

1

Basics of reinforcement learning

Introduction to Computational Intelligence

Igor Farkaš
Centre for Cognitive Science

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Based on Russell & Norvig: Artificial Intelligence: A Modern Approach (3rd ed). Prentice Hall, 2010.

2

Types of machine learning

Supervised learning – error correction;
Tasks: classification, regression, prediction

Unsupervised learning – statistical correlations
Tasks: dimensionality reduction, density estimation, data
visualization

Reinforcement learning – maximizing long-term reward
Tasks: sequential decision making via interaction with the
environment.

3

Links to other research areas

Reinforcement
learning

Artificial
intelligence

(Mathematical)
psychology

Control
theory

Neuroscience

Operations
Research

4

Reinforcement learning is for

● Sequential tasks
● with limited (potentially sparse) feedback
● when the input data (observations) is not given a priori…
● and the learner (agent) acts on the environment
● e.g. learning certain (optimal) behavior, problem solving, game

playing, decision making...

S. Devlin, TWIML Online Meetup, 2018

5

Origins of RL
● The law of effect in behavioral conditioning:

"responses that produce a satisfying effect in a particular situation become
more likely to occur again in that situation, and responses that produce a
discomforting effect become less likely to occur again in that situation."
(Thorndike, 1998)

● The law of exercise: “those
things most often repeated are
best remembered.” It is the basis
of drill and practice.

● has neuroscientific relevance
(dopamine system in the
brain – predicted reward)

● operant conditioning –
learning via rewards and
punishments (Skinner, 1938)

https://www.pinterest.com/pin/438467713694317855/

6

Sequential decision problems

● Agent's utility (function) depends on a sequence of decisions
● Environment assumed to be

– discrete and finite
– fully observable and stochastic

● agent can execute (discrete) actions in each state
● Transition function – the outcome of each action in each state
● Reward function – for agent in each state
● then we have Markov decision process
● RL works with MDP assumption
● Solution = policy π (actions taken)

Maze: 11 states, 4 actions

7

Markov decision process

Sequence : s1,a1,r2, s2,. .., st , at , r t+ 1, st+1 ,...

P(st+1∣s t , at)=P(st+1∣s t , a t ,... , s1,a1)

Markov property assumed:

reward

Pss '
a =P (s t+1=s '∣st=s , a t=a)

R ss'
a =E(r t+1∣s t+1=s ' , st=s , a t=a)

Transition function:

Reward function:

● Hence, the world is stochastic

reward

reward

8

Example of MDP transition automaton

● states (Si), 2 actions (aj), numbers at links show P(s'|a,s), and R(s'|a,s)
● What is the optimal policy?

9

Maze example

● Stochastic, fully observable
environment

● State = agent’s position (known)
● Probabilities of actions: 0.8, 0.1, 0.1
● What's the optimal solution (policy)?
● It depends on reward

Reward at each transition: R(s) = - 0.04

Optimal policies:

10

Components of a RL agent

● An RL agent may include one of more of these components:
– Value (utility) function: how good is each state or action
– Policy: how to behave: state → action(s)
– Model: agent’s representation of the environment

● According to its components, we get a taxonomy of RL agents:

Value
function

Policy

Model

11

Definition of a state matters

● Environment can be:
– fully observable
– partially observable

● Example: In a restaurant,
customer orders 5 items
(Donuts, Drinks and
Sandwiches).

● … and then responds
● What is to be predicted after

sequence S3?
● Depends on a definition of

state
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

12

Reward, utility function and policy

● utility (value) function – allows to choose actions
● Finite or infinite horizon for decision making?
● Additive / discounted rewards:
● γ ∈ (0,1〉 – discount factor (future rewards are valued less)

● Utility function:

● Optimal policy: based on

● Bellman equation:

(value iteration)
● In model-based RL: Transition & Reward functions are known

Rt=r t+ γ r t+1 +γ2 r t+2 + ...

