Faculty of Mathematics, Physics and Informatics Deep learning
Comenius University in Bratislava

very high level representation:

* multi-layer architectures (>2 hidden layers)
* increasing abstractness ‘
» With distributed representations emerging .ele ...
* current discussion (connectionist ML) about }
its origins slightly higher level representation
Neural NEtWOrkS * Breakthrough: Deep Belief Networks (Hinton,
Osindero &Teh, 2006) raw input vector \:f.:p:eiellta‘t_ionz
Lecture 9 « unsupervised + supervised learning =[z3]1920]

possible
* Biological relevance

* Currently top results in various large-data
domains: vision (object recognition),
language, speech, ...

Deep learning and convolutional nets

Igor Farkas 2021 (Bengio, 2009) .
Advantage of DNNs Benchmark tests — example
* e.g. NN with 2 hidden layers: y = f(x) = fO(fo(f)(x))) * MNIST database — handwritten digits | 2000 top-level units |
* Depth of the model = #hidden layers, width = #neurons * Deep Belief Network (Hinton et al, 2006): Q ﬁ
. _ . £ del hich layer-wise unsupervised pretraining + .
DNN = extension of linear models (which cannot capture learning joint distributions (image-label | 101abel units | | 500 units |
interactions b/w any two input variables (e.g. XOR) pairs) 0 0 i
* depth more effective than width: - also top-down weights, symmetric This could be the 500 units
. . .) . weight matrices, 1.25% errors top level of
* universal approximation theorem: the hidden layer may be b efjarisensony Tl
infeasibly large (growing exponentially with input dimension) and pathway 28 x 28
may fail to learn and generalize correctly pixel
* In many cases, deeper models can reduce the number of units SV D roeNYL CHCe RV LE —
required to represent the desired function and improve AT 1IRO 0O 6 CRC@ L ED (Hinonetal, 2006)
generalization S@NT N T77B 4NN R AR
. _)) 77 2,2 55 Ss 9% 55 2? Bﬁ 8’5 55 Qq 9,,[39 17 97 97 2;‘ sq q% 06
DNN = representation learning 24t A B DT B D -
Q'r'B’3THRSEY 27 U799 D7) '\ errors made by DBN

3 4

Success of convolutional DNN in vision

* MNIST handwritten digits using CNN (LeCun et al, 1998)
- testing error <1%

* MNIST (Ciresan, Meier, and Schmidhuber, 2012),
- near-human performance (0.23%)
- committee of 35 deep convolutional networks

* German Traffic Signs (Ciresan, Meier, Masci, et al., 2012)
— super-human performance (0.54% vs ~1%)

(Deep Mind‘s) success of DNN in games

* Convolutional (deep Q) NN
(Mnih et al, 2015) — learns to win
Atari games from raw pixel
data (i.e. end-to-end)

* AlphaGo beats Lee Se-dol
(Silver et al, 2016)

- RL-based deep NN
combined with tree search

g

Fully connect

Policy network Value network

]l

By, (@ls) v, (s)

L]

l'i‘

¢

2Arslele vy
Al
olojololololofo

2 2

Steps to improve deep learning

* initialization
- weights: uniform or gaussian distribution (naive)
- problem of weight saturation
— unsupervised pretraining
* new activation functions
- help avoid gradient vanishing problem
* regularization
- improves generalization
* training
- using improved versions of gradient descent
- pretraining (in various models)

Evolution of activation functions

* Unipolar: logic thresold, logistic sigmoid, (thresholded) linear

+1.0
threshold

sigmoid
linear*

-5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5

activation

net input

* Bipolar: softsign (Glorot and Bengio, 2010) (Kuzma, 2016)

net —net

+1.
e —e tanh
tanh (net)=——— softsign
e +e - linear
(=}
N : : : : i
g - -2 -1 +1 +2 +
. _ net 23 3
softsign (net)= Toned]
=1

net input

8

Activation functions — rectifiers

* asymmetric, with preserved nonlinearity
* introduced to prevent saturation problems
* ReLU — rectified linear unit

Leaky ReLU (Maass et al, 2015)

ReLU +2.0T
LU ——
f(x) — {x’ xz0 Leaky ReLU —— /
- ELU —— 1
ax, x<0 softplus —— -
linear ——
. +1.0 T
Exponential ReLU -
(Clevert et al, 2015) 3
X, x=0 © 7
f)= ® ‘ 7 : } | ' : ‘ . .
a(e*-1), x<0
-3.0 1.5 -1.0 . +0.5 +1.0 +1.5 +2.0
,—/‘—’—‘ _0.5 14
Softplus (Glorot et al, 2011)
f(x)=In(1+e") e
net input

Weight initialization

* Default — small random numbers, Uniform(-m,+m), Normal(0,s?)

