Introduction to Computational Intelligence

Probabilistic modeling and learning

Igor Farkaš
Centre for Cognitive Science
Comenius University Bratislava

Introduction

- Uncertainty: A state of having limited knowledge where it is impossible to exactly describe the existing state, a future outcome, or more than one possible outcome.
- Ubiquitous in the world

- To deal with uncertainty, agents must keep track of belief states.
- Probability is the measure of the likeliness that an event will occur.
- Probabilistic approach is alternative to logical approach.

Basics of probability theory

- In probability theory, the set of all possible worlds (ω) is called the sample space (Ω).
- The possible worlds are mutually exclusive and exhaustive
- E.g. if we are about to roll two (different) dice, there are 36 possible worlds to consider: $(1,1),(1,2), \ldots,(6,6)$.
- A fully specified probability model associates a numerical probability $P(\omega)$ with each possible world. It holds that:

$$
0 \leqslant P(\omega) \leqslant 1 \text { for every } \omega \text { and } \sum_{\omega \in \Omega} P(\omega)=1
$$

- e.g. for fair dice above, the probability of each world is $1 / 36$
- Often we are interested not in particular ω, but the sets of them

Probability theory basics (ctd)

- Events, described by propositions (in AI)
- e.g. $P($ odd $), P($ doubles $), P(t o t a l=9)$, etc...
- Types of probabilities (w.r.t. evidence):
- prior (unconditional), e.g. $P(\omega<4)$
- posterior (conditional), e.g. $P\left(\right.$ doubles|die $\left._{1}=5\right)$
- Definition: for events a, b

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \quad P(b \mid a)=\frac{P(b \wedge a)}{P(a)}
$$

- Bayes' rule:

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

Probability (ctd)

- Inclusion-exclusion principle:

$$
P(a \vee b)=P(a)+P(b)-P(a \wedge b)
$$

- Where do probabilities come from?

True

- Frequentist view - numbers can come only from experiments, i.e. based on empirical evidence.
- Objectivist view - probabilities are real aspects of the universe - propensities of objects to behave in certain ways, rather than being just descriptions of an observer's degree of belief.
- Subjectivist view - probabilities characterize agent’s beliefs, rather than have any external physical significance.

Example: cavity-catch-toothache world

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

- Joint probability distribution (in $2 \times 2 \times 2$ table) - provides probability of each atomic event
- Allows probabilistic inference (calculating arbitrary probs)
- Prior probability, e.g. P (toothache $)=0.108+0.012+0.016+$ $0.064=0.2$
- Conditional probability, e.g. P (cavity | toothache) $=(0.108+$ $0.012) /(0.108+0.012+0.016+0.064)=0.6$
$P($ Effect \mid Cause $)=\frac{P(\text { Cause } \mid \text { Effect }) P(\text { Effect })}{P(\text { Cause })}$

Conditional independence

- toothache and catch are not independent...
- ... but one does not imply the other
- conditioned on cavity, they are independent: P (toothache,catch | cavity) $=P$ (toothache | cavity).P (catch | cavity)
- Conditional independence (CI) allows problem simplification
- Cavity separates toothache and catch because it is a direct cause of both of them
- Cl assumpion in general: $P(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z})=P(\mathrm{X} \mid \mathrm{Z}) \cdot P(\mathrm{Y} \mid \mathrm{Z})$
- Naive Bayes model (used also when CI does not hold):
$P\left(\right.$ Cause Effect $_{1}, \ldots$, Effect $\left._{n}\right)=P($ Cause $) \prod_{i} P\left(\right.$ Effect $_{i} \mid$ Cause $)$

Naive Bayes classifier

- The "class" variable C (which is to be predicted) is the root and the "attribute" variables x_{i} are the leaves.
- With observed attribute values x_{1}, \ldots, x_{n}, the probability of each class is given by

$$
P\left(C_{i} \mid \boldsymbol{x}\right)=\frac{P\left(\boldsymbol{x} \mid C_{i}\right) P\left(C_{i}\right)}{P(\boldsymbol{x})}
$$

- under the assumption of independent attributes x_{i}

$$
\begin{aligned}
& P\left(C \mid x_{1}, \ldots, x_{n}\right)=\alpha P(C) \prod_{i} P\left(x_{i} \mid C\right) \\
& P\left(C_{i} \mid \boldsymbol{x}\right)=\frac{P\left(x_{1} \mid C_{i}\right) P\left(x_{2} \mid C_{i}\right) \ldots P\left(x_{n} \mid C_{i}\right) P\left(C_{i}\right)}{P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{n}\right)}
\end{aligned}
$$

Naive Bayes classifier in 2D

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space
H is the hypothesis variable, values h_{1}, h_{2}, \ldots, prior $\mathbf{P}(H)$
j th observation d_{j} gives the outcome of random variable D_{j} training data $\mathbf{d}=d_{1}, \ldots, d_{N}$

Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood
Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\Sigma_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\Sigma_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

Example of probabilistic learning

Suppose there are five kinds of bags of candies:
10% are $h_{1}: 100 \%$ cherry candies
20% are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies 40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies 20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies 10% are $h_{5}: 100 \%$ lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?

