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Types of machine learning

Supervised learning – error correction; 
Tasks: classification, regression, prediction

Unsupervised learning – statistical correlations
Tasks: dimensionality reduction, density estimation, data 
visualization

Reinforcement learning – maximizing long-term reward
Tasks: sequential decision making via interaction with the 
environment.
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Reinforcement learning is for

● Sequential tasks
● with limited (potentially sparse) feedback
● when the input data (observations) is not given a priori…
● and the learner (agent) acts on the environment
● e.g. learning certain (optimal) behavior, problem solving, game 

playing, decision making...

S. Devlin, TWIML Online Meetup, 2018
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Origins of RL
● The law of effect in behavioral conditioning:

"responses that produce a satisfying effect in a particular situation become 
more likely to occur again in that situation, and responses that produce a 
discomforting effect become less likely to occur again in that situation." 
(Thorndike, 1998)

● The law of exercise: “those 
things most often repeated are 
best remembered.” It is the basis 
of drill and practice.

● has neuroscientific relevance  
(dopamine system in the 
brain – predicted reward)

● operant conditioning –  
learning via rewards and 
punishments (Skinner, 1938)

https://www.pinterest.com/pin/438467713694317855/
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Sequential decision problems

● Agent's utility (function) depends on a sequence of decisions
● Environment assumed to be

– discrete and finite
– fully observable and stochastic

● agent can execute (discrete) actions in each state
● Transition function – the outcome of each action in each state
● Reward function – for agent in each state
● then we have Markov decision process
● RL works with MDP assumption
● Solution = policy π (actions taken)

Maze: 11 states, 4 actions
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Markov decision process

Sequence : s1,a1,r2, s2,. .., st , at , r t+ 1, st+1 ,...

P(st+1∣s t , at)=P(st+1∣s t , a t ,... , s1,a1)

Markov property assumed:

reward

Pss '
a =P (s t+1=s '∣st=s , a t=a)

R ss'
a =E(r t+1∣s t+1=s ' , st=s , a t=a)

Transition function:

Reward function:

● Hence, the world is stochastic

reward

reward
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Example of MDP transition automaton

● states (Si), 2 actions (aj), numbers at links show P(s'|a,s), and R(s'|a,s)
● What is the optimal policy?
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Maze example

● Stochastic, fully observable 
environment 

● State = agent’s position (known)
● Probabilities of actions: 0.8, 0.1, 0.1
● What's the optimal solution (policy)?
● It depends on reward

Reward at each transition: R(s) = - 0.04

Optimal policies:
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Components of a RL agent

● An RL agent may include one of more of these components:
– Value (utility) function: how good is each state or action 
– Policy: how to behave: state → action(s)
– Model: agent’s representation of the environment

● According to its components, we get a taxonomy of RL agents:

Value
function

Policy

Model
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Definition of a state matters

● Environment can be:
– fully observable
– partially observable

● Example: In a restaurant, 
customer orders 5 items 
(Donuts, Drinks and 
Sandwiches).

● … and then responds
● What is to be predicted after 

sequence S3?
● Depends on a definition of 

state
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071
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Reward, utility function and policy

● utility (value) function – allows to choose actions
● Finite or infinite horizon for decision making?
● Additive / discounted rewards:
● γ ∈ (0,1〉 – discount factor (future rewards are valued less) 

● Utility function:

● Optimal policy: based on

● Bellman equation:

(value iteration)
● In model-based RL: Transition & Reward functions are known

Rt=r t+ γ r t+1 +γ2 r t+2 + ...

Uπ (s)=Eπ {R t∣st=s}=Eπ {∑k=0

∞
γk rt+k +1∣s t=s}

U∗(s)=maxπU
π(s)

Uπ (s)=r (s)+γmax a∑s '
P(s '|a , s)U (s ')
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Value iteration – utilities of states

Calculated for R(s) = -0.04 and  = 1

U(1,1) = – 0.04 + max {0.8*U(1,2) + 0.1*U(2,1) + 0.1*U(1,1),      Up
                                     0.9*U(1,1) + 0.1*U(1,2),                            Left
                                     0.9*U(1,1) + 0.1*U(2,1),                            Down
                                     0.8*U(2,1) + 0.1*U(1,2) + 0.1*U(1,1) }      Right

Calculate the optimal policy with Bellman eq. (iterative process): then 
use the utilities of states to select an optimal action in each state.

Uπ (s)=r (s)+γmaxa∑s '
P(s '|a , s)U (s ' )
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Passive RL

● Agent's policy is fixed (in state s, action π(s) is performed)
● Goal: to learn how good the policy is (i.e. learn U(s))
● passive RL agent does not know T(s,a,s'), nor reward-to-go R(s) 

for each state (i.e. average reward accumulated from that state)
● Ways to learn the utility function:

– Direct utility estimation (reward-to-go known)
– Adaptive dynamic programming (learns the transition model 

in fully observable environment)
– Temporal difference learning (model-free, approximation to 

ADP)
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Direct utility estimation

● Estimated reward-to-go for each state
● Idea: calculate average reward over all trials (episodes) for 

each state independently, use as teaching signal
● Ignores connections between successive states (used in 

Bellman eq.)
● Hence, it converges very slowly
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Adaptive dynamic programming

● Agent takes advantage of the constraints (resulting from links 
between states)

● Learns the transition model T(s,a,s’) - by estimating P(s’|a,s)
– easy because environment is fully observable 
– a supervised learning task

● P(.) are plugged (together with obtained reward) into Bellman 
eq.

● But: intractable for large spaces
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Temporal-difference learning

● Successive state considered, world model not learned
● Temporal difference error:
● TD update rule:     , α - learning rate 
● prediction task
● analogy to error BP in supervised learning

δt=rt+1+ γU t(s t+1)−U t (s t)
U t+1(s t)=U t(st)+α δt

U t=r t+γ rt+1 +γ2 r t+2 + ...

