

1

Supervised feedforward neural networks

Introduction to Computational Intelligence

Igor Farkaš
Centre for Cognitive Science

Comenius University Bratislava

2

Artificial neural network as an agent

● ANNs can learn in various ways, here we focus on supervised
learning (good for classification or regression tasks)

● ANN as a (passive) black box
● Assumption: environment provides all input-target pairs, the

ANN “wants” to learn from the scratc

https://jsalatas.ictpro.gr

Recurrent neural networkFeedforward neural network

3

Core properties of ANNs

● Neurobiological inspiration with abstraction
● Simple computing elements (neurons)
● Nonlinear interactions between them (excitation, inhibition)
● Ability to learn (elementary changes to knowledge

representation)
● … based on experience (training examples)
● Distributedness and robustness
● Realisation of (continuous) input-output mappings
● … in Euclidean space
● … in case of recurrent models, with context dependency

4

From R. y Cajal: Texture of the Nervous System of
Man and the Vertebrates (illustrates the diversity of
neuronal morphologies in the auditory cortex).

n

105 neurons
3 km axons1 mm3

Biological neuron

Dentrites = inputs, axon = output

5

Type of artificial neuron – discrete perceptron

● Input x, weights w, output y
● Output calculation:

● f = threshold function: unipolar
{0,1} or bipolar {-1,+1}

● Supervised learning – uses
teacher signal d (desired value)

● Learning rule:

wj(t+1) = wj(t) +  (d – y) xj

y = f(∑n
j=1 wj xj – )

Threshold act. func.

Basic computing
element

(Rosenblatt, 1962)learning rate

6

Summary of perceptron algorithm

1. choose input x, compute output y

2. evaluate error function e(t) = ½ (d – y)2, E = E + e(t)

3. adjust weights using delta rule (if e(t) > 0)

4. if all patterns used, then goto 5, else go to 1

5. if E == 0 (all patterns in the set classified correctly), then end

else shuffle inputs, E = 0, go to 1

Given: training data: input-target {x, d} pairs, unipolar perceptron
Initialization: randomize weights, set learning rate, E = 0.

Training:

7

Perceptron classification capacity

linear separability of two classes

linear
decision
boundary

w1x1 + w2x2 + ... + wnxn = 

Fixed-increment convergence theorem (Rosenblatt, 1962): “Let the classes
A and B are finite and linearly separable, then perceptron learning algorithm
converges (updates its weight vector) in a finite number of steps.”

2D
example

x1

x2

n-dim. case.

8

Type of artificial neuron – continuous perceptron

● Uses a nonlinear unit with sigmoid act. function: y = 1 / (1+e-net)

- has nice properties (bounded, monotonous, differentiable)
● Let us consider quadratic error function: e(w) = ½ (d – y)2

● Error minimization: necessary condition e(w*) ≤ e(w)
● (stochastic, online) gradient descent learning:

wj(t+1) = wj(t) +  (d(p) – y(p)) f '(net) xj

Perceptron as a binary classifier

sigmoid
f ’(net) = df / dnet =
deriv. of f w.r.t. net

 w*
w

e(w)

9

Single-layer perceptrons

● We use N perceptrons working independently
● can classify linearly separable classes

wij(t+1) = wij(t) +  (di – yi) fi ' xj

● N classes => N neurons, each representing one class
● Learning rule is the same: (except that weights have 2 indices)

i

10

Successful

Unsuccessful

Many
Hours in
the Gym
per Week

Few
Hours in

the Gym
per Week

Footballers
Academics

…despite the simplicity of their
relationship:

Academics = Successful XOR Gym

This failure caused the loss of interest in connectionism by many (in 1970s)
resuling in the 1st AI winter. Many categories in real problems turned out to be
linearly non-separable.

