

1

Lecture 4

Multi-layer perceptrons

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2024

2

Introduction

● Generalization of a simple perceptron
● MLP features:

– contains hidden layer(s)
– neurons have a nonlinear differentiable activation function
– full connectivity between layers

● (supervised) error “back-propagation” learning algorithm
introduced

● became widely known after 1985: Rumelhart & McClelland:
Parallel distributed processing (described earlier by Werbos, 1974)

● theoretical analysis difficult
● response to earlier critique of perceptrons (Minsky & Papert, 1969)

3

● Inputs x , weights w, v, outputs y
● Nonlinear activation function f
● Unit activation:

● Bias input:
● Examples of activation functions:

hk= f ∑ j=1

n1
vkj x j

yi= f ∑k=1

q1
w ik h k

xn1=hq1=−1

Two-layer perceptron

f (o)=tanh(o)= e
o−e−o

eo+e−o
=

2
1+e−2o−1

f (o)=σ (o)= 1
1 +e−o

4

How to use output error?

● Output layer – application of delta rule
● How to compute error at hidden layer(s)?

● Instantaneous output error: e(p) = ½ i(di
(p) – yi

(p))2

● We will show that error can be back-propagated across layers
backwards

● At each layer the (local) weight correction has this form:
(weight change) = (learning rate)*(unit error)*(input)

● We will derive equations for BP algorithm.

5

Derivation of BP equations

e (t)=∑i ei =
1
2∑i (d i(t)− y i(t))

2

We need to calculate the effect of each hidden unit weight on the error. We
apply gradient descent optimization as for a simple continuous perceptron.
Using the chain rule, we get:

∂e
∂ vkj

= ∑i

de i
d y i

.
∂ y i
∂hk

.
∂hk
∂ vkj

= −∑i
(d i− y i). f ' (oi)wik . f ' (ok) .x j

We assume an MLP with one hidden layer (but results would hold for any
number of hidden layers). We only need to find the rule for updating the
weights of hidden units, because these do not have targets available:

Instantaneous error at time t is:

f ’(o) – is the derivative of the activation function w.r.t. to its argument (o)

k
j i

wikvkj

6

Learning equations for original BP

Hidden-output weights:

wik(t+1) = wik(t) + i hk where i = (di – yi) f'(oi)

vkj(t+1) = vkj(t) + k xj where k = (Si wik i) f'(ok)

wik i

k

● BP provides an “approximation” to the
trajectory in weight space computed by the
method of steepest descent: the smaller ,
the smoother the trajectory
● BP addresses credit-assignment problem
(hidden units’ responsibility for error)
● Applies to any number of hidden layers

layer n+1layer n

k

i

Input-hidden weights:

7

Summary of back-propagation algorithm

Given: training data: input-target {x(p), d(p)} patterns
Initialization: randomize weights, set learning parameters
Training:

1. choose input x(p), compute outputs y(p) (forward pass),
2. evaluate chosen error function e(t), E ← E + e(t)
3. compute i , k (backward pass)

4. adjust weights wik and vkj

5. if all patterns used, then goto 6, else go to 1
6. if stopping_criterion is met, then end

else permute inputs and go to 1

8

Stopping criteria

● In general, the BP algorithm cannot be shown to converge,
● There are no well-defined criteria for stopping its operation.
● However, there are some reasonable criteria, each with its own

practical merit, that may be used:
● “BP algorithm is considered to have converged when

– … the Euclidean norm of the gradient vector reaches a sufficiently
small gradient threshold.” (Kramer and Sangiovanni-Vincentelli, 1989)

– … the absolute rate of change in the average squared error per
epoch is sufficiently small.”

– generalization performance is good enough

(Haykin, 2009)

9

XOR problem solved with MLP

Hidden units learn
to become feature
detectors

10

Decision regions in MLP

x1 x2

11

Heuristics to improve BP

1. Stochastic versus batch update (faster)

2. Shuffle the patterns before each epoch

3. Maximize information content (use ‘difficult’ and radically diff. inputs)

4. Act. function: Consider bipolar (e.g. tanh), or no saturation (ReLU)

5. Use appropriate target values (-tolerance)

6. Input normalization

7. Parameter initialization: smaller weights and unit thresholds

8. Learn from hints: a priori information about function to be learned

9. Proper learning rate: the same for all units, or larger for lower layers.

(Haykin, 2009)

12

Normalization of inputs

Mean removal
(shown for x2)

Decorrelation Covariance
equalization

13

Output representation and decision rule

● for binary (0/1) targets, use logistic function
● for categorical targets, use 1-of-M coding and softmax activation

