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Introduction

* Uncertainty: A state of having limited knowledge where it is
Impossible to exactly describe the existing state, a future
outcome, or more than one possible outcome.

* Ubiquitous in the world

* To deal with uncertainty, agents must keep track of belief states.
* Probability is the measure of the likeliness that an event will occur.

* Probabillistic approach is alternative to logical approach.



Basics of probability theory

In probability theory, the set of all possible worlds (w) Is called
the sample space (Q).

The possible worlds are mutually exclusive and exhaustive

E.qg. if we are about to roll two (different) dice, there are 36
possible worlds to consider: (1,1), (1,2), ..., (6,6).

A fully specified probability model associates a numerical
probability P(w) with each possible world. It holds that:

0<P(w)<1 foreveryw and ) P(w)=1

e

e.g. for fair dice above, the probability of each world is 1/36

Often we are interested not in particular w, but the sets of them



Probabillity theory basics (ctd)

Events, described by propositions (in Al)

e.g. P(odd), P(doubles), P(total = 9), etc...
Types of probabilities (w.r.t. evidence):

— prior (unconditional), e.g. P(w<4)

— posterior (conditional), e.g. P(doubles|die1=5)

Definition: for events a, b

P(bAa)

P(a|b):P§Da<2)b) P(bla)=

Bayes’ rule:




Probability (ctd)

True

Inclusion—exclusion principle: A a.p_B

P(avb)=P(a)+P(b)—P(anb)
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Where do probabilities come from?

Frequentist view — numbers can come only from experiments,
l.e. based on empirical evidence.

Objectivist view — probabilities are real aspects of the universe
— propensities of objects to behave in certain ways, rather
than being just descriptions of an observer’s degree of belief.

Subjectivist view — probabilities characterize agent’s beliefs,
rather than have any external physical significance.



Example: cavity-catch-toothache world

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576

Joint probability distribution (in 2x2x2 table) — provides
probability of each atomic event

Allows probabilistic inference (calculating arbitrary probs)

Prior probabllity, e.g. P(toothache ) = 0.108 + 0.012 + 0.016 +
0.064 = 0.2

Conditional probability, e.g. P(cavity | toothache) = (0.108 +
0.012) / (0.108 + 0.012 + 0.016 + 0.064) = 0.6

P(Cause | Effect) P ( Effect)
P(Cause)

P(Effect|Cause)=




Conditional independence

toothache and catch are not independent...

... but one does not imply the other

conditioned on cavity, they are independent:

P(toothache,catch | cavity) = P(toothache | cavity) . P(catch | cavity)
Conditional independence (CI) allows problem simplification

Cavity separates toothache and catch because it is a direct
cause of both of them

Cl assumpion in general: P(X,Y|Z) = P(X|2) . P(Y|Z)

Nalve Bayes model (used also when CI does not hold):

P(Cause , Effect, ..., Effect,,)=P(Cause) H P( Effect;|Cause )



Nalve Bayes classifier

* The “class” variable C (which is to be predicted) is the root
and the “attribute” variables x; are the leaves.

* With observed attribute values x;, ..., x», the probability of
each class is given by P(x|C,) P(C))
P(C|x)= P(lx) l

e under the assumption of independent attributes x;
P(C|x1,...,xn):ocP(C)H P(x;|C)

<X1|Ci)P<X2|Ci>"'P(Xn|Ci)P<Ci)
P(x,)P(x,)...P(x,)

P(Cilx):P



Nalve Bayes classifier in 2D




Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values hy, hs, .. ., prior P(H)

jth observation d; gives the outcome of random variable D,
training data d =d;.....dxy

Given the data so far, each hypothesis has a posterior probability:
P(h;|d) = aP(d|h;)P(h;)

where P(d|h;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) = %, P(X|d, hy) P(hi|d) = ¥; P(X|h;) P(hi|d)

No need to pick one best-guess hypothesis!
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Example of probabilistic learning

Suppose there are five kinds of bags of candies:

10% are hy:
20% are ho:
40% are hs:
20% are hy:
10% are hs:

100% cherry candies

75% cherry candies + 25% lime candies
50% cherry candies + 50% lime candies
25% cherry candies + 75% lime candies
100% lime candies

Then we observe candies drawn from some bag: ® @0 0000000

What kind of bag is it? What flavour will the next candy be?

11



Posterior probability of hypotheses
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P(next candy is lime | d)
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Example of prediction probabillity
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MAP and ML approximation

summing over the hypothesis space is often intractable

Maximum a posteriori (MAP) learning: choose hyar maximizing
P(hi|d)

l.e. maximize P(d|h;) . P(h;) or log P(d|h;) + log P(h))

Log terms can be viewed as (negatives of)

bits to encode data given hypothesis + bits to encode hypothesis
This iIs the basic idea of minimum description length learning

For large data sets, we can ignore P(h;) => empiricist

Maximum likelihood (ML) learning: choose hyi. maximizing P(d|h;)

ML is the standard (non-Bayesian) statistical learning method
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ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction ¢ of cherry candies? ——
" . . =CHErry
Any @ is possible: continuum of hypotheses hy ra)

f) is a parameter for this simple (binomial) family of models
Suppose we unwrap N candies, ¢ cherries and /=N — ¢ limes

These are i.i.d. (independent, identically distributed) observations, so

N ,
P(d|hg) = TI P(d;|hg) =06°-(1 —6)"*
j=1
Maximize this w.r.t. /—which is easier for the log-likelihood:

N
L(d|hg) = log P(d|hg) = _Zl]mg P(d;|hg) = clogf + {log(1 — 0)
j =

dL(d|hg) ¢ ¢ c
df 0 1—0 c+¢ N
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A more complicated case

P(F=cherry)

* The wrapper color depends (probabilistically) 0
on the candy flavor

 Let unwrap N candies, of which ¢ are
cherries and [ are limes. Let r¢ (g¢) of the
cherries have red (green) wrappers, while r;
(g1) of the limes have red (green). Then

P(W=red| F)

P(d | hgp,0,) = 0°(1 —0) - 07°(1 — 01)% - O5¢(1 — 6)

* ML parameter learning problem for a H — —<
Bayesian network decomposes into separate CH;
learning problems, one for each parameter. 0 = chgc

Oy =

16



Probability for continuous variables

Express distribution as a parameterized function of value:
P(X =x) = U|18,26|(x) = uniform density between 18 and 26

0.1257 Here P is a density; integrates to 1.
P(X =20.5) = 0.125 really means
@ Jim P(20.5 < X < 205+ dz) /dv = 0.125
18 dx 26 o

/\ Alternative: Gaussian density
N 1 —(x—p)? /202
AN e

0 O
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Example: Linear Gaussian model
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That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming (Gaussian noise of fixed variance
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every
atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint
Size

Independence and conditional in dependence provide the
tools (naive Bayes model).

Probabilistic models can be learned from evidence

Approximations of Bayesian learning useful (MAP, ML)
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