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Deep learning

● multi-layer architectures (>2 hidden layers)
● increasing abstractness
● with distributed representations emerging
● current discussion (connectionist ML) about 

the origins of DL
● Breakthrough: Deep Belief Networks (Hinton, 

Osindero &Teh, 2006)  
● unsupervised + supervised learning 

possible
● biological relevance
● Currently top results in various large-data 

domains: vision (object recognition), 
language tasks, speech, games

(Bengio, 2009)
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Advantage of DNNs 

● e.g. NN with 2 hidden layers: y = f(x) = f(3)(f(2)(f(1)(x)))
● Depth of the model = #hidden layers, width = #neurons
● DNN = extension of linear models (which cannot capture 

interactions b/w any two input variables (e.g. XOR)
● depth more effective than width:
● universal approximation theorem: The hidden layer may be 

infeasibly large (growing exponentially with input dimension) and 
may fail to learn and generalize correctly.

● In many cases, deeper models can reduce the number of units 
required to represent the desired function and improve 
generalization.

● DNN = representation learning
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Representation learning

● DL – towards end-to-end 
learning

● Type of representation 
matters 

● distributed reps have 
advantages

● greedy unsupervised 
layer-wise pretraining – 
often used at onset of 
DNNs (from 2006)
– successful, but not 

inevitable for DNNs
– before: only CNNs

(Goodfellow et al, 2015)
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Distributed representations

● Powerful, since they are efficient and support generalization 
(unlike localist = symbolic representations)

● Distributed representations are combinatorially very powerful 
because they can use n features with k values to describe kn 

di erent concepts. ff
● Redford et al (2015): a generative model can learn a distributed 

representation that disentangles two sources of variation:
● see Goodfellow et al (2015)  

for more details
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Benchmark tests – example

● MNIST database – handwritten digits
● Deep Belief Network (Hinton et al, 2006): 

layer-wise unsupervised pretraining + 
learning joint distributions (image-label 
pairs)
– also top-down weights, symmetric 

weight matrices, 1.25% errors

(Hinton et al, 2006)

errors made by DBN
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Success of convolutional DNN in vision

● MNIST handwritten digits using CNN (LeCun et al, 1998)
– testing error <1%

● MNIST (Cireşan, Meier, and Schmidhuber, 2012),
– near-human performance (0.23%)
– committee of 35 deep convolutional networks

● German Traffic Signs (Cireşan, Meier, Masci, et al., 2012)
– super-human performance (0.54% vs ~1%)
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(Deep Mind‘s) success of DNN in games

● Convolutional (deep Q) NN 
(Mnih et al, 2015) – learns to win 
Atari games from raw pixel 
data (i.e. end-to-end)

● AlphaGo beats Lee Se-dol 
(Silver et al, 2016)
– RL-based deep NN 

combined with tree search
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Steps to improve deep learning

● initialization
– weights: uniform or gaussian distribution (naïve)
– problem of weight saturation
– unsupervised pretraining

● new activation functions
– help avoid gradient vanishing problem

● regularization
– improves generalization

● training
– using improved versions of gradient descent
– pretraining (in various models)



10

Evolution of activation functions

● Unipolar: logic threshold, logistic sigmoid, (thresholded) linear

● Bipolar: softsign (Glorot and Bengio, 2010)

tanh(net )= enet−e−net

enet + e−net

softsign (net)= net
1+|net|

(Kuzma, 2016)
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Activation functions – rectifiers
● asymmetric, with preserved nonlinearity
● introduced to prevent saturation problems
● ReLU – rectified linear unit

Exponential ReLU 
(Clevert et al, 2015)

Leaky ReLU (Maass et al, 2015)

Softplus (Glorot et al, 2011)

f (x)=ln (1 + ex)
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Weight initialization

● Default – small random numbers, Uniform(-m,+m), Normal(0,s2)

Example:

● Normalized initialization – depends on network architecture:

Both distributions have 
the same mean and 
variance

N (0,√(1/3)∗0.001)

Uni(−.0001, +0.001)

(Bradley, 2009) (Glorot & Bengio, 2010) (He et al, 2015)
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Convolutional networks

● a specialized kind of NN for processing data that has a known 
grid-like topology (1D, 2D, …)

● use a specialized kind of linear operation – convolution – in 
place of general matrix multiplication in at least one layer

● Convolution combines input x with (flipped) kernel w
● 1D: s(t) = (x∗w)(t) = Σa x(a) . w(t−a)
● 2D: S(i, j) = (I∗K)(i, j) = Σm Σn I(m,n) . K(i−m, j−n)

● Convolution is commutative =  S(i, j) = Σm Σn I(i−m,j−n) . K(m,n) 
● Cross-correlation:  S(i, j) = (I ° K)(i, j) = Σm Σn I(i+m,j+n) . K(m,n)
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Example of a 2D convolution

● Kernel (kh  kw) is usually 
much smaller than the input 
image (nh  nw)

● Kernel is restricted to lie 
completely in the image 

● Example on the right: Image 
shrinks from 34 to 23

● In general, the output size is 
(nh−kh+1)×(nw−kw+1).