Uπ (s)=Eπ {R t∣st=s}=Eπ {∑k=0

∞
γk rt+k +1∣s t=s}

U∗(s)=maxπU
π(s)

Uπ (s)=r (s)+γmax a∑s '
P(s '|a , s)U (s ')

13

Value iteration – utilities of states

Calculated for R(s) = -0.04 and  = 1

U(1,1) = – 0.04 + max {0.8*U(1,2) + 0.1*U(2,1) + 0.1*U(1,1), Up
 0.9*U(1,1) + 0.1*U(1,2), Left
 0.9*U(1,1) + 0.1*U(2,1), Down
 0.8*U(2,1) + 0.1*U(1,2) + 0.1*U(1,1) } Right

Calculate the optimal policy with Bellman eq. (iterative process): then
use the utilities of states to select an optimal action in each state.

Uπ (s)=r (s)+γmaxa∑s '
P(s '|a , s)U (s ')

14

Passive RL

● Agent's policy is fixed (in state s, action π(s) is performed)
● Goal: to learn how good the policy is (i.e. learn U(s))
● passive RL agent does not know T(s,a,s'), nor reward-to-go R(s)

for each state (i.e. average reward accumulated from that state)
● Ways to learn the utility function:

– Direct utility estimation (reward-to-go known)
– Adaptive dynamic programming (learns the transition model

in fully observable environment)
– Temporal difference learning (model-free, approximation to

ADP)

15

Direct utility estimation

● Estimated reward-to-go for each state
● Idea: calculate average reward over all trials (episodes) for

each state independently, use as teaching signal
● Ignores connections between successive states (used in

Bellman eq.)
● Hence, it converges very slowly

16

Adaptive dynamic programming

● Agent takes advantage of the constraints (resulting from links
between states)

● Learns the transition model T(s,a,s’) - by estimating P(s’|a,s)
– easy because environment is fully observable
– a supervised learning task

● P(.) are plugged (together with obtained reward) into Bellman
eq.

● But: intractable for large spaces

17

Temporal-difference learning

● Successive state considered, world model not learned
● Temporal difference error:
● TD update rule: , α - learning rate
● prediction task
● analogy to error BP in supervised learning

δt=rt+1+ γU t(s t+1)−U t (s t)
U t+1(s t)=U t(st)+α δt

U t=r t+γ rt+1 +γ2 r t+2 + ...

U t=r t+γ(r t+1+ γ1r t+2+ ...)

U t=r t+γU t+1

18

TD learning in more detail

s s‘t a
rt

V(s)

sU
p d

at
e

in
 t i

m
e

V(s‘)

V t+1(st)=V t (st)+α(rt +γV t(st+1)−V t (s t))

Uπ (s)=Eπ {R t∣st=s}=Eπ {∑k=0

∞
γk rt+k∣st=s}

Uπ (s ')=Eπ{R t∣st+1=s ' }=Eπ{∑k=1

∞
γk rt+ k∣st+1=s ' }

Uπ (s)=rt+ γ Eπ{∑k=1

∞
γk r t+ k∣s t+1=s ' }

Rt=r t+ γ rt+1 +γ2 rt+2 + ...

Rt=r t+ γ Rt+1

Rt=r t+ γ(rt+1+ γ1r t+2+ ...)

S‘‘

moving target

Uπ (s)=r t+ γU π(s ')

Uπ (s)−predicts Rt (s) E(.) - expected value

Value estimate for current state V(s) is
moved towards its discounted estimate
related to the next state V(s‘).

t+1

19

Partially observable MDPs

● Agent does not know true state (due to limited sensors)
● Optimal action depends on agent's current belief state
● Agent also has a sensor (evidence) model: P(e|s)
● Belief state = probability distribution over the states

20

Review of important concepts in RL

● (numerical) reward (includes also punishment)
● RL = temporal credit assignment problem (learning from delayed

reward)
● Policy – strategy for choosing actions in various states
● Exploration vs exploitation
● Model-based (we know transition function and reward function)

vs model-free approaches
● Two related RL problems:

– Prediction (passive): learn value function for given policy
– Control (active): learn optimal policy (includes prediction)

21

Active RL – control task

● exploration enabled (non-greedy behavior), model-free
– random factor – no guarantee

● Control task – choosing best actions
● Learning state-action Q-values:
● Optimal policy:

● Q-learning update (off-policy): converges faster

● SARSA update: (on-policy)