. 800 + .
Example: Sl uniform Uni(—.0001,+0.001)
ﬁ()o 45 normal - - -
£ 00
a0t N N(0,+/(1/3)%0.001)
3 / 300 T N
) a5 - Both distributions have
‘ e S~ , the same mean and
-0.003 -0.002 -0.001 o 0.001 0.002 0.003 variance

* Normalized initialization — depends on network architecture:

1 6 2
~ Uni W~Uni|+{/ —mM— W~N(0,{/—
w Um(i,/degm) m(\j degin+degon) degin)

(He et al, 2015)

(Bradley, 2009) (Glorot & Bengio, 2010)

10

Convolutional networks

* aspecialized kind of NN for processing data that has a known
grid-like topology (1D, 2D, ...)

* use a specialized kind of linear operation — convolution — in
place of general matrix multiplication in at least one layer

» Convolution combines input x with (flipped) kernel w
e 1D: s(t) = (x*w)(t) = £, x(a) . w(t—a)
e 2D:S(i,j)=(I *« K)i,j) = Zpm Z,I(m,n) . K(i-m, j—n) 2

« Convolution is commutative = S(i, j) = X, X, I(i-m,j—n) . K(m,n)

« Cross-correlation: S(i, j) = (I - K)(i, j) = X, Z, I(i+m,j+n) . K(m,n)

11

Example of a 2D convolution

Input

Kernel
e]
| w T
]
HE

« Kernel (ky X k) is usually
much smaller than the input
image (np X ny)

* Kernel is restricted to lie
completely in the image

* Example on the right: Image ¥y Output
shrinks from 3x4 to 2x3
° oAl 'aw+b$+ bw + er + cw + dr +
In general, the output size is o 1+ o+ o o
(Nh=Kpt1)%(Nw—ky+1).
Another example with numbers:
Input Kernel Output
ew + fr + fw + gz + gw + hr +
ol1] 2 iy o+ Jz Jjv + kz ky + Iz
01 1925
3(4]5 * =]
2|3 37|43
6|78

(Goodfellow et al., 2015)

12

Graphical comparison in 1D

Convolution Cross-correlation Autocorrelation
f f f

B s B s e s

https://en.wikipedia.org/wiki/Convolution

13

Three advantages of convolution

Sparse interactions (weights) Parameter sharing

RUIR SRR O0000
= $ETES
00000

GOOO0

L / Equivariant representations
— only to translation, other

forms of equivariance (scale,
rotation) require additional
mechanisms.

Example of edge detection:

(Goodfellow et al., 2015)

14

Padding and stride

* Optional operations, sometimes useful to control the size of the output

Padding — slows down et eme! Outet
image shrinking over 0t oot
layers S0l 210 o|3]|s]4
i :'0 alals -S-u: * 01 _ 9 [19]25(10
- Zeros adding around the : 131 = [Fls (s
image ro|e6|7]|8]o0!
: Doy 6|7(8|o0
0 E 0 E 0 E 0 E 01
. . Input Kernel Output
Stride — speeds up image o v
size shrinking SRR R E
[:
- determines the size of ;ojofrf2jo: T T3
traversing steps over the tof3fa]s5fo; = 5 - =
image ‘ole|7[sfo:
0:0(0:0:0 :

Pooling

* used to gradually reduce the spatial resolution of hidden
representations

* higher layers have larger receptive fields of each hidden node

* hence, we get gradual aggregation of information, yielding
coarser and coarser maps, leading to global representation

Output

* maximum pooling and average pooling input

ol1]2

* pooling layers can also change the R

T
output shape e e [7]e

* since padding and stride can be applied

16

Multiple input and output channels

Multiple input channels

Input Kernel Input Kernel Output

- a separate kernel for each T2l5] =13
. . 415]|6|*
- example with 2iCh, and one % Telo1 LBl4 o
01 —_ —
output channel G H T e 0+1 il
6[7]8

. 314|5]|*
Multiple output channels 11 2B
- are needed if we want to
propagates channel across
layers
1 X 1 convolution kernel eus Rend Qi
- still makes sense, since the
weights are tied (shared) * =
across pixel location.