– outputs estimate a posteriori class probabilities P(Ci | x)
● for continuous-valued targets with a bounded range, use logistic or tanh

functions (with proper scaling)
● if target values > 0, but have no known upper bound, you can use an

exponential output activation function (beware of overflow)
● for continuous-valued targets with no known bounds, use the identity or

linear activation function (affine transformation)
● Hidden layer can use different activation functions, not necessarily saturated

– main purpose – not to block gradient propagation

14

MLP as a universal approximator

Theorem: Let's have Atrain = {x(1),..., x(p),..., x(N)}, x(p) ∈ ℝn. For > 0 and
arbitrary continuous function F: ℝn (0,1) defined on discrete set Atrain there
exists such a function G:

where parameters wk, vkj ∈ ℝ and f(z) = ℝ→(0,1) is a continuous and
monotone-increasing function satisfying f(-∞) = 0 and f(∞) = 1, such that:

p | F(x(p)) – G(x(p)) | < .
We say that G approximates F on Atrain with accuracy .
G can be interpreted as a 2-layer feedforward NN with one output neuron.
● it is an existence theorem
● curse of dimensionality – sparsity problem, how to get a dense sample for
large n and complex F

G x p = f ∑k=1

q1
wk f ∑ j=1

n1
vkj x j

 p

Hecht-Nielsen (1987), Hornik,
Stinchcombe & White (1989)

15

Generalization

A = Aestim∪ Aval ∪ Atest

Data set:

Generalization depends on:
● size of Aestim and its
 representativeness
●

 architecture of NN
● task complexity

● Validation set is used for
model selection.
● Generalization (= assessed
first on validation set) is
important in us

(Goodfellow et al., 2016)

16

Cross-validation

● The goal of cross-validation is to test the model's ability to
predict new data that was not used in estimating it.

● in statistics (Stone, 1974): data partitioning = train + test
● training set (estimation subset + validation subset):

– train the model using estimation subset
– validate the model using (a smaller) validation subset
– find the best model (model selection) using early stopping

● test set – used for assessing the performance of the chosen
model

● Typical choice: valid. set = 10-20% of training set
● There exist variations of CV approaches

17

k-fold cross-validation

● useful for smaller data sets, to get a statistically more
accurate model

● Split Atrain = A1
val∪ A2

val ∪ ... ∪ Ak
val (Ai

val and Aj
val are disjunct)

● train each model M k-times, with Ai
estim = Atrain \ Ai

val , i=1, 2,..., k.
 - stop training appropriately

● For each M compute the cross-validation coefficient:

● choose M with smallest CV
● Testing: the average of k results taken as single estimation
● Model selection: principle of parsimony (Occam’s razor)

CV (M)=1/ k∑i=1

k
E val

i (M)

18

Bias–variance tradeoff

E [(d−~f (x))2]=Bias2[~f (x)] + Var [~f (x)] + σ2d=f (x)+ϵ

Bias [~f (x)]=E [~f (x)]− f (x) Var [~f (x)]=E[~f (x)2]−E [~f (x)]2

https://en.wikipedia.org/wiki/Bias–variance_tradeoff

19

Quantifying the model complexity

● Based on statistical learning theory: The Vapnik–Chervonenkis (VC)
dimension measures the capacity of a binary classifier (model M).

● VC dimension is defined as the maximum number of points (patterns)
that M can classify correctly, for arbitrary assignments of labels to
those points.

● Discrepancy b/w TrainErr and TestError is bounded from above by a
quantity that (1) grows with growing VCdim and (2) shrinks with Train
dataset size increase (Goodfellow et al, 2015).

● e.g. for a general linear classifier, VCdim = 3.

https://en.wikipedia.org/wiki/Vapnik–Chervonenkis_dimension

20

Summary

● BP = standard supervised learning algorithm for MLPs in
classification and/or regression tasks

● computationally efficient, complexity O(W)
● stopping, heuristics → for best model
● finds locally optimal solutions
● MLP as universal approximator
● Model selection: min. validation error (=> best generalization)
● Bias–variance tradeoff
● VC dimension

	Title
	MLPs
	Two-layer percepron
	How to compute error?
	BP derivation
	BP learning equations
	Summary of BP
	Stopping criteria
	XOR example
	Decision regions
	Heuristics for BP
	Normalization
	Output representation
	Universal approximation
	Generalization
	Cross-validation
	k-fold CV
	Bias-variance tradeoff
	CV dimension
	MLP: Summary

