

1

Unsupervised feedforward neural networks

Introduction to Computational Intelligence

Igor Farkaš
Centre for Cognitive Science

Comenius University Bratislava

2

Feature extraction

● starts from an initial set of measured data
● the number of input variables for a dataset = dimensionality
● builds derived values (features) intended to be informative and non-

redundant
● linear or nonlinear FE methods
● facilitating the subsequent learning and generalization steps
● in some cases leading to better human interpretations
● feature extraction entails dimensionality reduction
● nonlinear methods offer more variability of solutions
● FE methods may be based on neural networks
● We show two examples: PCA (FE) and SOM (data visualisation)

3

Hebbian learning – a single neuron

● Canadian psychologist Donald Hebb (1949) postulated:

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells firing
B, is increased.”

● Let us assume one linear neuron with n inputs:

● According to Hebb's postulate:

 where α is the learning rate.

● Oja's rule:

y=∑ j=1

n
w j x j=w

T x

w j(t+1)=w j (t)+α y x j for j=1,2,. .. , n

w j(t+ 1)=w j (t)+α y x i−α y2w j(t)
stabilizing term

4

Single neuron behavior

Properties of linear neuron trained by Oja's rule on zero-meaned
data vectors (i.e. 〈x〉=0):
● weight vector w converges to match the 1st eigenvector of data

covariance matrix R = 〈xxT〉

● after convergence, w maximizes 〈y2〉

● after convergence, the vector norm ||w|| = 1.

● Hence, the linear Hebbian neuron projects input vectors to the
direction that maximizes the data discrimination capability
(maximum information preservation).

● If more units are used, they can be trained to perform PCA
(e.g. using GHA algorithm)

5

Linear feature extraction

X = original space (2D)
Y = projection space (2D)

Direction Y1 captures maximum
variance in original 2D data.

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

6

Example of PCA application

● Image of 256x256 pixels, converted to gray image (0...255)
● NN trained on sub-images 8x8 (input size)
● 8 largest eigenvectors (weight vectors):

64 inputs

Reconstructions:

Neuron outputs:

7

Competitive learning

● a kind of unsupervised learning
● Features:

– linear neurons
– winner: yc = maxi {wi

T . x}
● i.e. best matching unit c

– winner-take-all adaptation:
∆wc = (x – wc) (0,1)

wc  1
– risk of “dead” neurons

● algorithm: in each iteration
– find winner, adapt its weights

● useful for clustering

8

Feature mapping

biologically motivated models

e.g. mapping from retina to cortex ->
orientation map

● introduced topology of neurons in the map
● winner-take-most due to neuron cooperation

model with extracted features

9

SOM: Neighborhood function

● computationally efficient substitute for lateral interactions
● neurons adapt only within the winner neighborhood
● neighborhood radius decreases in time

● rectangular neighborhood:

● alternative: Gaussian neighborhood

10

SOM algorithm

● randomly choose an input x
● find winner i* for x
● adapt weights within the neighborhood

● update SOM parameters (neighborhood, learning rate)
● repeat until stopping criterion is met

Input-output mapping:
X → {1,2,...,m} or
X → Y y = [y1, y2,...,ym]
where e.g. yi = exp(-x-wi)

Ordering fine-tuning time

Neighborhood size 

i*=argmin i||x−wi||

wi(t+1)=w i (t)+α(t)h(i* , i) [x (t)−w i(t)]

(Kohonen, 1982)

winner

11

Example: 2D inputs, 20x20 neurons

Weight vectors (knots) become topographically ordered at the end of training

12

SOM approximates input data distribution

● by allocating more neurons to denser areas

2D:

1D:

Weight
space

Units
space

13

SOM performs two tasks simultaneously

Input clustering

Voronoi compartments:
 Vi = {x∣ x-wi< x-wj, ∀j≠i

Voronoi tessellation
of input spaceTopographic mapping

i.e. similar stimuli
in input space are
mapped close
to each other in
the SOM

14

Comparison of SOM to PCA

● feature extraction and mapping, difference in feature representation

PCA SOM

(linear) principal components
One unit represents 1 dimension

(nonlinear) principal manifold
More units represent 1 dimension

SOM as a nonlinear generalization of PCA

15

Application: Data visualization

● 7x10 SOM with hexa grid
● trained on 4D Iris data
● 3 classes
● Neuron labels generated
● according to votes
● Plots of component

weights reveal an order

16

Summary

● Unsupervised methods extract features from data (in various
ways)

● PCA – standard method for linear reduction of data
dimensionality (preserves maximal variance)

● A single-layer neural net trained by Hebbian-like learning
rule can implement PCA

● No need to calculate covariance matrix of input data
● SOM – a very popular algorithm for input clustering and

topographic mapping
● useful for data visualization

	Title
	Feature extraction
	Hebbian learning
	Single unit behavior
	Slide 5
	Example: image compression
	Simple competitive learning
	Feature mapping 2
	Neighborhood function
	SOM algorithm
	Example 2D
	Magnification factor
	Quantization and feature mapping
	Comparison of SOM and PCA
	Slide 15
	Summary 2

