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Introduction

● Uncertainty: A state of having limited knowledge where it is 
impossible to exactly describe the existing state, a future 
outcome, or more than one possible outcome.

● Ubiquitous in the world

● To deal with uncertainty, agents must keep track of belief states.
● Probability is the measure of the likeliness that an event will occur.
● Probabilistic approach is alternative to logical approach.
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Basics of probability theory

● In probability theory, the set of all possible worlds (ω) is called 
the sample space (Ω).

● The possible worlds are mutually exclusive and exhaustive
● E.g. if we are about to roll two (different) dice, there are 36 

possible worlds to consider: (1,1), (1,2), ..., (6,6).
● A fully specified probability model associates a numerical 

probability P(ω) with each possible world. It holds that:

● e.g. for fair dice above, the probability of each world is 1/36
● Often we are interested not in particular ω, but the sets of them

0⩽P(ω)⩽1 for every ω and ∑
ω∈Ω

P(ω)=1
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Probability theory basics (ctd)

● Events, described by propositions (in AI)
● e.g. P(odd), P(doubles), P(total = 9), etc…
● Types of probabilities (w.r.t. evidence):

– prior (unconditional), e.g. P(ω<4)
– posterior (conditional), e.g. P(doubles|die1=5)

● Definition: for events a, b

● Bayes’ rule: 

P(a |b)= P(a∧b)
P(b)

P(b | a)= P(b∧a)
P(a)

P(a |b)= P(b |a)P (a)
P(b)
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Probability (ctd)

● Inclusion–exclusion principle:

● Where do probabilities come from?
● Frequentist view – numbers can come only from experiments, 

i.e. based on empirical evidence.
● Objectivist view – probabilities are real aspects of the universe 

– propensities of objects to behave in certain ways, rather 
than being just descriptions of an observer’s degree of belief.

● Subjectivist view – probabilities characterize agent’s beliefs, 
rather than have any external physical significance.

P(a∨b)=P (a)+ P(b)−P (a∧b)
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Example: cavity-catch-toothache world

● Joint probability distribution (in 2×2×2 table) – provides 
probability of each atomic event 

● Allows probabilistic inference (calculating arbitrary probs)
● Prior probability, e.g. P(toothache ) = 0.108 + 0.012 + 0.016 + 

0.064 = 0.2 
● Conditional probability, e.g. P(cavity | toothache) = (0.108 + 

0.012) / (0.108 + 0.012 + 0.016 + 0.064) = 0.6  

P(Effect |Cause)= P(Cause |Effect )P(Effect )
P(Cause)
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Conditional independence

● toothache and catch are not independent…
● … but one does not imply the other
● conditioned on cavity, they are independent:

P(toothache,catch | cavity) = P(toothache | cavity) . P(catch | cavity)
● Conditional independence (CI) allows problem simplification 
● Cavity separates toothache and catch because it is a direct 

cause of both of them
● CI assumpion in general: P(X,Y|Z) = P(X|Z) . P(Y|Z)
● Naive Bayes model (used also when CI does not hold):

P(Cause ,Effect 1, ... ,Effect n)=P(Cause)∏
i
P(Effect i |Cause )
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Naive Bayes classifier

● The “class” variable C (which is to be predicted) is the root 
and the “attribute” variables xi are the leaves.

● With observed attribute values x1, ..., xn, the probability of 
each class is given by

● under the assumption of independent attributes xi

P(C |x1 , ..., xn)=α P(C )∏
i
P(x i |C)

P(C i | x)=
P(x1 |C i)P( x2 |C i) ...P (xn |C i)P(C i)

P (x1)P(x2)... P(xn)

P(C i | x)=
P(x |C i)P(C i)

P (x)
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Naive Bayes classifier in 2D
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Full Bayesian learning
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Example of probabilistic learning
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Posterior probability of hypotheses
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Example of prediction probability
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MAP and ML approximation

● summing over the hypothesis space is often intractable
● Maximum a posteriori (MAP) learning: choose hMAP maximizing  
P(hi|d)

● i.e. maximize P(d|hi) . P(hi) or log P(d|hi) + log P(hi)
● Log terms can be viewed as (negatives of)
● bits to encode data given hypothesis + bits to encode hypothesis 
● This is the basic idea of minimum description length learning
● For large data sets, we can ignore P(hi) => empiricist
● Maximum likelihood (ML) learning: choose hML maximizing P(d|hi)
● ML is the standard (non-Bayesian) statistical learning method
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ML parameter learning in Bayes nets



  
16

A more complicated case

● The wrapper color depends (probabilistically) 
on the candy flavor

● Let unwrap N candies, of which c are 
cherries and l are limes. Let rc (gc) of the 
cherries have red (green) wrappers, while rl 
(gl) of the limes have red (green). Then

● ML parameter learning problem for a 
Bayesian network decomposes into separate 
learning problems, one for each parameter.
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Probability for continuous variables

Alternative: Gaussian density
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Example: Linear Gaussian model
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Summary

● Probability is a rigorous formalism for uncertain knowledge
● Joint probability distribution specifies probability of every 

atomic event
● Queries can be answered by summing over atomic events
● For nontrivial domains, we must find a way to reduce the joint 

size
● Independence and conditional in dependence provide the 

tools (naive Bayes model).
● Probabilistic models can be learned from evidence
● Approximations of Bayesian learning useful (MAP, ML)
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