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Autoencoders

● Encoder-decoder architecture = NN that is trained to attempt to 
copy its input to its output

● We focus on simpler case – a spatial mapping (no time involved)
● Encoder h = f(x), decoder r = g(h) = g(f(x))  yields reconstruction
● dim(x) = dim(r) > dim(h) → bottleneck
● imperfect reconstruction crucial (due to bottleneck)

● AE can also be stochastic: pencoder(h | x) and pdecoder (x | h), 
leading to generative models
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Purpose

● Autoencoders – used for dimensionality reduction, since 1980s     
  (LeCun, 1987; Bourlard & Kamp, 1988)

● undercomplete AE, i.e. If dim(h) < dim(x) → bottleneck
– captures the most salient features of the training data

● Self-supervised training to minimize loss function L(x, g(f(x))
● if linear and Loss = MSE, then → PCA, 
● nonlinear AE is a more powerful generalization
● overcomplete AE, i.e. dim(h) > dim(x) interesting only...
● … if regularized, in order to learn data distribution (in latent space)
● Interesting properties at hidden layer: sparsity, small derivatives of 

the representation, robustness
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Sparse autoencoders

● Trained to minimize L(x, g(f(x))) + P(h), (P = sparsity penalty) 
● typically used to learn features for another task (such as  

classification)
● e.g. P(h) = λΣi |hi|
● using ReLU activation function also enforces sparsity
● Probabilistic interpretation: learn generative model pmodel(x | h) 

that best explains observed data (by latent variables)
● Alternative: L(x, g(f(x))) + P(h,x), where 
● P(h,x) = λΣi ∥∇x hi∥2 → contractive autoencoder
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Denoising autoencoders

● Based on changing the reconstruction error term of the cost 
function (rather than adding penalty term)

● Minimizes L(x, g(f(x’)), where x’ is noisy version of input x
● implicitly forced to learn the structure of data pdata(x)
● Introduces corruption process C(x’ | x)  
● DAE learns reconstruction distrib. preconstruct(x | x’) 
● … from training pairs {x’, x}
● can by trained by SGD           

as any feedforward NN  

opendeep.org

Original            noisy         reconstruction
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Graphical interpretation of DAE learning

● data x assumed to lie on a low-dim. manifold M (black curve) 
● noisy inputs  x’ represent departures from M
● DAE learns a vector field (green arrows): g(f(x)) – x 
● projections onto the manifold

(Goodfellow et al., 2015)
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Example: 2D → 1D

(Alain & Bengio, 2013)
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 Manifold learning with autoencoder

● 1D example in 784-dim. space
● vertically translated images → 

a coordinate along M
● M projected in 2D (via PCA)
● Each node is associated with a 

tangent plane that spans the 
directions of variations 
associated with di erence ff
vectors between the example 
and its neighbors

● shown example (bottom right)

(Goodfellow et al., 2015)
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2D example with manifold of faces

● Unsupervised learning of manifold (embedding) based on a 
(nonparametric) nearest neighbors graph

● Generalization to new examples possible via interpolation for 
dense graphs

(Gong et al., 2000)
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Variational autoencoder (VAE)

● Uses a reparametrization trick (right), which 
allows gradient propagation and controlled 
generation of samples

● conditional VAE possible

(Doersch, 2021)

(Kingma et al., 2014)
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VAE properties

(Rocca,2019)
Latent space representation

https://www.jeremyjordan.me/variational-autoencoders/
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Applications of autoencoders

● Explicit dim. reduction for subsequent classification – reduces error 
(also less memory and runtime)

● can be applied recursively (hierarchically)
● Information retrieval – task of finding entries in a database that 

resemble (are relevant for) a query entry 
– entries mapped to binary low-dim. hash codes (fast search)
– entries with the same or slightly different codes (a few bits flipped) 

retrieved → semantic hashing
– sigmoid units used in encoding function (forced to saturate)
– technique used for text and images

● machine translation
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Recurrent NN models with gated units

● Help preserve long-term dependencies (via gradient learning)
● Two models will be mentioned: GRU (Cho et al, 2014) – simpler, 

LSTM (Hochreiter & Schmidhuber, 2007) – more complex
● New components: 

– memory cell (to capture long-term dependencies)
– skipping irrelevant inputs (in latent space)
– resetting (internal state representation)

(Graves et al, 2013)
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GRU – Gating the hidden state

minibatches (of size n)

Xt [n×d] (examples × 
dimension) 

Ht-1 [n×h]

Rt , Zt [n×h]

Wxr ,Wxz [d×h]

Whr ,Whz [h×h]

bt , bz [1×h]

Rt = σ(Xt Wxr + Ht-1 Whr + br)
Zt = σ(Xt Wxz + Ht-1 Whz + bz)

sigmoid

(Cho et al., 2014)

(Zhang et al, 2020)
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GRU – Reset gates in action

Ht = tanh(Xt Wxh + Rt ⊙Ht-1 Whh + bh)

