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Abstract This paper gives an overview of the research pa-
pers published in Symbol Grounding in the period from the
beginning of the 21st century up 2012. The focus is in the
use of symbol grounding for robotics and intelligent sys-
tem. The review covers a number of subtopics, that include,
physical symbol grounding, social symbol grounding, sym-
bol grounding for vision systems, anchoring in robotic sys-
tems, and learning symbol grounding in software systems
and robotics. This review is published in conjunction with a
special issue on Symbol Grounding in the Künstliche Intel-
ligenz Journal.

Keywords Symbol grounding · Anchoring · Cognitive
robotics · Social symbol grounding

1 Introduction

The main dream of Artificial Intelligence has been to cre-
ate autonomous and intelligent systems that can reason and
act in the real world. For such a dream to become true an
essential ingredient is to establish and maintain a connec-
tion between what the system reasons about and what it can
sense in the real world. This can be considered as an aspect
of the Symbol Grounding Problem. The Symbol Grounding
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Problem (SGP) has been defined by Harnad in [29] as the
problem of how to ground the meanings of symbol tokens in
anything different than other (meaningless) symbols. Since
its definition, symbol grounding has been an area of inter-
est both in the fields of psychology as well as artificial in-
telligence. Its practical application has also been studied in
robotics and intelligent systems, with particular emphasis on
the problem of grounding symbols to the data acquired by
physically embedded sensors. It is this practical application
which is the focus of this paper. The review covers the re-
cent literature in the subject and in particular the period from
2000 to 2012 and is organized into two subtopics which re-
late to the current approaches to SGP in robotics and in-
telligent systems: Physical Symbol Grounding and Social
Symbol Grounding. The “Physical Symbol Grounding” as
been defined by Vogt in [74] as the grounding of symbols to
real world objects by a physical agent interacting in the real
world; while its social component, “Social Symbol Ground-
ing”, refers to the collective negotiation for the selection
of shared symbols (words) and their grounded meanings in
(potentially large) populations of agents as defined by Can-
gelosi in [9].

These are both significant and hard problems. As ex-
plained in [74] Physical Symbol Grounding requires con-
structing a consistent relation between percepts that may
vary under different conditions, and which often have a high
dimensionality. Categorising the dimensionalities may yield
different categories, which however should be related to one
concept often with the help of invariant feature detectors.
According to Vogt [76] the social symbol grounding prob-
lem may even be a harder problem to solve, because to
learn what a word-form refers to can result in Quine’s ref-
erential indeterminacy problem: the unknown word can—
theoretically—refer to an infinite number of objects. Vogt
investigated in [76] a number of heuristics from child lan-
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guage acquisition literature that help to reduce this indeter-
minacy: joint attention, principle of contrast and corrective
feedback. In [77] mutual exclusivity, and a few potential di-
alogues that help to reduce referential indeterminacy have
been also implemented.

It is worth to note that a recent review of Symbol Ground-
ing has been published in 2005 by Taddeo [69] which specif-
ically addresses SGP as a general problem from a philosoph-
ical perspective. A volume edited by Belpaeme [2] presents
current views on symbol grounding both from a philosophi-
cal and robotics perspective. This review is complementary
as it focuses on work of more practical relevance to robotics
and intelligent systems. Finally Cangelosi in [11] discusses
the current progress and solutions to the symbol ground-
ing problem and specifically identifies which aspects of the
problem have been addressed and issues and scientific chal-
lenges that still require investigation.

It is the authors belief that the focus of this review is es-
pecially timely as the steps towards the solution of the SGP
will be key to creating the next generation of robotic systems
that are capable of high level reasoning.

The review is structured in a number of subtopics. In the
Physical Symbol Grounding section learning of categories
on the basis of sensor data and grounding of actions are
considered. In addition the concept of Anchoring of sym-
bols to sensor data is defined and the work in this topic is
summarized. The review ends with a summary of works in
Social Symbol Grounding and works on Symbol Grounding
applied to the semantic web.