Another example with numbers:

(Goodfellow et al., 2015)
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Graphical comparison in 1D

https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution
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Three advantages of convolution

Sparse interactions (weights)

Example of edge detection:

Parameter sharing

Equivariant representations
 – only to translation, other 
forms of equivariance (scale, 
rotation) require additional 
mechanisms.

YES

NO

(Goodfellow et al., 2015)
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Padding and stride

Padding – slows down 
image shrinking over 
layers

- zeros adding around the 
image

Stride – speeds up image 
size shrinking

- determines the size of 
traversing steps over the 
image

● Optional operations, sometimes useful to control the size of the output

(Zhang et al, 2020)
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Pooling

● used to gradually reduce the spatial resolution of hidden 
representations

● higher layers have larger receptive fields of each hidden node
● hence, we get gradual aggregation of information, yielding 

coarser and coarser maps, leading to global representation
● maximum pooling and average pooling
● pooling layers can also change the 

output shape...
● …since padding and stride can be applied



19

Multiple input and output channels

Multiple input channels
- a separate kernel for each
- example with 2 input ch’s and 
one output channel

Multiple output channels
- are needed if we want to 
propagates channel across 
layers

1  1 convolution kernel
- still makes sense, since the 
weights are tied (shared) 
across pixel location.
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Examples of learned invariances

● A pooling unit spans over multiple features that are learned with 
separate parameters 

● A pooling unit can learn to be invariant to transformations of the 
input (rotations)

(Goodfellow et al., 2015)
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LeNet – the 1st CNN

● First CNN, used for computer vision tasks 
– still used for some ATMs 

● 2 parts: convolutional layers + FC layers
● sigmoids used (ReLUs not known yet)

(LeCun et al., 1998)
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AlexNet
● winner of LSVRC-2012 competition, 1.3 mil. 

images (ImageNet), 1000 classes, ~62 mil. param.
● uses ReLU which yields 6x speed at the same 

accuracy, dropout, pooling to reduce network.
● Training: 90 epochs in 5 days, on two GTX 580 

GPUs, SGD with LR 0.01 (decreased 3-times), 
momentum 0.9 and weight decay 0.0005.

● Original model used a dual data stream design 
(due to memory limitations)

(Krizhevsky, Sutskever, Hinton, 2012)

learned features at the 
first hidden layer
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Networks using blocks

● Proposed by Visual Geometry Group in UK
● VGG = (1) ConvL with padding to maintain the 

resolution, (2) nonlinearity, (3) pooling layer.
● Convolutional part = one or more VGG blocks
● VGG-11 = 8 ConvL + 3 FCL
● S&Z found that several layers of deep and narrow 

convolutions (i.e., 3×3) were more effective than 
fewer layers of wider convolutions.

● The use of blocks leads to very 
compact representations of the 
network definition. It allows for 
efficient design of complex 
networks.

(Simonyan & Zisserman, 2015)
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Residual networks

(Zhang et al, 2020)

(He et al, 2015)classical model

● Learns the residual 
mapping to f(x) – x

● ...using a shortcut
● is easier to learn, if 

target mapping is     
f(x) = x

● ResNet can be 
combined, e.g. with 
VGG

● ResNet won the 2015 
ImageNet competition

● other popular models
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Performance of deep neural network models

(Bianco et al., 2018)Tested on ImageNet-1k
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Problems of deep networks

● Deep networks lack robustness, because they are sensitive to 
adversarial examples (inputs with perturbations imperceivable by 
humans); applies to classifiers and RL models, too.

● There exist many adversarial attacks and respective defences
● AEs appear to be a feature, not a bug (Ilyas et al, 2019)

● Other problems: data greediness, limited generalization (contrary to 
humans) 

(Goodfellow et al, 2015)
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Summary

● Deep learning very successful in concrete domain-specific  
applications

● end-to-end, i.e. no input preprocessing and/or feature extraction 
needed; shift towards engineering 

● Various ways for improvement: proper weights initialization, 
activation functions, regularization,...

● Convolutional layers help implement various forms of invariance, 
and hence, increase accuracy.

● Convolution reduces number of trainable parameters
● Huge architectures reasonable and possible thank to high 

parallelization on GPUs and fast HW.
● Deep networks are very brittle (maybe shift to hybrid models).
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