● helps capture short-term dependencies in time series



16

GRU – Update gates in action

Ht = Zt ⊙Ht-1 +(1– Zt)⊙H’t

≡ H’t

● help capture long-term dependencies in time series
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LSTM’s gated memory cells

● inspired by logic gates of a computer
● 3 gates controls the behavior of the memory cell (latent state)
● output gate – controls when to read from the cell
● input gate – controls when to read data into the cell
● forget gate – controls when to reset the contents of the cell
● In addition, LSTM introduces a memory cell (C)

– having the same shape as latent state (H)
– providing additional information

● GRU is simpler: has a single mechanism for input and forgetting
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LSTM’s three gates

minibatches (of 
size n)

Xt [n×d] (examples 
× dimension) 

Ht-1 [n×h]

Rt , Zt [n×h]

Wxi ,Wxf ,Wxo [d×h]

Whi ,Whf ,Who [h×h]

bi , bf , bo [1×h]
 It = σ(Xt Wxi + Ht-1 Whi + bi)
Ft = σ(Xt Wxf + Ht-1 Whf + bf)
Ot = σ(Xt Wxo + Ht-1 Who + bo)

(Hochreiter & Schmidhuber, 1997) 
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Candidate memory cell

Wxc  [d×h]

Whc  [h×h]

Bc [1×h]

C’t  [n×h]

C’t = tanh(XtWxc + Ht-1Whc + bc

≡ C’t

computation similar to the 3 gates described above, but using a tanh function 
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Memory cell

Ct = Ft ⊙Ct-1 + It⊙C’t

LSTM has 2 parameters: It governs how much of new data we take via C’t
and Ft determines how much of the old memory content Ct-1 we retain.
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Hidden states

Ht = Ot ⊙ tanh(Ct)

Hidden state is Ot-gated version of the tanh of the memory cell:
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Complete LSTM dynamics

x(t), h(t-1)

h(t)

f ( t)=σ(Ufgt x (t)+ W fgt h(t−1)+ b fgt)

s( t)= f (t)⊙s (t−1)+
        g (t)⊙σ (Ufgt x( t)+ W fgt h (t−1)+ b)

Forget gates

Memory cell state

f(t)

g( t)=σ (Uinp x( t)+ W inp h(t−1)+ binp )

Input gates

Output gates

q (t )=σ (Uout x (t )+ Wout h(t−1)+ bout )

h (t)=tanh (s( t))⊙q( t)

LSTM state output

q(t)

s(t)

g(t)

(Goodfellow et al, 2015)⊙ = element-wise multiplication
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Applications of LSTM

● unconstrained handwriting recognition
● speech recognition
● music generation
● parsing (PoS tagging)
● machine translation (seq2seq):
● image captioning
● …
● new: 

– attention mech.
– bidirect. models

(Xu et al, 2016)

(Sutskever et al, 2014)
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LSTM summary

● Using trained gates, it introduces self-loops to produce paths 
where the gradient can flow for long (neither exploding nor 
vanishing)

● the time scale of integration can be changed dynamically
● the cell state is the core of the LSTM, controlled by the gates 
● Trainable with various methods, e.g. SGD, 2nd order methods, 

Nesterov gradient, …
● Various variants found useful, clipping the gradient, e.g. 

element-wise (Mikolov, 2012); or by L2 norm (Pascanu et al, 2013).

● Can be combined with autoencoders
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Attention mechanism and transformers

● Transformer – a new category of NN models (successor of 
CNNs and RNNs) (Vaswani et al., 2017)

● Attention – the core idea behind the transformers, originated in 
the NLP context of sequence-to-sequence applications, like 
machine translation (Bahdanau et al., 2014).

● Transformers are currently widely used in various AI domains:
– in NLP – Transformed-based pretrained models (BERT, 

RoBERTa,...) – fine-tuned to concrete language tasks
– speech recognition, reinforcement learning tasks 
– vision tasks (image recognition, object detection, semantic 

segmentation,…)



26

Queries, keys and values

● Consider the database D = {(k1, v1),(k2, v2),…,(km, vm)}, of key-
value pairs. For a query q, we can define attention as 

where  α(q, ki)∈R are scalar attention weights.
● Attention pooling: the attention over D generates a linear 

combination of values in D.
α1+...+αm =1 and all αi ≥0  => convex combination

Attention(q ,D)=∑i=1

m
α(q ,k i)v i

α(q , k i)=softmax(
(qT ki)

√d
)

(Zhang et al, 2020)
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Multi-head attention

● given the same set of queries, kyes, and values it may be 
useful to combine knowledge e.g. capturing dependencies of 
various ranges (shorter, longer) within a sequence (→ different 
representation subspaces)

● Each head hi = f(Wi
(q)q, Wi

(k)k, Wi
(v)v)

● Wi
(x) = learnable parameters

(Zhang et al, 2020)
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Attention 
model for 

image 
classification

(Zhang et al, 2020)
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