Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Neural Networks

Lecture 10

Autoencoders and gated recurrent models

Igor Farkaš 2021

Purpose

- Autoencoder (AE) used for dim. reduction, since 1980s (LeCun, 1987; Bourlard & Kamp, 1988)
- undercomplete AE, i.e. If $\dim(h) < \dim(x) \rightarrow \text{bottleneck}$
 - captures the most salient features of the training data
- Self-supervised training to minimize loss function L(x, q(f(x)))
- if linear and L = MSE, then $\rightarrow PCA$,
- nonlinear AE is a more powerful generalization
- overcomplete AE, i.e. $\dim(h) > \dim(x)$ interesting only...
- ... if regularized, in order to learn data distribution (in latent space)
- Interesting properties at hidden layer: sparsity, small derivatives of the representation, robustness

Autoencoders

- Encoder-decoder architecture = NN that is trained to attempt to copy its input to its output
- We focus on simpler case a spatial mapping (no time involved)
- Encoder h = f(x), decoder r = g(h) = g(f(x)) yields reconstruction
- $\dim(x) = \dim(r) > \dim(h) = > \text{bottleneck}$
- imperfect reconstruction crucial (due to bottleneck)
- Can also be stochastic: $p_{\text{encoder}}(\boldsymbol{h} \mid \boldsymbol{x})$ and $p_{\text{decoder}}(\boldsymbol{x} \mid \boldsymbol{h})$, leading to generative models

Sparse autoencoders

- Trained to minimize L(x, g(f(x))) + P(h), (P = sparsity penalty)
- typically used to learn features for another task (such as classification)
- e.g. $P(\mathbf{h}) = \lambda \Sigma_i |h_i|$
- using ReLU activation function also enforces sparsity
- Probabilistic interpretation: learn generative model $p_{\text{model}}(x \mid h)$ that best explains observed data (by latent variables)
- Alternative: L(x, g(f(x))) + P(h,x), where
- $P(\mathbf{h}) = \lambda \Sigma_i \| \nabla_{\mathbf{x}} h_i \|^2 \rightarrow \text{contractive autoencoder}$

2

Denoising autoencoders

- Based on changing the reconstruction error term of the cost function (rather than adding penalty term)
- Minimizes L(x, g(f(x'))), where x' is noisy version of input x
- implicitly forced to learn the structure of data $p_{\text{data}}(x)$
- Introduces corruption process $C(x' \mid x)$
- DAE learns reconstruction distrib. $p_{\text{reconstruct}}(x \mid x')$
- ... from training pairs $\{x', x\}$
- · can by trained by SGD as any feedforward NN

Example: 2D → 1D

Graphical interpretation of DAE learning

- data x assumed to lie on a low-dim. manifold **M** (black curve)
- x'represent departures from M
- DAE learns a vector field (green arrows): q(f(x)) x
- · projections onto the manifold

Manifold learning with autoencoder

- 1D example in 784-dim. space
- vertically translated images → a coordinate along M
- M projected in 2D (via PCA)
- Each node is associated with a tangent plane that spans the directions of variations associated with difference vectors between the example and its neighbors
- · shown (bottom right) in example

2D example with manifold of faces

- Unsupervised learning of manifold (embedding) based on a (nonparametric) nearest neighbors graph
- Generalization to new examples possible via interpolation for dense graphs

Applications of autoencoders

- Explicit dim. reduction for subsequent classification reduces error (also less memory and runtime)
- can be applied recursively (hierarchically)
- Information retrieval task of finding entries in a database that resemble (are relevant for) a query entry
 - entries mapped to binary low-dim. hash codes (fast search)
 - entries with the same or slightly different codes (a few bits flipped)
 retrieved → semantic hashing
 - sigmoid units used in encoded (forced to saturate)
 - technique used for text and images
- machine translation

 La croissance économique a ralenti ces dernières années

 Decode

 [z₁,z₂,...,z_d]

 Encode

 Economic growth has slowed down in recent years.

Recurrent NN models with gated units

- Help preserve long-term dependencies (via gradient learning)
- Two models will be mentioned: GRU (Cho et al, 2014), LSTM (Hochreiter & Schmidhuber, 2007) — more complex
- New components:
 - memory cell (to capture long-term dep.)
 - skipping irrelevant inputs (in latent space)
 - resetting (internal state representation)

Gating the hidden state minibatches (of size *n*) Hidden state

 $\mathbf{X}_t[n \times d]$ (examples \times dimension)

 $\mathbf{H}_{t-1}[n \times h]$

 $\mathbf{R}_t \mathbf{Z}_t[n \times h]$

 \mathbf{W}_{xr} , \mathbf{W}_{xz} [$d \times h$]

 \mathbf{W}_{hr} , $\mathbf{W}_{hz}[h \times h]$

 \boldsymbol{b}_t , $\boldsymbol{b}_z[1 \times h]$

$$\mathbf{R}_{t} = \sigma(\mathbf{X}_{t} \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \boldsymbol{b}_{r})$$
$$\mathbf{Z}_{t} = \sigma(\mathbf{X}_{t} \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \boldsymbol{b}_{z})$$