17

Examples of learned invariances

* A pooling unit spans over multiple features that are learned with

separate parameters

* A pooling unit can learn to be invariant to transformations of the

input (rotations)

Large response
in pooling unit
Large

response
in detector,

Large

Large response
in pooling unit
response

in detector

unit 1 unit 3

T
bl|&
T
b

(Goodfellow et al., 2015)

18

LeNet — the 1st CNN

convolution pooling dense

convolution

_ pooling

o !%‘ | e
] T m— =]

6@14x14 F—_
[

82 feature map -
16@10x10 16a5x5

CE i s 54 feature map

120 - FS full

28x28 image 6@28x28
C1 feature map

(LeCun et al., 1998)
t

| 2 x 2 AvgPool, stride 2 |

* First CNN, used for computer vision tasks

- still used for some ATMs [_sxsconis

t

» 2 parts: convolutional layers + FC layers

| 2 x 2 AvgPool, stride 2 |

* sigmoids used (ReLUs not known yet)

| 5 x 5 Conv (6), pad 2 |

I Image (28 x 28)

l

19

| FC (1000)
AlexNet t
| FC (4096)
winner of LSVRC-2012 competition, 1.3 mil. | = (1096)
images (ImageNet), 1000 classes, ~62 mil. param. ¥
uses ReLU which yields 6x speed at the same [33 Maxpool stroe 2
accuracy, dropout, pooling to reduce network. t
| 3 x 3 Conv (384), pad 1
Training: 90 epochs in 5 days, on two GTX 580 t
GPUs, SGD with LR 0.01 (decreased 3-times), |83 Conv (384, pad 1
momentum 0.9 and weight decay 0.0005. i
[33 Conv (384), pad 1
Original model used a dual data stream design t
(due to memory limitations) | 3><3M3*P1°°'v St 2
[5x5 Conv (256), pad 2|
learned features at the 1
first hidden layer | 3 x 3 MaxPool, stride 2
t

| 11 % 11 Conv (96), stride 4 |

| Image (3 x 224 x 224) I

(Krizhevsky, Sutskever, Hinton, 2012)

20

Networks using blocks

Proposed by Visual Geometry Group in UK (Simonyan & Zisserman, 2015)

VGG = (1) CL with padding to maintain the vee
resolution, (2) nonlinearity, (3) pooling layer.

Convolutional part = one or more VGG blocks
VGG-11 =8 CL + 3 FCL

FC (4096)

S&Z found that several layers of deep and narrow

convolutions (i.e., 3x3) were more effective than E
fewer layers of wider convolutions. VGG blook
l—i—l
The use of blocks leads to very 2 2 MaxPool, strde 2 t
compact representations of the . . 1
. ey X nv, 1
network definition. It allows for B T %
efficient design of complex .
networks. I :
—

21

Residual networks

¢ Learns the residual ! T
mappmg f(X) —-X | Activation function | | Activation function |
* using a shortcut A%) .
e |s easier to learn
fx) fx) - x
+ ResNet can be Y L
combined. e g with : | Weight layer | : : | Weight layer | :
Y.] |
! | [} ! | 1 L
VGG : | Activation function | 1 E | Activation function | :
[} [}
* ResNet won the 2015 E | W_h*“ | ! E | W_:“ | |
. el ayer el ayer
ImageNet competition gf Y A ont Y !
X X

other popular models

classical model (He et al, 2015)

(Zhang et al, 2020)

22

Problems of deep networks

+.007 x

z sign(Va J (8,2, y))

“panda”
57.7% confidence

x &
esign(V, J(6,z,y))
“gibbon"

99.3 % confidence

“nematode”

8.2% confidence (Goodfellow et al, 2015)

Deep classifiers lack robustness, because they are sensitive to
adversarial examples (inputs with perturbations imperceivable by
humans)

There exist many adversarial attacks and respective defences
AEs appear to be a feature, not a bug (llyas et al, 2019)

Other problems: data greediness, limited generalization (contrary to
humans)
23

Summary

* Deep learning very successful in concrete domain-specific
applications

* end-to-end, i.e. no input preprocessing and/or feature extraction
needed

* Various ways for improvement: proper weights initialization,
activation functions, regularization,...

* Convolutional layers help implement various forms of invariance,
and hence, increase accuracy.

* Convolution reduces number of trainable parameters

* Huge architectures reasonable and possible thank to high
parallelization on GPUs and fast HW.

* Deep networks are very brittle (maybe shift to hybrid models).

24

