
1

Lecture 10

Autoencoders and gated recurrent models

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Neural Networks

Igor FarkašIgor Farkaš 2021
2

Autoencoders

● Encoder-decoder architecture = NN that is trained to attempt to
copy its input to its output

● We focus on simpler case – a spatial mapping (no time involved)

● Encoder h = f(x), decoder r = g(h) = g(f(x)) yields reconstruction

● dim(x) = dim(r) > dim(h) = > bottleneck

● imperfect reconstruction crucial (due to bottleneck)

● Can also be stochastic: pencoder(h | x) and pdecoder (x | h), leading to
generative models

3

Purpose

● Autoencoder (AE) – used for dim. reduction, since 1980s
(LeCun, 1987; Bourlard & Kamp, 1988)

● undercomplete AE, i.e. If dim(h) < dim(x) → bottleneck

– captures the most salient features of the training data

● Self-supervised training to minimize loss function L(x, g(f(x))

● if linear and L = MSE, then → PCA,

● nonlinear AE is a more powerful generalization

● overcomplete AE, i.e. dim(h) > dim(x) interesting only...

● … if regularized, in order to learn data distribution (in latent space)

● Interesting properties at hidden layer: sparsity, small derivatives of
the representation, robustness

4

Sparse autoencoders

● Trained to minimize L(x, g(f(x))) + P(h), (P = sparsity penalty)

● typically used to learn features for another task (such as
classification)

● e.g. P(h) = λΣi |hi|

● using ReLU activation function also enforces sparsity

● Probabilistic interpretation: learn generative model pmodel(x | h)
that best explains observed data (by latent variables)

● Alternative: L(x, g(f(x))) + P(h,x), where

● P(h) = λΣi ∥∇x hi∥2 → contractive autoencoder

5

Denoising autoencoders

● Based on changing the reconstruction error term of the cost
function (rather than adding penalty term)

● Minimizes L(x, g(f(x’)), where x’ is noisy version of input x

● implicitly forced to learn the structure of data pdata(x)

● Introduces corruption process C(x’ | x)

● DAE learns reconstruction distrib. preconstruct(x | x’)

● … from training pairs {x’, x}

● can by trained by SGD
as any feedforward NN

opendeep.org

Original noisy reconstruction

6

Graphical interpretation of DAE learning

● data x assumed to lie on a low-dim. manifold M (black curve)

● x’ represent departures from M

● DAE learns a vector field (green arrows): g(f(x)) – x

● projections onto the manifold

7

Example: 2D → 1D

8

 Manifold learning with autoencoder

● 1D example in 784-dim. space

● vertically translated images →
a coordinate along M

● M projected in 2D (via PCA)

● Each node is associated with a
tangent plane that spans the
directions of variations
associated with di erence ff
vectors between the example
and its neighbors

● shown (bottom right) in
example

9

2D example with manifold of faces

● Unsupervised learning of manifold (embedding) based on a
(nonparametric) nearest neighbors graph

● Generalization to new examples possible via interpolation for
dense graphs

(Gong et al., 2000)

10

Variational autoencoder (VAE)

● Uses a reparametrization trick (right), which
allows gradient propagation and controlled
generation of samples

● conditional VAE possible

(Doersch, 2021)

11

VAE properties

(Rocca,2019)
Latent space representation

https://www.jeremyjordan.me/variational-autoencoders/ 12

Applications of autoencoders

● Explicit dim. reduction for subsequent classification – reduces error
(also less memory and runtime)

● can be applied recursively (hierarchically)

● Information retrieval – task of finding entries in a database that
resemble (are relevant for) a query entry

– entries mapped to binary low-dim. hash codes (fast search)

– entries with the same or slightly different codes (a few bits flipped)
retrieved → semantic hashing

– sigmoid units used in encoded (forced to saturate)

– technique used for text and images

● machine translation

13

Recurrent NN models with gated units

● Help preserve long-term dependencies (via gradient learning)

● Two models will be mentioned: GRU (Cho et al, 2014), LSTM
(Hochreiter & Schmidhuber, 2007) – more complex

● New components:

– memory cell (to capture long-term dep.)