U (s)=maxaQ (s , a)

Q∗(s , a)=maxπQ
π(s , a)

Qt+1(s t , at)=Qt (st , at)+α[r t+1+ γmaxaQt (s t+1 , a)−Q t(s t , a t)]

Qt+1(s t , at)=Qt (s t , at)+α[r t+1+ γQ t(st+1 , a t+1)−Qt (s t , a t)]

V t+1(s t)=V t (st)+α(r t +γV t(s t+1)−V t (s t))

22

Actor–critic architectures

● Agent is split into two components
● Critic – learns the state values V(s)
● Actor – learns the policy π(s)
● Critic should not learn too quickly, nor too slowly
● A-C approach has advantages in high-dim. spaces and

continuous actions (over Q-learning and SARSA)
● biological relevance

23

Generalization in RL

● MDP in continuous state space (and action space)
● Use function approximation
● Learning = setting parameters of this function
● Relationship to supervised learning (gradient-based methods)
● Very useful in various continuous, high-dimensional, partially

observable environments (e.g. robotics).
● E.g. using actor-critic architecture (both the policy and value

function are stored)

24

Function approximation

● Linear – combination of features
– Simple to implement, faster to compute, convergence
– Common method to find features: discretization of state

space; fuzzy sets can be used (designed by hand)
● Non-linear – more general and complex

– Less convergence guarantees
● Updating parameters of the function

25

Updating parameters

● In some cases, closed-form solution can be found
● Otherwise, iterative methods must be used (Bayesian

methods possible for stationary functions)
● Gradient descent methods
● Gradient-free optimization – useful when the function to be

optimized is not differentiable
– evolutionary strategies can be used

26

Continuous A-C Learning Automaton

CriticActor

input

output

(van Hasselt & Wiering, 2007)

State vector

Hidden space
representation

for t=0,1,2. ..do
choose action at← Ac t(st) ,using exploration
make action at ,get to next state st+1

update critic:V t+1←r t+1+γV t (st+1)
ifV t+1(st)>V t (st) , then

update actor's parameters such that: Ac t+1←at
end if

end for

Ac – action via policy

at – chosen action via

exploration

27

Open AI gym

Excellent toolkit for running RL experiments in python, in plenty of environments

28

RL achievement: AlphaGo

● Beating human champion Lee Sedol by a computer using deep RL
combined with (a novel) tree search (Silver et al, 2016)

● Combo of supervised learning (from human expert games) and RL
(random games of self-play)

● Thanks to fast computing (GPU enabled)

29

RL biggest achievement: AlphaGo Zero
● Based on self-played games
● Does not need knowledge from human expert games (unlike

its predecessor AlphaGo, beating it 100:0)
● Tabula rasa starting point
● MTCS chooses moves based

on current NN (being trained)
● NN = merged value + policy net
● novel strategies invented
● economic interpretation of

AlphaGo possible (Imani, 2018)

30

Challenges and extensions to RL

● Curse of dimensionality
● Temporal credit assignment problem
● Partially observable problems
● Length of training
● Non-stationary environments
● Reward shaping
● Exploration-exploitation dilemma
● Multi-objective RL
● Intrinsic motivation approaches (copying w

31

Summary

● Origin in psychology, biological relevance (in animals)
● RL = how an agent should behave in unknown environment,

given only its percepts and occasional rewards
● The overall agent design dictates the kind of information that

must be learned
● To be learned: utilities, optimal policy
● A variety of on-policy and off-policy methods
● For large spaces – function approximation inevitable
● Great promise for robotics

	Title
	Types of machine learning
	Links to RL
	RL is for
	Origins of RL
	Sequential decision problems
	Markov decision process
	MDP example
	Maze example
	Slide 10
	Slide 11
	Reward, utility, policy
	Value iteration
	Passive RL
	Direct utility estimation
	Adaptive dynamic programming
	TD learning
	Slide 18
	Partially observable MDPs
	RL concepts
	Active RL
	A-C architecture
	Generalization in RL
	Function approximation
	Updating parameters
	CACLA
	Open AI gym
	AlphaGo
	AlphaGo Zero
	Challenges for RL
	Summary

