigenvalues)
- The inverse of **H** provides a basis for pruning (i.e., deleting) insignificant synaptic weights from a multilayer perceptron.
- H is basic to the formulation of second-order optimization methods as an alternative to BP learning.
- Typical profile of H in BP learning (LeCun et al., 1998): a few small eigenvalues, many medium-sized eigenvalues, and a few large eigenvalues => a wide spread in the eigenvalues of the Hessian.

Towards second-order optimization methods

$$E(w) = E(w_0) + g^{T}(w_0)\Delta w + 1/2 \Delta w^{T} H(w_0)\Delta w + O^{3+}(\Delta w)$$

$$\Delta w = w - w_0$$

Taylor expansion:

Gradient vector:

Gradient vector:
$$\mathbf{g}(\mathbf{w}_0) = \nabla E(\mathbf{w}_0) = \left[\frac{\partial E}{\partial \mathbf{w}_1} / \mathbf{w}_0, \dots, \frac{\partial E}{\partial \mathbf{w}_{|W|}} / \mathbf{w}_0 \right]^T$$

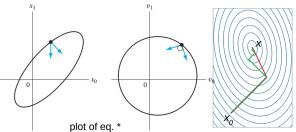
$$1D: f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

$$1D: f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

- Error back-propagation is a linear approximation of *E*: $\Delta w(t) = -\alpha g(t)$
- Quadratic approx. of $E(w) \rightarrow \text{Newton's method: } \Delta w = -\mathbf{H}^{-1}(t) \mathbf{g}(t)$
- Quasi-Newton method approximates $\mathbf{H}^{-1}(t)$ with a positive definite matrix
- Conjugate-gradients methods are intermediate between the steepest descent and the Newton's method, by achieving faster convergence (than the former) and lower computational complexity (than the latter).

Conjugate-gradient methods

- 2nd order optimization methods
- minimize the quadratic function $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$ (*)
- -> set of linear egations: Ax = b (A = positive definite and symmetric)
- Solution: $x^* = \mathbf{A}^{-1} \mathbf{b}$
- Given the matrix A, a set of nonzero vectors s(0), s(1), ..., (up to dim(A)) is A-conjugate (i.e., non-interfering with each other in the context of A) if: $s(i)^{T}$ As(i) = 0. (for A = Id, conjugacy = orthogonality).
- Example: $x = [x_0, x_1]$
- Let $v = A^{1/2}x$
- Iterative CG method: $\Delta x = \eta(t) \cdot s(t)$



(Hestenes & Stiefel, 1952)

Regularization

Risk function: $R(w) = E(w) + \lambda C(w)$ [performance + complexity]

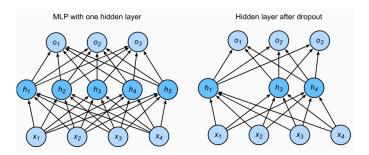
Explicit:

$$L_1(\mathbf{w}) = \epsilon \sum_i |w_i| \qquad L_2(\mathbf{w}) = \frac{\epsilon}{2} ||\mathbf{w}||^2$$

- weight decay $w_l^{\text{new}}(t) = \epsilon . w_l^{\text{new}}(t), 0 \ll \epsilon < 1$,
- ...leads to L₂-regul.
- dropout (Hinton, 2012): random turning off neurons during training
- data augmentation increasing the size of the training set, e.g. by elastic distortions

Dropout

- · Applied only during training
- Helps to avoid overfitting
- Free parameter = number of (randomly) dropped units



(Zhang et al, 2019)

10

AdaGrad algorithm

• Introduces the variable that accumulates gradient variance (vector)

$$g(t) = \nabla E(w(t))$$
 $s(t) = s(t-1) + g^{2}(t)$ $\Delta w(t) = -\frac{\alpha}{\sqrt{s(t) + \epsilon}} \cdot g(t)$

- decreases the learning rate dynamically on per-coordinate basis
- uses the magnitude of the gradient as a means of adjusting how quickly progress is achieved – coordinates with large gradients are compensated with a smaller learning rate.
- First-order method (the gradient can be a useful proxy)
- On deep learning problems Adagrad can sometimes be too aggressive in reducing learning rates. Mitigating strategies exist.