Posterior probability of hypotheses

Example of prediction probability

MAP and ML approximation

- summing over the hypothesis space is often intractable
- Maximum a posteriori (MAP) learning: choose $h_{\text {MAP }}$ maximizing $P\left(h_{i} \mid \boldsymbol{d}\right)$
- i.e. maximize $P\left(\boldsymbol{d} \mid h_{i}\right) . P\left(h_{i}\right)$ or $\log P\left(\boldsymbol{d} \mid h_{i}\right)+\log P\left(h_{i}\right)$
- Log terms can be viewed as (negatives of)
- bits to encode data given hypothesis + bits to encode hypothesis
- This is the basic idea of minimum description length learning
- For large data sets, we can ignore $P\left(h_{i}\right)=>$ empiricist
- Maximum likelihood (ML) learning: choose $h_{\text {ML }}$ maximizing $P\left(\boldsymbol{d} \mid h_{i}\right)$
- ML is the standard (non-Bayesian) statistical learning method

ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?
Any θ is possible: continuum of hypotheses h_{θ}
θ is a parameter for this simple (binomial) family of models
Suppose we unwrap N candies, c cherries and $\ell=N-c$ limes
These are i.i.d. (independent, identically distributed) observations, so

$$
P\left(\mathbf{d} \mid h_{\theta}\right)=\prod_{j=1}^{N} P\left(d_{j} \mid h_{\theta}\right)=\theta^{c} \cdot(1-\theta)^{\ell}
$$

Maximize this w.r.t. θ-which is easier for the log-likelihood:

$$
\begin{aligned}
L\left(\mathbf{d} \mid h_{\theta}\right) & =\log P\left(\mathbf{d} \mid h_{\theta}\right)=\sum_{j=1}^{N} \log P\left(d_{j} \mid h_{\theta}\right)=c \log \theta+\ell \log (1-\theta) \\
\frac{d L\left(\mathbf{d} \mid h_{\theta}\right)}{d \theta} & =\frac{c}{\theta}-\frac{\ell}{1-\theta}=0 \Rightarrow \theta=\frac{c}{c+\ell}=\frac{c}{N}
\end{aligned}
$$

A more complicated case

- The wrapper color depends (probabilistically) on the candy flavor
- Let unwrap N candies, of which c are cherries and l are limes. Let $r_{c}\left(g_{c}\right)$ of the cherries have red (green) wrappers, while $r l$ $\left(g_{l}\right)$ of the limes have red (green). Then

$P\left(\mathbf{d} \mid h_{\theta, \theta_{1}, \theta_{2}}\right)=\theta^{c}(1-\theta)^{\ell} \cdot \theta_{1}^{r_{c}}\left(1-\theta_{1}\right)^{g_{c}} \cdot \theta_{2}^{r_{\ell}}\left(1-\theta_{2}\right)^{g_{\ell}}$
- ML parameter learning problem for a Bayesian network decomposes into separate learning problems, one for each parameter.

$$
\begin{aligned}
& \theta=\frac{c}{c+\ell} \\
& \theta_{1}=\frac{r_{c}}{r_{c}+g_{c}} \\
& \theta_{2}=\frac{r_{\ell}}{r_{\ell}+g_{\ell}}
\end{aligned}
$$

Probability for continuous variables

Express distribution as a parameterized function of value:
$P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Here P is a density; integrates to 1 .
$P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

Example: Linear Gaussian model

Maximizing $P(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y-\left(\theta_{1} x+\theta_{2}\right)\right)^{2}}{2 \sigma^{2}}}$ w.r.t. θ_{1}, θ_{2}
$=$ minimizing $E=\sum_{j=1}^{N}\left(y_{j}-\left(\theta_{1} x_{j}+\theta_{2}\right)\right)^{2}$
That is, minimizing the sum of squared errors gives the ML solution for a linear fit assuming Gaussian noise of fixed variance

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional in dependence provide the tools (naive Bayes model).
- Probabilistic models can be learned from evidence
- Approximations of Bayesian learning useful (MAP, ML)

