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Encoder Decoder Output

* Encoder-decoder architecture = NN that is trained to attempt to

Neural Networks copy its input to its output

* We focus on simpler case — a spatial mapping (no time involved)

Encoder h = f(x), decoder r = g(h) = g(f(x)) yields reconstruction
dim(x) = dim(r) > dim(h) = > bottleneck

Autoencoders and gated recurrent models  imperfect reconstruction crucial (due to bottleneck)

Can also be stochastic: pencoder(h | X) @aNd pgecoder (X | h), leading to
generative models
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Purpose Sparse autoencoders

* Autoencoder (AE) — used for dim. reduction, since 1980s
(LeCun, 1987; Bourlard & Kamp, 1988)

Trained to minimize L(x, g(f(x))) + P(h), (P = sparsity penalty)

) typically used to learn features for another task (such as
* undercomplete AE, i.e. If dim(h) < dim(x) - bottleneck classification)

- captures the most salient features of the training data

e.g. P(h) = \%; |h;]
» Self-supervised training to minimize loss function L(x, g(f(x))

e iflinear and L = MSE, then » PCA,

* using ReLU activation function also enforces sparsity

. . o Probabilistic interpretation: learn generative model py,ogei(x | h)
* nonlinear AE is a more powerful generalization that best explains observed data (by latent variables)

* overcomplete AE, i.e. dim(h) > dim(x) interesting only... . Alternative: L(x, g(f(x))) + P(h,x), where
« ... if regularized, in order to learn data distribution (in latent space)

P(h) =\%; ||[Vxhi|]|> » contractive autoencoder
* Interesting properties at hidden layer: sparsity, small derivatives of
the representation, robustness




Denoising autoencoders

Based on changing the reconstruction error term of the cost
function (rather than adding penalty term)

Minimizes L(x, g(f(x’)), where x’ is noisy version of input x
implicitly forced to learn the structure of data pga.(x)
Introduces corruption process C(x’ | x)

DAE learns reconstruction distrib. preconstruct(X | X”)

... from training pairs {x’, x} cz )
can by trained by SGD
as any feedforward NN original noisy reconstruction

opendeep.org

Graphical interpretation of DAE learning

data x assumed to lie on a low-dim. manifold M (black curve)
x’represent departures from M
DAE learns a vector field (green arrows): g(f(x)) — x

projections onto the manifold

R ]

-~ wmmom om s

[ T T

\.._,__——///////,' -
._‘_.,'//////.--
- —— T T e

b = = = = -W

- X o o -

L

-, o w w

- s o w s

M B B B N |
;
/
/
’

AT ]

TN
- .

P iy
’

LA A
LA

V\\
- w .
- -
- -
- =
- -
-
-
-
-
-
-~
-
- »
- s
- s
- -
PN
PRI
PRV
-y
b

g
¥ e
Vo 5
Vs o ¥
/flt

.................

L A A B B A A A |

Manifold learning with autoencoder

1D example in 784-dim. space

vertically translated images — n H
a coordinate along M .

M projected in 2D (via PCA)

Each node is associated with a
tangent plane that spans the
directions of variations
associated with difference
vectors between the example

and its neighbors

shown (bottom right) in

example




2D example with manifold of faces

(Gong et al., 2000)

* Unsupervised learning of manifold (embedding) based on a
(nonparametric) nearest neighbors graph

* Generalization to new examples possible via interpolation for
dense graphs

Variational autoencoder (VAE)

X 7aF

X — f(=))?

(Doersch, 2021)

Decojder : ‘K:AC[J\"(‘NI‘:,\' )2 N[0, ”Jl Decoder
[KZIN G (3, (X DNV, 1] (ft") o A )

Sample = from A (p( X)), 3 ( X))

Encoder Encoder
() (@)
backprop . ‘0 z=pu+0Qe
* Uses a reparametrization trick (right), which // TYAN
allows gradient propagation and controlled 0 0 °~N(0,1)
generation of samples ]

» conditional VAE possible

encoder model
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VAE properties Applications of autoencoders
sssss — A
% A * Explicit dim. reduction for subsequent classification — reduces error
S i - (also less memory and runtime)
4 S " . » can be applied recursively (hierarchically)
T * Information retrieval — task of finding entries in a database that
tatent atroutes resemble (are relevant for) a query entry
. (Rocca,2019) . . .
Latent space representation - entries mapped to binary low-dim. hash codes (fast search)
Only reconstruction | Only KL divergen binati . . . . . .
e Y comeination - entries with the same or slightly different codes (a few bits flipped)
retrieved —» semantic hashing
i 0 - sigmoid units used in encoded (forced to saturate)
s - technique used for text and images
“3‘”‘ ‘ . machlne tl‘ans|atlon La croissance économique a ralenti ces derniéres années .
v ‘ Decode
\ [z1.22, ... .2Z4]
Encode
https://www.jeremyjordan.me/variational-autoencoders/ 1n Economic growth has slowed down in recent years . 12




Recurrent NN models with gated units

Help preserve long-term dependencies (via gradient learning)

Two models will be mentioned: GRU (Cho et al, 2014), LSTM
(Hochreiter & Schmidhuber, 2007) — more complex

New components:

- memory cell (to capture long-term dep.)

