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Basic concepts

Evolutionary computation (EC) - “core” part of ClI

Evolution = optimization process to improve the ability of an
organism to survive in dynamically changing and competitive
environments.

Defined in various domains, we focus on biological evolution

Different views:

— Lamarckian view (1744-1829) - inheritance of acquired traits

— Darwinian view (1809-1882) - theory of natural selection




Lamarckism vs Darwinism




Darwin's theory of natural selection

* Ina world with limited resources and stable populations, each
individual competes with others for survival.

- Those individuals with the “best” characteristics (traits) are
more likely to survive and to reproduce, and those characteristics
will be passed on to their offspring.

* During production of a child organism, random events cause
random changes to the child organism’s characteristics.

- |f these new characteristics are a benefit to the organism, then
the chances of survival for that organism are increased.




Generic Evolutionary Algorithm

Let t = 0 be the generation counter;

Create and initialize a population C(t) of individuals; [encoding of solutions]
while stopping condition(s) not true do
Evaluate the fitness, f(x (1)), of each individual x (t); [fitness function]
Perform reproduction to create offspring;  [reproduction operators]
Select the new population, C(t+1); [selection operators]

Advance to the new generation, i.e. t « t + 1;

end




How to design a fithess function?

* FF should be clearly defined. The reader should be able to clearly
understand how the fitness score is calculated.

* FF should be implemented efficiently. If it becomes the bottleneck of
the algorithm, then the overall efficiency of the GA will be reduced.

* FF should quantitatively
measure how well the given

solution fits the problem.
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* FF should generate intuitive
results. The best/worst
candidates should have
best/worst score values.
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https://towardsdatascience.com/how-to-define-a-fitness-function-in-a-genetic-algorithm-be572b9ea3b4




Evolutionary algorithm
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Various EC paradigms

Genetic algorithms - which model genetic evolution.

Genetic programming - is based on genetic algorithms, but individuals
are programs (represented as trees).

Evolutionary programming - is derived from the simulation of adaptive
behavior in evolution (i.e. phenotypic evolution).

Cultural evolution - models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of
individuals.

Neuroevolution - genomes represent artificial neural networks by
describing structure and connection weights.

Evolutionary learning - e.g. Learning classifier system




Representation — Chromosome

Chromosome - represents characteristics of an individual, these
are of two types (with complex mutual relationship):

Genotype - describes the genetic composition of an individual

Phenotype - the expressed behavioral traits of an individual in a
specific environment.

Most EAs represent solutions (in chromosomes) as vectors of a
specific data type.

Continuous search space problem is mapped into a discrete
programming problem.




Operators

Selection

* Of the new population

* reproduction
Selective pressure (if high, decreases diversity, and vice versa)

* random, proportional, elitism

Reproduction: crossover + mutation

Fitness function: f: G -IR (G - chromosome repr.)
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Selection operators

* Random: P(xi) = 1/N
f(xi(t)>

* Proportional (to fitness function): Px)= D fx (1)
* Boltzmann selection: (T = temperature) | -
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* Elitism - best candidates are copied
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https://stackoverflow.com/questions/23183862/genetic-programming-difference-between-roulette-rank-and-tournament-selection 11




Crossover in a genetic algorithm

* can help find better configurations

* Offsprings are added to the population, two individuals with
lowest fithess function are removed

parents offsprings
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Binary versus Gray encoding
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Gray code removes undesirable 'discontinuity’ of a binary code




Stopping conditions

when no improvement is observed over a number of consecutive
generations

when there is no change in the population
when an acceptable solution has been found

when the objective function slope is approximately zero
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EC versus classical optimization (CO)

* CO algorithms - very successful (and more efficient than EAS) in
linear, quadratic, strongly convex, unimodal and other specialized
problems

* EAs - more efficient for discontinuous, non-differentiable,
multimodal and noisy problems.

* Differences between the two:

* insearch process

* in information about search space used to guide the search process
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EC versus CO (ctd)

* The search process:

* (CO uses deterministic rules to move from one point in the search
space to the next point.

* CO applies a sequential search - starting from one point

* EC uses probabilistic transition rules

* EC applies parallel search - starts from a diverse set of initial points
* Search surface information:

* CO uses derivative information (15t or 2" order, of the search space)

* EC uses no derivative information but fithess values of individuals
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EC for learning

* Evolutionary learning can be used in supervised, unsupervised and
reinforcement learning.

* Learning classifier systems (rule-based systems)
* Evolutionary artificial neural networks

* Evolutionary fuzzy logic systems

* Co-evolutionary learning

* Automatic modularisation of machine learning systems by
specialization and niching.
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Neuroevolution
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Studies in Computational Intelligence, 557, 2015
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EC for design

EC techniques are particularly good at exploring unconventional
designs which are very difficult to obtain by hand.

* Evolutionary design of artificial NNs / /B\
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https://bioinspiredarchitecture.wordpress.com/
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Summary

* Evolutionary computation = computer-based problem solving
systems that use computational models of evolutionary
processes, such as natural selection, survival of the fittest and
reproduction, as the fundamental components of such systems.

* Problems are treated as optimization tasks.
* Basically, anything can be evolved (subject to formalization).

* Important components: problem encoding, fitness function, and
operator used.
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