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Optimization vs NN learning

● Although optimization provides a way to minimize the loss 
function for NN learning, the goals are fundamentally different:

● goal of optimization = to reduce the training error

● goal of NN learning (statistical inference) = to reduce expected 
generalization error (risk) => ML acts indirectly

● We have only access to a finite training data sample (not the 
whole data distribution)

● Empirical risk minimization: E(x,d)~p(data)[Loss(f(x;w),d)]

● … is based on a finite training sample {x,d}, rather than known 
data distribution, hence is prone to overfitting.

(Goodfellow et al, 2015)
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Surrogate loss function

● Sometimes, the loss function we actually care about (e.g. classification 
error) is not one that can be optimized e ciently.ffi

● Exactly minimizing expected 0-1 loss is typically intractable 
(exponential in the input dimension)

● In such situations, one typically optimizes a surrogate loss function 
instead, which acts as a proxy, but has advantages:

● e.g. the negative log-likelihood of the correct class is used (–log P(yi)) 

● test set 0-1 loss often continues to decrease for a long time after the 
training set 0-1 loss has reached zero, which improves the robustness 
of the classifier by further pushing the classes apart from each other

● This leads to extracting more information from the training data (than 
would have been possible by simply minimizing the average 0-1 loss 
on training set).
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Problems in gradient-based NN learning

Local minima Saddle points

Vanishing gradients

x = weights, 
F = loss f.

Ill-conditioning of Hessian matrix H, i.e. 
rate of its change for small w  
● given by condition number (CN) = 

ratio of its max/min eigenvalues 
● for large CN, H-1 is particularly 

sensitive to error in the input

These problems slow down or hinder convergence.
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Early modifications of gradient descent learning

w(t) = – E(w(t))
  
+ w(t–1)Adding a momentum:

Nesterov accelerated gradient (Nesterov, 1983)

w(t) = – E[w(t)
 
+ w(t–1)] + w(t–1)

w/out with

  0 ≤ ||< 1
● helps speed up SGD and dampen oscillations

● helps adjust speed by looking    
into the near future
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Role of the Hessian matrix

● H plays an important role in supervised training of neural networks:

● Eigenvalues of H have a profound influence on the dynamics of back-
propagation learning (condition number = ratio of max/min eigenvalues)

● The inverse of H provides a basis for pruning (i.e., deleting) insignificant 
synaptic weights from a multilayer perceptron.

● H is basic to the formulation of second-order optimization methods as an 
alternative to BP learning.

● Typical profile of H in BP learning (LeCun et al., 1998): a few small 
eigenvalues, many medium-sized eigenvalues, and a few large 
eigenvalues => a wide spread in the eigenvalues of the Hessian.

H=[ ∂
2 E(w)

∂w i∂w j

/w0 ]ij
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Towards second-order optimization methods

E(w) = E(w0) + gT(w0)w +1/2 wT H(w0)w + O3+(w)

 w = w – w0

● Error back-propagation is a linear approximation of E:  w(t) = –  g(t)  
● Quadratic approx. of E(w) → Newton's method:  w = – H-1(t) g(t)
● Quasi-Newton method approximates H-1(t) with a positive definite matrix

● Conjugate-gradients methods are intermediate between the steepest 
descent and the Newton’s method, by achieving faster convergence 
(than the former) and lower computational complexity (than the latter).

g(w0)=∇ E (w0)=[ ∂E
∂w1

/w0 , ... ,
∂E
∂w|W|

/w0]
T 1 D : f ( x)=∑

i=0

∞ f (i)
(x0)

i !
(x−x0)

i

Taylor expansion:

Gradient vector:
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Conjugate-gradient methods

● 2nd order optimization methods
● minimize the quadratic function   f(x) = ½ xT Ax + bTx + c    (*)
● -> set of linear eqations: Ax = b (A = positive definite and symmetric)
● Solution:  x* = A-1 b
● Given the matrix A, a set of nonzero vectors s(0), s(1), ..., (up to 

dim(A)) is A-conjugate (i.e., non-interfering with each other in the 
context of A) if:  s(i)T As(j) = 0. (for A = Id, conjugacy = orthogonality).

plot of eq. *(Hestenes & Stiefel, 1952)

● Example: x = [x0, x1]

● Let v = A1/2 x

● Iterative CG method:
x = η(t) . s(t)
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Regularization 

Risk function: R(w) = E(w) +  C(w)     [performance + complexity]

● Explicit: 

● Implicit:  

– weight decay wl
new(t) = .wl

new(t), 0≪<1, 
– ...leads to L2-regul.

