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Introduction

● Generalization of a simple perceptron
● MLP features:

– contains hidden layer(s)
– neurons have a nonlinear differentiable activation function
– full connectivity between layers

● (supervised) error “back-propagation” learning algorithm 
introduced 

● became widely known after 1985: Rumelhart & McClelland: 
Parallel distributed processing (described earlier by Werbos, 1974)

● theoretical analysis difficult
● response to earlier critique of perceptrons (Minsky & Papert, 1969)
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● Inputs x , weights w, v, outputs y
● Nonlinear activation function f
● Unit activation: 

● Bias input:
● Examples of activation functions:

hk= f ∑ j=1

n1
vkj x j

yi= f ∑k=1

q1
w ik h k 

xn1=hq1=−1

Two-layer perceptron

f (o)=tanh(o)= e
o−e−o

eo+e−o
=

2
1+e−2o−1

f (o)=σ (o)= 1
1 +e−o
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How to use output error?

● Output layer – application of delta rule
● How to compute error at hidden layer(s)?

● Instantaneous output error: e(p) = ½ i(di
(p) – yi

(p))2

● We will show that error can be back-propagated across layers 
backwards

● At each layer the (local) weight correction has this form:
(weight change) = (learning rate)*(unit error)*(input)

● We will derive equations for BP algorithm.
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Derivation of BP equations

e (t)=∑i ei =
1
2∑i (d i(t)− y i(t ))

2

We need to calculate the effect of each hidden unit weight on the error. We
apply gradient descent optimization as for a simple continuous perceptron. 
Using the chain rule, we get: 

∂e
∂ vkj

= ∑i

de i
d y i

.
∂ y i
∂hk

.
∂hk
∂ vkj

= −∑i
(d i− y i). f ' (oi)wik . f ' (ok ) .x j

We assume an MLP with one hidden layer (but results would hold for any 
number of hidden layers). We only need to find the rule for updating the 
weights of hidden units, because these do not have targets available:  

Instantaneous error at time t is:

f ’(o) – is the derivative of the activation function w.r.t. to its argument (o)

k
j i

wikvkj
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Learning equations for original BP

Hidden-output weights:

wik(t+1) = wik(t) + i hk     where     i  = (di – yi) f'(oi)

vkj(t+1) = vkj(t) + k xj      where    k = (Si wik i) f'(ok)

wik i

k

● BP provides an “approximation” to the 
trajectory in weight space computed by the 
method of steepest descent: the smaller , 
the smoother the trajectory
● BP addresses credit-assignment problem 
(hidden units’ responsibility for error)
● Applies to any number of hidden layers

layer n+1layer n

k

i

Input-hidden weights:
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Summary of back-propagation algorithm

Given: training data: input-target {x(p), d(p)} patterns
Initialization: randomize weights, set learning parameters
Training:

1. choose input x(p), compute outputs y(p) (forward pass), 
2. evaluate chosen error function e(t), E ← E + e(t)
3. compute i , k  (backward pass)

4. adjust weights wik  and  vkj

5. if all patterns used, then goto 6, else go to 1
6. if stopping_criterion is met, then end

else permute inputs and go to 1
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Stopping criteria

● In general, the BP algorithm cannot be shown to converge,
● There are no well-defined criteria for stopping its operation.
● However, there are some reasonable criteria, each with its own 

practical merit, that may be used:
● “BP algorithm is considered to have converged when 

– … the Euclidean norm of the gradient vector reaches a sufficiently 
small gradient threshold.” (Kramer and Sangiovanni-Vincentelli, 1989)

– … the absolute rate of change in the average squared error per 
epoch is sufficiently small.”

– generalization performance is good enough

(Haykin, 2009)
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XOR problem solved with MLP

Hidden units learn 
to become feature 
detectors
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Decision regions in MLP

x1 x2
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Heuristics to improve BP

1. Stochastic versus batch update (faster) 

2. Shuffle the patterns before each epoch

3. Maximize information content (use ‘difficult’ and radically diff. inputs)

4. Act. function: Consider bipolar (e.g. tanh), or no saturation (ReLU)

5. Use appropriate target values (-tolerance)

6. Input normalization

7. Parameter initialization: smaller weights and unit thresholds

8. Learn from hints: a priori information about function to be learned

9. Proper learning rate: the same for all units, or larger for lower layers.

(Haykin, 2009)
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Normalization of inputs