- skipping irrelevant inputs (in latent space)
- resetting (internal state representation)

T (Graves et al, 2013)

STIAEAE:

— — OQ’OQ’OQ*OG’OQ’O‘ Q

Standard Recurrent Network

Gating the hidden state

minibatches (of size n) | oncee [ ™
Ht—l )
)(.t [I’le-] (examples X Reset Update
dimension) sate gate
Ht—l [n><h] / sigmoid
R, Z, [nxh] _ N
wxr ;wxz [dXh] N J
Whr ,th [hXh] Input X,
bt ,b,[1Xh] III ac'ii(\:«:altaigﬁrf‘uﬂgit:lm " Copy _r—' Concatenate

(Cho et al., 2014)
R, =o(X; W, + H_y Wy + b))
Zt = O(Xt sz + Ht—l whz + bz)

(Zhang et al, 2020)

rrrrr 13 14
Reset gates in action Update gates in action
Hidden state | )
e n Hidden state a4
Reset  Update h%adg(:i?;?e H_, —~N H,
gate gate .
Hl
t t
®
| e | |tanh| C)j (_Zandidate
| pn |R, | P |Zf |tanh|----- hlddezstate
H
\ | / — =H,
Input X, - 4 J
i i Input X
FCI th El t !
EI activataigirﬂ‘fcl:tion zgn:rr;tv(\;':se _L Copy —r—’ Concatenate
H =7 6H_, +(1-Z)0H’
H, = tanh(X, W,;, + R, ©H,.; Wy, + by) =2, ©Hy; *(1-Z)OH’,
* help capture short-term dependencies in time series * help capture long-term dependencies in time series
15 16




LSTM’s gated memory cells

LSTM'’s three gates

* inspired by logic gates of a computer minibatches (of é )
. size n)
* 3 gates controls the behavior of the memory cell (latent state) Forcet out out
X, [nxd] (examples ks phine %”af:
* output gate — controls when to read from the cell x dimension) F 1 0,
* input gate — controls when to read data into the cell H,, [nxh]
» forget gate — controls when to reset the contents of the cell R,, Z, [nxh] Hidden state
. " . H
In addition, LSTM introduces a memory cell (C) Wi W, Wy [dH] N I( )
- having the same shape as latent state (H
J P (H) Wi, Whe,Wp, [hXh] Input X,
- providing additional information br. be. b [1H]
. . . . : i»Df, Do L1X L=0X,W,+H,, W,.+b)
* GRU is simpler: has a single mechanism for input and forgettin ! €0 el PThi
g J P J ? F.=0o(X; W+ Hy Wyt by
Ot = O(Xt on + Ht—l Who + bo)
17 (Hochreiter & Schmidhuber, 1997) 18
Candidate memory cell Memory cell
WXC [dxh] é ) Memory 4 —\ )
Cr—] @ C’
Wi [hxh] Forget n Candidate
put memory Sl Output
B.[1XHh] g’:te gelnte & =c ggte gate
t f ] t t 0
> Tnxh Forget Input '
C'c [nxh] t t t ! e gate !
o] o] [ [ C e e o R [
Hidd:[” state J J J J Hidden state J J
-1 \ Ir / Hl—l \ ( /
|
Input X, Input X,

C’; = tanh(X, W, .+ H_ Wy, +b.)

computation similar to the 3 gates described above, but using a tanh function
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LSTM has 2 parameters: I, governs how much of new data we take via C’,

and F, determines how much of the old memory content C,_; we retain.

C,=F,0C, +1,0C,

20




Hidden states

Memory 4 N
C
CF—I
Forget
gate
Ff
[ o
Hidden state .
H_
-1 \ I( /
Input X,

Hidden state is O,-gated version of the tanh of the memory cell:

H, = O, © tanh(C))
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Complete LSTM dynamics

h()
Input gates
g(t)=c(U™x(t)+W™h(t—1)+b"™)
Forget gates

f(t)=c(U*x(t)+W*®h(t—1)+b™)

q(?)

self-loop

s(t) :

state

g(®)

Cell state
s(t)=f(t)os(t—1)+
g(t)oo (U™ x(t)+W™h(t—1)+b)
Output gates
q(t)=o (U™ x(t)+ W h(t—1)+b™")
LSTM state output
h(t)=tanh (s(t))oq(t)

© = element-wise multiplication

/N N /NN

x(0), h(t-1)

(Goodfellow et al, 2015) - use different symbols

utput gate
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Applications of LSTM

unconstrained handwriting recognition

speech recognition

"The weather is nice"

music generation

LSTM
encoder

parsing (PoS tagging)

Internal LSTM
states (h, c)

machine translation (seg2seq):

Image captioning (Sutskever et al, 2014)

LSTM
decoder

"[START]Il fait beau"

"Il fait beau[STOP]"

14x14 Feature Map A ]
new: (bird |
. flying
- attention mech. oy | over
a
- bidirect. models . lgfody
water

LSTM summary

* Using trained gates, it introduces self-loops to produce paths
where the gradient can flow for long (neither exploding nor
vanishing)

« the time scale of integration can be changed dynamically
* the cell state is the core of the LSTM, controlled by the gates

* Trainable with various methods, e.g. SGD, 2n order methods,
Nesterov gradient, ...

 Various variants found useful, clipping the gradient, e.g.
element-wise (Mikolov, 2012); Or by L2 norm (Pascanu et al, 2013).

* Can be combined with autoencoders

L. Input 2. Convolutional 3, RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation
Xu et al, 2016
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