– dropout (Hinton, 2012): random turning off neurons during training
● data augmentation – increasing the size of the training set, e.g. by 

elastic distortions

L2(w)=
ϵ
2
‖w‖2

L1(w)=ϵ∑i
|w i|
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Dropout

● Applied only during training

● Helps to avoid overfitting

● Free parameter = number of (randomly) dropped units

(Zhang et al, 2019)
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AdaGrad algorithm

● Introduces the variable that accumulates gradient variance (vector)

● decreases the learning rate dynamically on per-coordinate basis

● uses the magnitude of the gradient as a means of adjusting how 
quickly progress is achieved – coordinates with large gradients are 
compensated with a smaller learning rate.

● First-order method (the gradient can be a useful proxy)

● On deep learning problems Adagrad can sometimes be too 
aggressive in reducing learning rates. Mitigating strategies exist.

Δ w (t)=− α

√ s( t)+ϵ
.g (t)

(Duchi et al, 2011)

g(t) =  E(w(t))
 

s(t) = s(t–1) + g2(t)
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RMSprop

● decouples rate scheduling from coordinate-adaptive learning 
rates

● coefficient γ determines how long the history is when adjusting 
the per-coordinate scale.

● RMSprop shares with momentum the leaky averaging. 
However, RMSProp uses the technique to adjust the coefficient-
wise preconditioner (for reducing the condition number).

Δ w (t)=− α

√ s( t )+ϵ
.g (t)s( t)=γ s( t−1)+(1−γ) g2(t ) ϵ=10−6

(Tieleman & Hinton, 2012)
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AdaDelta

● Yet another variant of AdaGrad: it decreases the amount by 
which the learning rate is adaptive to coordinates

● It does not literally have a learning rate since it uses the amount 
of change itself as calibration for future change:

(Zeiler, 2012)

s( t)=ρ s( t−1)+(1−ρ)g2(t) g ' (t)=√
Δw ( t−1)+ϵ

s( t)+ϵ
. g( t)

w( t)=w (t−1)−g ' (t)

Δ w (t)=ρΔ w( t−1)+(1−ρ)w2(t)
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Adam algorithm

● Combines 3 preceeding techniques into one efficient algorithm

● uses leaky averaging to obtain an estimate of both the 
momentum and also the second moment of the gradient

v(t) =  β1 v(t–1) + (1 – β1) g(t) 

s(t) =  β2 s(t–1) + (1 – β2) g
2(t)

 

v‘(t) =  v(t) / (1 – β1
t )

s‘(t) =  s(t) / (1 – β2
t )

  

Δ w (t)=− α

√ s ' (t)+ϵ
.v ' ( t)

β1 = 0.9
β2 = 0.999

s(t) =  s(t–1) + (1 – β2) (g
2(t) – 

 
s(t–1))

s(t) =  s(t–1) + (1 – β2) g
2(t) . sgn (g2(t) – 

 
s(t–1))

(Kingma & Ba, 2014)

(Zaheer et al, 2018)

● Still, gradients with significant variance may hinder convergence 
(s(t) can blow up)

● Yogi algorithm addresses this: 
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Natural gradient learning

● use Fisher information: a positive semidefinite matrix (|w|×|w|), 
defines a Riemannian metric (-> information geometry) (Amari, 1998)

● look at p.d.f. via KL(f(x;w) || f(x;w+w)) = … ≈ ½ (w)T F w

● matrix F is the negative expected Hessian of log f(x;w) 
● w* = arg minw {L(w+w) + λ.KL(f(x;w) || f(x;w+w)) – c)}

● w(t) = –  F-1(w(t)) g(t), i.e. natural gradient  gnat(t) = F-1(w) g(t)

● can be interpreted as curvature of the log likelihood function f

● in NG descent, we control movement in prediction space (rather 
than parameter space)

● Approximations of F-1 possible (Amari et al, 2019)
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Summary

● NN learning and classical optimization have different objectives

● NN goal = minimize generalization error (sometimes using 
surrogate loss functions)

● Various known problems hinder first-order gradient methods

● Second-order methods provide more informaton but are much 
more costly

● Earlier methods focused on approximating the Hessian

● Recent methods foces only on gradients and its adaptive versions

● Natural gradient learning uses Riemannian metric

● Further improvements possible (found useful in deep learning), to 
be mentioned later