RMSprop

decouples rate scheduling from coordinate-adaptive learning rates

$$s(t) = \gamma s(t-1) + (1-\gamma) g^{2}(t) \qquad \Delta w(t) = -\frac{\alpha}{\sqrt{s(t) + \epsilon}} \cdot g(t) \qquad \epsilon = 10^{-6}$$

- coefficient γ determines how long the history is when adjusting the per-coordinate scale.
- RMSprop shares with momentum the leaky averaging. However, RMSProp uses the technique to adjust the coefficientwise preconditioner (for reducing the condition number).

(Tieleman & Hinton, 2012)

(Duchi et al. 2011)

1

AdaDelta

- Yet another variant of AdaGrad: it decreases the amount by which the learning rate is adaptive to coordinates
- It does not literally have a learning rate since it uses the amount of change itself as calibration for future change:

$$\begin{split} & s(t) = \rho \, s(t-1) + (1-\rho) \, \boldsymbol{g}^2(t) \qquad \boldsymbol{g}'(t) = \sqrt{\frac{\Delta \, \boldsymbol{w}(t-1) + \epsilon}{s(t) + \epsilon}} \, . \, \boldsymbol{g}(t) \\ & \boldsymbol{w}(t) = \boldsymbol{w}(t-1) - \boldsymbol{g}'(t) \\ & \Delta \, \boldsymbol{w}(t) = \rho \, \Delta \, \boldsymbol{w}(t-1) + (1-\rho) \, \boldsymbol{w}^2(t) \end{split}$$

(Zeiler, 2012)

Adam algorithm

- Combines 3 preceeding techniques into one efficient algorithm
- uses leaky averaging to obtain an estimate of both the momentum and also the second moment of the gradient

$$v(t) = \beta_1 \ v(t-1) + (1-\beta_1) \ g(t) \qquad v'(t) = v(t) / (1-\beta_1^t) \qquad \beta_1 = 0.9$$

$$s(t) = \beta_2 \ s(t-1) + (1-\beta_2) \ g^2(t) \qquad s'(t) = s(t) / (1-\beta_2^t) \qquad \beta_2 = 0.999$$

$$\Delta w(t) = -\frac{\alpha}{\sqrt{s'(t) + \epsilon}} \cdot v'(t)$$
(Kingma & Ba, 2014)

- Still, gradients with significant variance may hinder convergence (s(t)) can blow up)
- Yogi algorithm addresses this: $s(t) = s(t-1) + (1 \beta_2) (g^2(t) s(t-1))$

(Zaheer et al, 2018)

 $s(t) = s(t-1) + (1 - \beta_2) g^2(t) \cdot \text{sgn} (g^2(t) - s(t-1))$

1 /

Natural gradient learning

- use Fisher information: a positive semidefinite matrix $(|w| \times |w|)$, defines a Riemannian metric (-> information geometry) (Amari, 1998)
- look at p.d.f. via $KL(f(x;w) || f(x;w+\Delta w)) = \dots \approx \frac{1}{2} (\Delta w)^T \mathbf{F} \Delta w$
- matrix **F** is the negative expected Hessian of $\log f(x; w)$
- $\Delta w^* = \arg\min_{\Delta w} \left\{ L(w + \Delta w) + \lambda.\text{KL}(f(x; w) || f(x; w + \Delta w)) c) \right\}$
- $\Delta w(t) = -\alpha \mathbf{F}^{-1}(w(t)) \mathbf{g}(t)$, i.e. natural gradient $\mathbf{g}_{nat}(t) = \mathbf{F}^{-1}(w) \mathbf{g}(t)$
- can be interpreted as curvature of the log likelihood function f
- in NG descent, we control movement in prediction space (rather than parameter space)
- Approximations of F^{-1} possible (Amari et al, 2019)

Summary

- NN learning and classical optimization have different objectives
- NN goal = minimize generalization error (sometimes using surrogate loss functions)
- · Various known problems hinder first-order gradient methods
- Second-order methods provide more information but are much more costly
- · Earlier methods focused on approximating the Hessian
- · Recent methods foces only on gradients and its adaptive versions
- Natural gradient learning uses Riemannian metric
- Further improvements possible (found useful in deep learning), to be mentioned later