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Basic concepts

 Evolutionary computation (EC) – “core” part of CI
 Evolution = optimization process to improve the ability of an 

organism to survive in dynamically changing and competitive 
environments.

 Defined in various domains, we focus on biological evolution
 Different views:

– Lamarckian view (1744–1829) – inheritance of acquired traits
– Darwinian view (1809–1882) – theory of natural selection
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Lamarckism vs Darwinism
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Darwin's theory of natural selection

 In a world with limited resources and stable populations, each 
individual competes with others for survival. 
→ Those individuals with the “best” characteristics (traits) are 
more likely to survive and to reproduce, and those characteristics 
will be passed on to their offspring.

 During production of a child organism, random events cause 
random changes to the child organism’s characteristics. 
→ If these new characteristics are a benefit to the organism, then 
the chances of survival for that organism are increased.
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Generic Evolutionary Algorithm

Let t = 0 be the generation counter;
Create and initialize a population C(t) of individuals;   [encoding of solutions]
while stopping condition(s) not true do
     Evaluate the fitness, f(xi(t)), of each individual xi(t);    [fitness function]

     Perform reproduction to create offspring;      [reproduction operators]
     Select the new population, C(t+1);    [selection operators]
     Advance to the new generation, i.e. t  t + 1;
end
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How to design a fitness function?
● FF should be clearly defined. The reader should be able to clearly 

understand how the fitness score is calculated.
● FF should be implemented efficiently. If it becomes the bottleneck of 

the algorithm, then the overall efficiency of the GA will be reduced.
● FF should quantitatively 

measure how well the given 
solution fits the problem.

● FF should generate intuitive 
results. The best/worst 
candidates should have 
best/worst score values.

https://towardsdatascience.com/how-to-define-a-fitness-function-in-a-genetic-algorithm-be572b9ea3b4
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Evolutionary algorithm
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Various EC paradigms

 Genetic algorithms – which model genetic evolution.
 Genetic programming – is based on genetic algorithms, but individuals 

are programs (represented as trees).
 Evolutionary programming – is derived from the simulation of adaptive 

behavior in evolution (i.e. phenotypic evolution).
 Cultural evolution – models the evolution of culture of a population and 

how the culture influences the genetic and phenotypic evolution of 
individuals.

 Neuroevolution – genomes represent artificial neural networks by 
describing structure and connection weights.

 Evolutionary learning – e.g. Learning classifier system  
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Representation – Chromosome

 Chromosome – represents characteristics of an individual, these 
are of two types (with complex mutual relationship):

 Genotype – describes the genetic composition of an individual
 Phenotype – the expressed behavioral traits of an individual in a 

specific environment.
 Most EAs represent solutions (in chromosomes) as vectors of a 

specific data type.
 Continuous search space problem is mapped into a discrete 

programming problem.
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Operators

 Selection
 Of the new population
 reproduction

 Selective pressure (if high, decreases diversity, and vice versa)
 random, proportional, elitism
 ...

 Reproduction:  crossover + mutation

 Fitness function:  f: G →ℝ  (G – chromosome repr.) 
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Selection operators

• Random:  P(xi) = 1/N
• Proportional (to fitness function): 
• Boltzmann selection: (T = temperature)

 

• Elitism – best candidates are copied
                                      

   to next generation (without mutation)

P(x i)=
exp( f (x i( t))/T ( t))

∑
j

exp ( f (x j(t))/T (t))

P(x i)=
f (x i(t))

∑ j
f (x j (t))

https://stackoverflow.com/questions/23183862/genetic-programming-difference-between-roulette-rank-and-tournament-selection
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Crossover in a genetic algorithm

Crossover points

parents offsprings

● can help find better configurations
● Offsprings are added to the population, two individuals with 

lowest fitness function are removed
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Binary versus Gray encoding

Gray code removes undesirable 'discontinuity' of a binary code
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Stopping conditions

 when no improvement is observed over a number of consecutive 
generations

 when there is no change in the population
 when an acceptable solution has been found
 when the objective function slope is approximately zero
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EC versus classical optimization (CO)

 CO algorithms – very successful (and more efficient than EAs) in 
linear, quadratic, strongly convex, unimodal and other specialized 
problems

 EAs – more efficient for discontinuous, non-differentiable, 
multimodal and noisy problems.

 Differences between the two:
 in search process  
 in information about search space used to guide the search process
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EC versus CO (ctd)

 The search process: 
 CO uses deterministic rules to move from one point in the search 

space to the next point.
 CO applies a sequential search – starting from one point
 EC uses probabilistic transition rules
 EC applies parallel search - starts from a diverse set of initial points

 Search surface information: 
 CO uses derivative information (1st or 2nd order, of the search space) 
 EC uses no derivative information but fitness values of individuals
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EC for learning

• Evolutionary learning can be used in supervised, unsupervised and 
  reinforcement learning.
• Learning classifier systems (rule-based systems)
• Evolutionary artificial neural networks
• Evolutionary fuzzy logic systems
• Co-evolutionary learning
• Automatic modularisation of machine learning systems by  

specialization and niching.
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Neuroevolution

Mouret J.-P. et al. Artificial Evolution of Plastic Neural Networks: A Few Key Concepts. 
Studies in Computational Intelligence, 557, 2015



  
19

EC for design

EC techniques are particularly good at exploring unconventional 
designs which are very difficult to obtain by hand.

• Evolutionary design of artificial NNs
• Evol. design of electronic circuits
• Evolvable hardware
• Evol. design of buildings (architectures)

https://bioinspiredarchitecture.wordpress.com/

(Gordon & 
Bentley, 2002)
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Summary

● Evolutionary computation = computer-based problem solving 
systems that use computational models of evolutionary 
processes, such as natural selection, survival of the fittest and 
reproduction, as the fundamental components of such systems.

● Problems are treated as optimization tasks.
● Basically, anything can be evolved (subject to formalization).
● Important components: problem encoding, fitness function, and 

operator used.


	Title
	Basic concepts
	Lamarck vs Darwin
	Natural selection
	Evolutionary algorithm
	Fitness function
	EA - scheme
	EC paradigms
	Chromosome
	Operators
	Selection operators
	Crossover
	Encoding
	Stopping conditions
	EC vs classical optimization
	EC vs CO (ctd)
	EC for learning
	Neuroevolution
	EC for design
	Summary