(Zhang et al, 2020)

Reset gates in action

 $\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{R}_t \odot \mathbf{H}_{t-1} \mathbf{W}_{hh} + \boldsymbol{b}_h)$

• help capture short-term dependencies in time series

Update gates in action

$$\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \mathbf{H'}_t$$

• help capture long-term dependencies in time series

LSTM's gated memory cells

- · inspired by logic gates of a computer
- 3 gates controls the behavior of the memory cell (latent state)
- output gate controls when to read from the cell
- input gate controls when to read data into the cell
- forget gate controls when to reset the contents of the cell
- In addition, LSTM introduces a memory cell (C)
 - having the same shape as latent state (H)
 - providing additional information
- GRU is simpler: has a single mechanism for input and forgetting

LSTM's three gates

minibatches (of size *n*)

 $\mathbf{X}_t[n \times d]$ (examples \times dimension)

 $\mathbf{H}_{t-1}[n \times h]$

 \mathbf{R}_t , $\mathbf{Z}_t[n \times h]$

 \mathbf{W}_{xi} , \mathbf{W}_{xf} , \mathbf{W}_{xo} [$d \times h$]

 \mathbf{W}_{hi} , \mathbf{W}_{hf} , \mathbf{W}_{ho} [$h \times h$]

 \boldsymbol{b}_i , \boldsymbol{b}_f , $\boldsymbol{b}_o[1 \times h]$

$$\begin{split} \mathbf{I}_t &= \sigma(\mathbf{X}_t \ \mathbf{W}_{xi} + \mathbf{H}_{t-1} \ \mathbf{W}_{hi} + \boldsymbol{b}_i) \\ \mathbf{F}_t &= \sigma(\mathbf{X}_t \ \mathbf{W}_{xf} + \mathbf{H}_{t-1} \ \mathbf{W}_{hf} + \boldsymbol{b}_f) \\ \mathbf{O}_t &= \sigma(\mathbf{X}_t \ \mathbf{W}_{xo} + \mathbf{H}_{t-1} \ \mathbf{W}_{ho} + \boldsymbol{b}_o) \end{split}$$

(Hochreiter & Schmidhuber, 1997)

17

Candidate memory cell

 \mathbf{W}_{xc} [$d \times h$]

 \mathbf{W}_{hc} [$h \times h$]

 $\mathbf{B}_{c}[1 \times h]$

 $\mathbf{C}'_t [n \times h]$

$$\mathbf{C'}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

computation similar to the 3 gates described above, but using a tanh function

Memory cell

LSTM has 2 parameters: I_t governs how much of new data we take via C'_t and F_t determines how much of the old memory content C_{t-1} we retain.

$$\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \mathbf{C}'_t$$

Hidden states

Hidden state is \mathbf{O}_t -gated version of the tanh of the memory cell:

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t)$$

Applications of LSTM

"The weather is nice"

- · unconstrained handwriting recognition
- speech recognition
- music generation
- parsing (PoS tagging)
- machine translation (seq2seq):

• ...

new:

- attention mech.
- bidirect. models

(Xu et al, 2016)

Complete LSTM dynamics

Input gates

$$g(t) = \sigma(\mathbf{U}^{\text{inp}} \mathbf{x}(t) + \mathbf{W}^{\text{inp}} \mathbf{h}(t-1) + \mathbf{b}^{\text{inp}})$$

Forget gates

$$f(t) = \sigma(\mathbf{U}^{\text{fgt}} \mathbf{x}(t) + \mathbf{W}^{\text{fgt}} \mathbf{h}(t-1) + \mathbf{b}^{\text{fgt}})$$

Cell state

$$s(t) = f(t) \odot s(t-1) + g(t) \odot \sigma(\mathbf{U}^{\text{fgt}} \mathbf{x}(t) + \mathbf{W}^{\text{fgt}} \mathbf{h}(t-1) + \mathbf{b})$$

Output gates

21

"[START]Il fait beau"

generation

$$q(t) = \sigma(\mathbf{U}^{\text{out}} \mathbf{x}(t) + \mathbf{W}^{\text{out}} \mathbf{h}(t-1) + \mathbf{b}^{\text{out}})$$

LSTM state output

$$h(t) = \tanh(s(t)) \odot q(t)$$

⊙ = element-wise multiplication

LSTM summary

- Using trained gates, it introduces self-loops to produce paths where the gradient can flow for long (neither exploding nor vanishing)
- the time scale of integration can be changed dynamically
- the cell state is the core of the LSTM, controlled by the gates
- Trainable with various methods, e.g. SGD, 2nd order methods, Nesterov gradient, ...
- Various variants found useful, clipping the gradient, e.g. element-wise (Mikolov, 2012); or by L2 norm (Pascanu et al, 2013).
- Can be combined with autoencoders