U t=r t+γ(r t+1+ γ1r t+2+ ...)

U t=r t+γU t+1
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TD learning in more detail

s s‘t a
rt

V(s)

sU
p d

at
e  

in
 t i

m
e

V(s‘)

V t+1(st)=V t (st)+α(rt +γV t(st+1)−V t (s t))

Uπ (s)=Eπ {R t∣st=s}=Eπ {∑k=0

∞
γk rt+k∣st=s}

Uπ (s ')=Eπ{R t∣st+1=s ' }=Eπ{∑k=1

∞
γk rt+ k∣st+1=s ' }

Uπ (s)=rt+ γ Eπ{∑k=1

∞
γk r t+ k∣s t+1=s ' }

Rt=r t+ γ rt+1 +γ2 rt+2 + ...

Rt=r t+ γ Rt+1

Rt=r t+ γ(rt+1+ γ1r t+2+ ...)

S‘‘

moving target

Uπ (s)=r t+ γU π(s ' )

Uπ (s)−predicts Rt (s) E(.) - expected value

Value estimate for current state V(s) is
moved towards its discounted estimate 
related to the next state V(s‘).

t+1
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Partially observable MDPs

● Agent does not know true state (due to limited sensors)
● Optimal action depends on agent's current belief state
● Agent also has a sensor (evidence) model: P(e|s)
● Belief state = probability distribution over the states
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Review of important concepts in RL

● (numerical) reward (includes also punishment)
● RL = temporal credit assignment problem (learning from delayed 

reward)
● Policy – strategy for choosing actions in various states
● Exploration vs exploitation
● Model-based (we know transition function and reward function) 

vs model-free approaches
● Two related RL problems:

– Prediction (passive): learn value function for given policy 
– Control (active): learn optimal policy (includes prediction)
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Active RL – control task

● exploration enabled (non-greedy behavior), model-free
– random factor – no guarantee

● Control task – choosing best actions
● Learning state-action Q-values:
● Optimal policy: 

● Q-learning update (off-policy):    converges faster

● SARSA update: (on-policy) 

U (s)=maxaQ (s , a)

Q∗(s , a)=maxπQ
π(s , a)

Qt+1(s t , at)=Qt (st , at)+α[r t+1+ γmaxaQt (s t+1 , a)−Q t(s t , a t)]

Qt+1(s t , at)=Qt (s t , at)+α[r t+1+ γQ t(st+1 , a t+1)−Qt (s t , a t)]

V t+1(s t)=V t (st)+α(r t +γV t(s t+1)−V t (s t))
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Actor–critic architectures

● Agent is split into two components
● Critic – learns the state values V(s)
● Actor – learns the policy π(s) 
● Critic should not learn too quickly, nor too slowly
● A-C approach has advantages in high-dim. spaces and 

continuous actions (over Q-learning and SARSA)
● biological relevance
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Generalization in RL

● MDP in continuous state space (and action space)
● Use function approximation 
● Learning = setting parameters of this function
● Relationship to supervised learning (gradient-based methods)
● Very useful in various continuous, high-dimensional, partially 

observable environments (e.g. robotics).
● E.g. using actor-critic architecture (both the policy and value 

function are stored)
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Function approximation

● Linear – combination of features
– Simple to implement, faster to compute, convergence
– Common method to find features: discretization of state 

space; fuzzy sets can be used (designed by hand)
● Non-linear – more general and complex

– Less convergence guarantees
● Updating parameters of the function
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Updating parameters

● In some cases, closed-form solution can be found
● Otherwise, iterative methods must be used (Bayesian 

methods possible for stationary functions)
● Gradient descent methods
● Gradient-free optimization – useful when the function to be 

optimized is not differentiable
– evolutionary strategies can be used
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Continuous A-C Learning Automaton

CriticActor

input

output

(van Hasselt & Wiering, 2007)

State vector

Hidden space
representation

for t=0,1,2. ..do
choose action at← Ac t( st ) ,using exploration
make action at ,get to next state st+1

update critic:V t+1←r t+1+γV t (st+1)
ifV t+1(st)>V t (st ) , then

update actor's parameters such that: Ac t+1←at
end if

end for

Ac – action via policy
 
at – chosen action via 

exploration
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Open AI gym

Excellent toolkit for running RL experiments in python, in plenty of environments
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RL achievement: AlphaGo

● Beating human champion Lee Sedol by a computer using deep RL 
combined with (a novel) tree search (Silver et al, 2016)

● Combo of supervised learning (from human expert games) and RL 
(random games of self-play)

● Thanks to fast computing (GPU enabled)
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RL biggest achievement: AlphaGo Zero
● Based on self-played games
● Does not need knowledge from human expert games (unlike 

its predecessor AlphaGo, beating it 100:0)
● Tabula rasa starting point
● MTCS chooses moves based 

on current NN (being trained)
● NN = merged value + policy net 
● novel strategies invented
● economic interpretation of 

AlphaGo possible (Imani, 2018)
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Challenges and extensions to RL

● Curse of dimensionality
● Temporal credit assignment problem
● Partially observable problems
● Length of training
● Non-stationary environments
● Reward shaping
● Exploration-exploitation dilemma
● Multi-objective RL
● Intrinsic motivation approaches (copying w
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Summary

● Origin in psychology, biological relevance (in animals)
● RL = how an agent should behave in unknown environment, 

given only its percepts and occasional rewards
● The overall agent design dictates the kind of information that 

must be learned
● To be learned: utilities, optimal policy
● A variety of on-policy and off-policy methods
● For large spaces – function approximation inevitable
● Great promise for robotics
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