
1

Lecture 10

Deep learning and convolutional nets

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2024

2

Deep learning

● multi-layer architectures (>2 hidden layers)
● increasing abstractness
● with distributed representations emerging
● current discussion (connectionist ML) about

the origins of DL
● Breakthrough: Deep Belief Networks (Hinton,

Osindero &Teh, 2006)
● unsupervised + supervised learning

possible
● biological relevance
● Currently top results in various large-data

domains: vision (object recognition),
language tasks, speech, games

(Bengio, 2009)

3

Advantage of DNNs

● e.g. NN with 2 hidden layers: y = f(x) = f(3)(f(2)(f(1)(x)))
● Depth of the model = #hidden layers, width = #neurons
● DNN = extension of linear models (which cannot capture

interactions b/w any two input variables (e.g. XOR)
● depth more effective than width:
● universal approximation theorem: The hidden layer may be

infeasibly large (growing exponentially with input dimension) and
may fail to learn and generalize correctly.

● In many cases, deeper models can reduce the number of units
required to represent the desired function and improve
generalization.

● DNN = representation learning

4

Representation learning

● DL – towards end-to-end
learning

● Type of representation
matters

● distributed reps have
advantages

● greedy unsupervised
layer-wise pretraining –
often used at onset of
DNNs (from 2006)
– successful, but not

inevitable for DNNs
– before: only CNNs

(Goodfellow et al, 2015)

5

Distributed representations

● Powerful, since they are efficient and support generalization
(unlike localist = symbolic representations)

● Distributed representations are combinatorially very powerful
because they can use n features with k values to describe kn

di erent concepts. ff
● Redford et al (2015): a generative model can learn a distributed

representation that disentangles two sources of variation:
● see Goodfellow et al (2015)

for more details

6

Benchmark tests – example

● MNIST database – handwritten digits
● Deep Belief Network (Hinton et al, 2006):

layer-wise unsupervised pretraining +
learning joint distributions (image-label
pairs)
– also top-down weights, symmetric

weight matrices, 1.25% errors

(Hinton et al, 2006)

errors made by DBN

7

Success of convolutional DNN in vision

● MNIST handwritten digits using CNN (LeCun et al, 1998)
– testing error <1%

● MNIST (Cireşan, Meier, and Schmidhuber, 2012),
– near-human performance (0.23%)
– committee of 35 deep convolutional networks

● German Traffic Signs (Cireşan, Meier, Masci, et al., 2012)
– super-human performance (0.54% vs ~1%)

8

(Deep Mind‘s) success of DNN in games

● Convolutional (deep Q) NN
(Mnih et al, 2015) – learns to win
Atari games from raw pixel
data (i.e. end-to-end)

● AlphaGo beats Lee Se-dol
(Silver et al, 2016)
– RL-based deep NN

combined with tree search

9

Steps to improve deep learning

● initialization
– weights: uniform or gaussian distribution (naïve)
– problem of weight saturation
– unsupervised pretraining

● new activation functions
– help avoid gradient vanishing problem

● regularization
– improves generalization

● training
– using improved versions of gradient descent
– pretraining (in various models)

10

Evolution of activation functions

● Unipolar: logic threshold, logistic sigmoid, (thresholded) linear

● Bipolar: softsign (Glorot and Bengio, 2010)

tanh(net)= enet−e−net

enet + e−net

softsign (net)= net
1+|net|

(Kuzma, 2016)

11

Activation functions – rectifiers
● asymmetric, with preserved nonlinearity
● introduced to prevent saturation problems
● ReLU – rectified linear unit

Exponential ReLU
(Clevert et al, 2015)

Leaky ReLU (Maass et al, 2015)

Softplus (Glorot et al, 2011)

f (x)=ln (1 + ex)

12

Weight initialization

● Default – small random numbers, Uniform(-m,+m), Normal(0,s2)

Example:

● Normalized initialization – depends on network architecture:

Both distributions have
the same mean and
variance

N (0,√(1/3)∗0.001)

Uni(−.0001, +0.001)

(Bradley, 2009) (Glorot & Bengio, 2010) (He et al, 2015)

13

Convolutional networks

● a specialized kind of NN for processing data that has a known
grid-like topology (1D, 2D, …)

● use a specialized kind of linear operation – convolution – in
place of general matrix multiplication in at least one layer

● Convolution combines input x with (flipped) kernel w
● 1D: s(t) = (x∗w)(t) = Σa x(a) . w(t−a)
● 2D: S(i, j) = (I∗K)(i, j) = Σm Σn I(m,n) . K(i−m, j−n)

● Convolution is commutative = S(i, j) = Σm Σn I(i−m,j−n) . K(m,n)
● Cross-correlation: S(i, j) = (I ° K)(i, j) = Σm Σn I(i+m,j+n) . K(m,n)

14

Example of a 2D convolution

● Kernel (kh kw) is usually
much smaller than the input
image (nh nw)

● Kernel is restricted to lie
completely in the image

● Example on the right: Image
shrinks from 34 to 23

● In general, the output size is
(nh−kh+1)×(nw−kw+1).