Perceptron limits

● Simple perceptron cannot separate linearly non-separable
classes

M. Minsky & S. Papert (1969). Perceptrons, MIT Press, Cambridge, MA.

11

Multi-layer perceptrons

● Generalization of simple perceptrons
● MLPs can learn more complex mappings
● Features:

– contain hidden-layer(s)
– neurons have non-linear activation function (e.g. logistic)
– full connectivity b/w layers

● (supervised) error “back-propagation” training algorithm
introduced

● Best known from 1986: Rumelhart & McClelland: Parallel
distributed processing
– algorithm described earlier by Werbos (1974)

● response to earlier critique of perceptrons (Minsky & Papert, 1969)

12

● Inputs x , weights w, v, outputs y
● Nonlinear activation function f
● Unit activation:

● Bias input:
● Activation function examples:

hk= f ∑ j=1

n1
vkj x j

yi= f ∑k=1

q1
w ik h k 

xn1=hq1=−1

Two-layer perceptron

f (net)= tanh(net)= e
net−e−net

enet+e−net
= 2

1 +e−2net−1

f (net)=σ (net)= 1
1 +e−net

13

How to apply error?

● Output layer – application of delta rule
– Because targets are known

● How to compute error at hidden layer(s)?

● Instantaneous output error (for pattern p): e(p) = ½ i(di
(p) – yi

(p))2

● We will show that error can be back-propagated across layers
backwards

● At each layer the (local) weight correction has this form:

(weight change) = (learning rate)*(unit error)*(unit input)

14

Learning equations for original BP

Hidden-output weights:

Input-hidden weights:

wik(t+1) = wik(t) + i hk where i = (di – yi) fi'

vkj(t+1) = vkj(t) +  k xj where k = (Si wik i) fk'

wik i

k

● BP is the first-order algorithm, based on
the method of the steepest descent in the
weight space

● smoothness of the trajectory depends on
the learning rate

layer n+1layer n

15

Summary of back-propagation algorithm

Given: training data: input-target {x(p), d(p)} pairs
Initialization: randomize weights, set learning parameters
Training:

1. choose input x(p), compute outputs y(p) (forward
pass),

2. evaluate chosen error function e(t), E ← E + e(t)
3. compute i , k (backward pass)

4. adjust weights wik and vkj

5. if all patterns used, then goto 6, else go to 1
6. if stopping_criterion is met, then end

else permute inputs and go to 1

No well-defined stopping criteria exist. Suggestions:
● when change in Eepoch is sufficiently small (<1%)
● when generalization performance is adequate

16

XOR problem solved with MLP

hidden neurons as
feature detectors

Error function in MLPs

17

Decision regions in MLP

18

Deep neural networks (popular)

● multi-layer architectures (>3 layers)
● increasing abstractness
● with distributed representations

emerging
● gradient-descent based learning
● currently top results in various large-data

domains: vision (object recognition),
language modeling, speech recognition

● different from biological models

(Bengio, 2007)

19

Supervised learning tasks

Model A Model B

classification regression

Predicting real-valued
dependent variable, based
on several (or many)
independent variable(s).

time-series forecasting

Predicting future real-valued
dependent variable based on
its observations so far.

3 different
models shown

20

Summary

● Biological inspiration of artificial neural networks
● Input-output mapping = reflex agents with learning
● Data assumed to be available
● Learning with a teacher (supervised)
● Feature extraction at hidden layers
● Error minimization by gradient descent
● Generalization is crucial for using ANNs.
● Supervised tasks: classification and regression.

	2. SIMPLE PERCEPTRONS
	Slide 2
	Slide 3
	Slide 4
	2. Discrete perceptron
	Slide 6
	2. Perceptron's classification capacity
	2. Continuous perceptron
	2. Single-layer perceptrons
	2. Perceptron limits
	4. MLP features
	Slide 12
	4. How to apply error?
	4. Learning equations for error back-propagation
	4. Summary of BP algorithm
	XOR example
	Decision regions
	Slide 18
	Slide 19
	Slide 20

