Introduction to computational intelligence

Basics of evolutionary computation

Igor Farkas
Centre for Cognitive Science
Comenius University Bratislava

Engelbrecht (2007), John Wiley & Sons, 2™ ed.

Basic concepts

Evolutionary computation (EC) - “core” part of ClI

Evolution = optimization process to improve the ability of an
organism to survive in dynamically changing and competitive
environments.

Defined in various domains, we focus on biological evolution

Different views:

— Lamarckian view (1744-1829) - inheritance of acquired traits

— Darwinian view (1809-1882) - theory of natural selection

Lamarckism vs Darwinism

Darwin's theory of natural selection

* Ina world with limited resources and stable populations, each
individual competes with others for survival.

- Those individuals with the “best” characteristics (traits) are
more likely to survive and to reproduce, and those characteristics
will be passed on to their offspring.

* During production of a child organism, random events cause
random changes to the child organism’s characteristics.

- |f these new characteristics are a benefit to the organism, then
the chances of survival for that organism are increased.

Generic Evolutionary Algorithm

Let t = 0 be the generation counter;

Create and initialize a population C(t) of individuals; [encoding of solutions]
while stopping condition(s) not true do
Evaluate the fitness, f(x (1)), of each individual x (t); [fitness function]
Perform reproduction to create offspring; [reproduction operators]
Select the new population, C(t+1); [selection operators]

Advance to the new generation, i.e. t « t + 1;

end

How to design a fithess function?

* FF should be clearly defined. The reader should be able to clearly
understand how the fitness score is calculated.

* FF should be implemented efficiently. If it becomes the bottleneck of
the algorithm, then the overall efficiency of the GA will be reduced.

* FF should quantitatively
measure how well the given

solution fits the problem.
il N

* FF should generate intuitive
results. The best/worst
candidates should have
best/worst score values.

Fitness
\, Function ?

Evaluation o

Fitness Function

e_
¢
*'d

https://towardsdatascience.com/how-to-define-a-fitness-function-in-a-genetic-algorithm-be572b9ea3b4

Evolutionary algorithm

© & e O
o @ ®% T\ ®
000 O 1\©
Initial populahon 2 3
Fitness calculation
09 \ ®
.) ©. O ®®®®

.. ®\.. ©

Mutahon Reproduction®

Various EC paradigms

Genetic algorithms - which model genetic evolution.

Genetic programming - is based on genetic algorithms, but individuals
are programs (represented as trees).

Evolutionary programming - is derived from the simulation of adaptive
behavior in evolution (i.e. phenotypic evolution).

Cultural evolution - models the evolution of culture of a population and
how the culture influences the genetic and phenotypic evolution of
individuals.

Neuroevolution - genomes represent artificial neural networks by
describing structure and connection weights.

Evolutionary learning - e.g. Learning classifier system

Representation — Chromosome

Chromosome - represents characteristics of an individual, these
are of two types (with complex mutual relationship):

Genotype - describes the genetic composition of an individual

Phenotype - the expressed behavioral traits of an individual in a
specific environment.

Most EAs represent solutions (in chromosomes) as vectors of a
specific data type.

Continuous search space problem is mapped into a discrete
programming problem.

Operators

Selection

* Of the new population

* reproduction
Selective pressure (if high, decreases diversity, and vice versa)

* random, proportional, elitism

Reproduction: crossover + mutation

Fitness function: f: G -IR (G - chromosome repr.)