Another example with numbers:

(Goodfellow et al., 2015)

15

Graphical comparison in 1D

https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution

16

Three advantages of convolution

Sparse interactions (weights)

Example of edge detection:

Parameter sharing

Equivariant representations
 – only to translation, other
forms of equivariance (scale,
rotation) require additional
mechanisms.

YES

NO

(Goodfellow et al., 2015)

17

Padding and stride

Padding – slows down
image shrinking over
layers

- zeros adding around the
image

Stride – speeds up image
size shrinking

- determines the size of
traversing steps over the
image

● Optional operations, sometimes useful to control the size of the output

(Zhang et al, 2020)

18

Pooling

● used to gradually reduce the spatial resolution of hidden
representations

● higher layers have larger receptive fields of each hidden node
● hence, we get gradual aggregation of information, yielding

coarser and coarser maps, leading to global representation
● maximum pooling and average pooling
● pooling layers can also change the

output shape...
● …since padding and stride can be applied

19

Multiple input and output channels

Multiple input channels
- a separate kernel for each
- example with 2 input ch’s and
one output channel

Multiple output channels
- are needed if we want to
propagates channel across
layers

1 1 convolution kernel
- still makes sense, since the
weights are tied (shared)
across pixel location.

20

Examples of learned invariances

● A pooling unit spans over multiple features that are learned with
separate parameters

● A pooling unit can learn to be invariant to transformations of the
input (rotations)

(Goodfellow et al., 2015)

21

LeNet – the 1st CNN

● First CNN, used for computer vision tasks
– still used for some ATMs

● 2 parts: convolutional layers + FC layers
● sigmoids used (ReLUs not known yet)

(LeCun et al., 1998)

22

AlexNet
● winner of LSVRC-2012 competition, 1.3 mil.

images (ImageNet), 1000 classes, ~62 mil. param.
● uses ReLU which yields 6x speed at the same

accuracy, dropout, pooling to reduce network.
● Training: 90 epochs in 5 days, on two GTX 580

GPUs, SGD with LR 0.01 (decreased 3-times),
momentum 0.9 and weight decay 0.0005.

● Original model used a dual data stream design
(due to memory limitations)

(Krizhevsky, Sutskever, Hinton, 2012)

learned features at the
first hidden layer

23

Networks using blocks

● Proposed by Visual Geometry Group in UK
● VGG = (1) ConvL with padding to maintain the

resolution, (2) nonlinearity, (3) pooling layer.
● Convolutional part = one or more VGG blocks
● VGG-11 = 8 ConvL + 3 FCL
● S&Z found that several layers of deep and narrow

convolutions (i.e., 3×3) were more effective than
fewer layers of wider convolutions.

● The use of blocks leads to very
compact representations of the
network definition. It allows for
efficient design of complex
networks.

(Simonyan & Zisserman, 2015)

24

Residual networks

(Zhang et al, 2020)

(He et al, 2015)classical model

● Learns the residual
mapping to f(x) – x

● ...using a shortcut
● is easier to learn, if

target mapping is
f(x) = x

● ResNet can be
combined, e.g. with
VGG

● ResNet won the 2015
ImageNet competition

● other popular models

25

Performance of deep neural network models

(Bianco et al., 2018)Tested on ImageNet-1k

26

Problems of deep networks

● Deep networks lack robustness, because they are sensitive to
adversarial examples (inputs with perturbations imperceivable by
humans); applies to classifiers and RL models, too.

● There exist many adversarial attacks and respective defences
● AEs appear to be a feature, not a bug (Ilyas et al, 2019)

● Other problems: data greediness, limited generalization (contrary to
humans)

(Goodfellow et al, 2015)

27

Summary

● Deep learning very successful in concrete domain-specific
applications

● end-to-end, i.e. no input preprocessing and/or feature extraction
needed; shift towards engineering

● Various ways for improvement: proper weights initialization,
activation functions, regularization,...

● Convolutional layers help implement various forms of invariance,
and hence, increase accuracy.

● Convolution reduces number of trainable parameters
● Huge architectures reasonable and possible thank to high

parallelization on GPUs and fast HW.
● Deep networks are very brittle (maybe shift to hybrid models).

	Title
	Deep learning
	Advantages of DL
	Representation learning
	Distributed representations
	DBN on MNIST
	Conv DNN on vision
	DL for games
	Steps to improve DL
	Activation functions
	ReLU
	Weight initialization
	Convolutional NN
	2D convolution
	Graphical comparison in 2D
	Advantages of convolution
	Padding a nd stride
	Pooling
	Multiple I/O channels
	Slide 20
	LeNet
	AlexNet
	VGG
	Residual networks
	Performance of DNN models
	Problems of DN
	Summary