– skipping irrelevant inputs (in latent space)

– resetting (internal state representation)

(Graves et al, 2013)

14

Gating the hidden state

minibatches (of size n)

Xt [n×d] (examples ×
dimension)

Ht-1 [n×h]

Rt Zt [n×h]

Wxr ,Wxz [d×h]

Whr ,Whz [h×h]

bt , bz [1×h]

Rt = σ(Xt Wxr + Ht-1 Whr + br)
Zt = σ(Xt Wxz + Ht-1 Whz + bz)

sigmoid

(Cho et al., 2014)

(Zhang et al, 2020)

15

Reset gates in action

Ht = tanh(Xt Wxh + Rt ⊙Ht-1 Whh + bh)

● help capture short-term dependencies in time series
16

Update gates in action

Ht = Zt ⊙Ht-1 +(1– Zt)⊙H’t

≡ H’t

● help capture long-term dependencies in time series

17

LSTM’s gated memory cells

● inspired by logic gates of a computer

● 3 gates controls the behavior of the memory cell (latent state)

● output gate – controls when to read from the cell

● input gate – controls when to read data into the cell

● forget gate – controls when to reset the contents of the cell

● In addition, LSTM introduces a memory cell (C)

– having the same shape as latent state (H)

– providing additional information

● GRU is simpler: has a single mechanism for input and forgetting

18

LSTM’s three gates

minibatches (of
size n)

Xt [n×d] (examples
× dimension)

Ht-1 [n×h]

Rt , Zt [n×h]

Wxi ,Wxf ,Wxo [d×h]

Whi ,Whf ,Who [h×h]

bi , bf , bo [1×h] It = σ(Xt Wxi + Ht-1 Whi + bi)
Ft = σ(Xt Wxf + Ht-1 Whf + bf)
Ot = σ(Xt Wxo + Ht-1 Who + bo)

(Hochreiter & Schmidhuber, 1997)

19

Candidate memory cell

Wxc [d×h]

Whc [h×h]

Bc [1×h]

C’t [n×h]

C’t = tanh(XtWxc+ Ht-1Whc + bc)

≡ C’t

computation similar to the 3 gates described above, but using a tanh function
20

Memory cell

Ct = Ft ⊙Ct-1 + It⊙C’t

LSTM has 2 parameters: It governs how much of new data we take via C’t

and Ft determines how much of the old memory content Ct-1 we retain.

21

Hidden states

Ht = Ot ⊙ tanh(Ct)

Hidden state is Ot-gated version of the tanh of the memory cell:

22- use different symbols

Complete LSTM dynamics

x(t), h(t-1)

h(t)

f (t)=σ(Ufgt x (t)+ W fgt h(t−1)+ b fgt
)

s(t)= f (t)⊙s (t−1)+
 g (t)⊙σ (Ufgt x(t)+ W fgt h (t−1)+ b)

Forget gates

Cell state

f(t)

g(t)=σ (Uinp x(t)+ W inp h(t−1)+ binp
)

Input gates

Output gates

q (t)=σ (Uout x (t)+ Wout h(t−1)+ bout
)

h (t)=tanh (s(t))⊙q(t)

LSTM state output

q(t)

s(t)

g(t)

(Goodfellow et al, 2015)
⊙ = element-wise multiplication

23

Applications of LSTM

● unconstrained handwriting recognition

● speech recognition

● music generation

● parsing (PoS tagging)

● machine translation (seq2seq):

● image captioning

● …

● new:

– attention mech.

– bidirect. models

(Xu et al, 2016)

(Sutskever et al, 2014)

24

LSTM summary

● Using trained gates, it introduces self-loops to produce paths
where the gradient can flow for long (neither exploding nor
vanishing)

● the time scale of integration can be changed dynamically

● the cell state is the core of the LSTM, controlled by the gates

● Trainable with various methods, e.g. SGD, 2nd order methods,
Nesterov gradient, …

● Various variants found useful, clipping the gradient, e.g.
element-wise (Mikolov, 2012); or by L2 norm (Pascanu et al, 2013).

● Can be combined with autoencoders