10

Selection operators

* Random: P(xi) = 1/N
f(xi(t)>

* Proportional (to fitness function): Px)= D fx (1)
* Boltzmann selection: (T = temperature) | -
aneel Is rotate,,
eV (o) g
P(x) Zexp(f(xj(t))/T(t)) @
j | . ‘

* Elitism - best candidates are copied

3
L
"’0

Fittest inl'.‘li‘u‘idual

has largest share of
the roulette wheel

to next generation (without mt

P2

Weakest individual

F == has smallest share of
the roulette wheel

https://stackoverflow.com/questions/23183862/genetic-programming-difference-between-roulette-rank-and-tournament-selection 11

Crossover in a genetic algorithm

* can help find better configurations

* Offsprings are added to the population, two individuals with
lowest fithess function are removed

parents offsprings
o|l1|2|3|a|s]|6|7|2]9 ol1l2]alz]|3]|6]|7]s
=>
s|alolal2|3]|s|[7]5]s G EE E RS s

Crossover points

12

Binary versus Gray encoding

Binary GTH-?,J' Hamming distance | |
: : -~ @ --- binary coding
01000 | 000 N
1] 001 001 4 Y ERTInE
2 | 010 011 ; .
3011 | 010 Fa
4 1 100 110 2 W e
5 101 111 , E O % O 5.
6| 110 101
7l w0 °
0 1 2 3 4 5 6 7

Numerical value

Gray code removes undesirable 'discontinuity’ of a binary code

Stopping conditions

when no improvement is observed over a number of consecutive
generations

when there is no change in the population
when an acceptable solution has been found

when the objective function slope is approximately zero

14

EC versus classical optimization (CO)

* CO algorithms - very successful (and more efficient than EAS) in
linear, quadratic, strongly convex, unimodal and other specialized
problems

* EAs - more efficient for discontinuous, non-differentiable,
multimodal and noisy problems.

* Differences between the two:

* insearch process

* in information about search space used to guide the search process

15

EC versus CO (ctd)

* The search process:

* (CO uses deterministic rules to move from one point in the search
space to the next point.

* CO applies a sequential search - starting from one point

* EC uses probabilistic transition rules

* EC applies parallel search - starts from a diverse set of initial points
* Search surface information:

* CO uses derivative information (15t or 2" order, of the search space)

* EC uses no derivative information but fithess values of individuals

16

EC for learning

* Evolutionary learning can be used in supervised, unsupervised and
reinforcement learning.

* Learning classifier systems (rule-based systems)
* Evolutionary artificial neural networks

* Evolutionary fuzzy logic systems

* Co-evolutionary learning

* Automatic modularisation of machine learning systems by
specialization and niching.

17

Neuroevolution

Plastic neural
network }‘

Population of
neural networks

Variation |

Mouret J.-P. et al. Artificial Evolution of Plastic Neural Networks: A Few Key Concepts.

Simulation
of behavior @

Adaptation

Dynamic
environment

Selection

Studies in Computational Intelligence, 557, 2015

18

EC for design

EC techniques are particularly good at exploring unconventional
designs which are very difficult to obtain by hand.

* Evolutionary design of artificial NNs / /B\

inspired
Software

* Evol. design of electronic circuits soce_{— m\ Bmlogy
° Q{\;id\;sare/ mnspire
Evolvable hardware \/ \ - Harﬂwam - /

__/

° EVOI dGSlgn Of bUlldlngS (arChlteCtureS) \\ Electronic Engineering /(GOI’dOﬂ &
~__ " Bentley, 2002)

o
7z
=

https://bioinspiredarchitecture.wordpress.com/

19

Summary

* Evolutionary computation = computer-based problem solving
systems that use computational models of evolutionary
processes, such as natural selection, survival of the fittest and
reproduction, as the fundamental components of such systems.

* Problems are treated as optimization tasks.
* Basically, anything can be evolved (subject to formalization).

* Important components: problem encoding, fitness function, and
operator used.

	Title
	Basic concepts
	Lamarck vs Darwin
	Natural selection
	Evolutionary algorithm
	Fitness function
	EA - scheme
	EC paradigms
	Chromosome
	Operators
	Selection operators
	Crossover
	Encoding
	Stopping conditions
	EC vs classical optimization
	EC vs CO (ctd)
	EC for learning
	Neuroevolution
	EC for design
	Summary