Mean removal
(shown for x2)

Decorrelation Covariance 
equalization
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Output representation and decision rule

● for binary (0/1) targets, use logistic function 
● for categorical targets, use 1-of-M coding and softmax activation

– outputs estimate a posteriori class probabilities P(Ci | x)
● for continuous-valued targets with a bounded range, use logistic or tanh 

functions (with proper scaling)
● if target values > 0, but have no known upper bound, you can use an 

exponential output activation function (beware of overflow)
● for continuous-valued targets with no known bounds, use the identity or 

linear activation function (affine transformation)
● Hidden layer can use different activation functions, not necessarily saturated

– main purpose – not to block gradient propagation
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MLP as a universal approximator

Theorem: Let's have Atrain = {x(1),..., x(p),..., x(N)}, x(p) ∈ ℝn.  For   > 0 and 
arbitrary continuous function F: ℝn  (0,1) defined on discrete set Atrain there 
exists such a function G:

where parameters wk, vkj ∈ ℝ and  f(z) = ℝ→(0,1) is a continuous and 
monotone-increasing function satisfying f(-∞) = 0 and f(∞) = 1, such that:

p | F(x(p)) – G(x(p)) | < .
We say that G approximates F on Atrain with accuracy . 
G can be interpreted as a 2-layer feedforward NN with one output neuron.
● it is an existence theorem
● curse of dimensionality – sparsity problem, how to get a dense sample for 
large n and complex F

G  x p = f ∑k=1

q1
wk f ∑ j=1

n1
vkj x j

 p

Hecht-Nielsen (1987), Hornik, 
Stinchcombe & White (1989)
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Generalization

A = Aestim∪ Aval ∪ Atest

Data set:

Generalization depends on:
● size of Aestim and its           
   representativeness
●

  architecture of NN
● task complexity

● Validation set is used for 
model selection.
● Generalization (= assessed 
first on validation set) is 
important in us

(Goodfellow et al., 2016)
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Cross-validation

● The goal of cross-validation is to test the model's ability to 
predict new data that was not used in estimating it.

● in statistics (Stone, 1974): data partitioning = train + test
● training set (estimation subset + validation subset):

– train the model using estimation subset
– validate the model using (a smaller) validation subset
– find the best model (model selection) using early stopping 

● test set – used for assessing the performance of the chosen 
model

● Typical choice: valid. set = 10-20% of training set
● There exist variations of CV approaches
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k-fold cross-validation

● useful for smaller data sets, to get a statistically more 
accurate model

● Split  Atrain = A1
val∪ A2

val ∪ ... ∪ Ak
val  (Ai

val and Aj
val are disjunct)

● train each model M  k-times, with Ai
estim = Atrain \ Ai

val , i=1, 2,..., k. 
  - stop training appropriately

● For each M  compute the cross-validation coefficient:

● choose M  with smallest CV
● Testing: the average of k results taken as single estimation
● Model selection: principle of parsimony (Occam’s razor)

CV (M )=1/ k∑i=1

k
E val

i (M )
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Bias–variance tradeoff

E [(d−~f (x ))2]=Bias2[~f (x)] + Var [~f ( x)] + σ2d=f (x)+ϵ

Bias [~f ( x)]=E [~f (x)]− f (x ) Var [~f (x )]=E[~f (x )2]−E [~f ( x)]2

https://en.wikipedia.org/wiki/Bias–variance_tradeoff
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Quantifying the model complexity

● Based on statistical learning theory: The Vapnik–Chervonenkis (VC) 
dimension measures the capacity of a binary classifier (model M).

● VC dimension is defined as the maximum number of points (patterns) 
that M can classify correctly, for arbitrary assignments of labels to 
those points.

● Discrepancy b/w TrainErr and TestError is bounded from above by a 
quantity that (1) grows with growing VCdim and (2) shrinks with Train 
dataset size increase (Goodfellow et al, 2015). 

● e.g. for a general linear classifier, VCdim = 3.

https://en.wikipedia.org/wiki/Vapnik–Chervonenkis_dimension
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Summary

● BP = standard supervised learning algorithm for MLPs in 
classification and/or regression tasks

● computationally efficient, complexity O(W)
● stopping, heuristics → for best model
● finds locally optimal solutions
● MLP as universal approximator
● Model selection: min. validation error (=> best generalization)
● Bias–variance tradeoff
● VC dimension
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