2 Physical Symbol Grounding

When dealing with the Physical Symbol Grounding, one of
the basic challenges examined in the literature is to ground
symbols to perceptual representations (sensor data), where
the symbols denote categorical concepts such as color, shape
and spatial features. Typically, the sensor data come from
vision sensors but other modalities have also been used.
The methods explored are often inspired by connectionist
models and a wide range of learning algorithms have been
applied. Unsupervised methods have been investigated by
Vavrecka in [73] where a biologically inspired model for
grounding spatial terms is presented. Color, shape and spa-
tial relations of two objects in 2D space are grounded. Im-
ages with two objects are presented to an artificial retina and
five-word sentences describing them (e.g. “Red box above
green circle”) are inputed. The implementation is done us-
ing Self-Organizing Map and Neural Gas algorithms. The
Neural Gas algorithm is found to lead to better performance
especially in case of scenes with higher complexity. In [36]
Kittler considers a visual bootstrapping approach for the un-
supervised symbol grounding. The method is based on a

recursive clustering of a perceptual category domain con-
trolled by goal acquisition from the visual environment.

A supervised method is used in a framework for model-
ing language in neural networks and adaptive agent simu-
lations by Cangelosi [8]. In this work symbols are directly
grounded into the agents’ own categorical representations
and have syntactic relationships with other symbols. The
grounding of basic words, acquired via direct sensorimotor
experience, is transferred to higher-order words via linguis-
tic descriptions.

Emphasizing the dynamic nature of language, Pastra sug-
gests that Symbol Grounding is a bi-directional process
(double-grounding) [55, 56]; its use in artificial intelligence
agents allows one to tie symbols of different levels of ab-
straction to their sensorimotor instantiations (catering thus
for disambiguation) and at the same time, to untie sen-
sorimotor representations from their physical specificities
correlating them to symbolic structures of different levels
of abstraction (catering thus for intentionality indication).
In other words, going bottom up (from sensorimotor rep-
resentations to symbols) the agent acquires a hierarchical
composition of human behaviour, while going top-down
(from symbols to sensorimotor representations) the agent
gets intentionality-laden interpretations of those structures.

Such two-way grounding has been captured in an au-
tomatically built knowledge base, the PRAXICON, which
comprises a semantic network of embodied concepts and
pragmatic relations [57, 58]. The concepts have multi-
ple representations (linguistic, visual, motoric) and their
rich relational network builds upon findings from neuro-
science that have led to an action-centric structure of the
network [60]. This is a semantic memory-like module with
its own reasoning mechanism for allowing an agent to gen-
eralise over learned schemas and behaviours and deal with
unexpected situations creatively. Both the reasoner and the
language processing tools for the automatic population of
such memory module advocate the embodied cognition per-
spective, coupling symbols to their references, dealing with
abstract concepts and their indirect grounding to sensorimo-
tor experiences, as well as with figurative language phenom-
ena, such as metonymy and metaphor [61, 62].

The tools and knowledge bases developed within the
‘double-grounding’ perspective have been employed in a
number of robotic applications with the iCub humanoid, in-
cluding (a) ‘the robot doer’ in response to verbal requests
for performing everyday activities and (b) ‘the robot active
observer’ in visual scenes where the actions of a human are
being observed and verbalised by the robot1 [59].

A few works consider the combination of both visual
and auditory data, where the combination gives a better re-
sult than using one modality alone. In [78] a multimodal

1POETICON++ and POETICON projects (2008–2015) at http://www.
poeticon.eu and http://www.csri.gr/Poeticon.
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learning system is presented by Yu that can ground spoken
names of objects in their physical referents and learn to rec-
ognize those objects simultaneously from vocal and vision
input. The system collects image sequences and speech in-
put while users perform natural tasks and grounds spoken
names of objects in visual perception, also learning to cate-
gorize visual objects using teaching signals encoded in co-
occurring speech. Also Nakamura uses in [49, 50] vision and
speech for multimodal categorization and words grounding
by robots. The robot uses its physical embodiment to grasp
and observe an object from various view points, as well as to
listen to the sound during the observing period. The method
used is Latent Dirichlet allocation (LDA)-based framework
and experimental results with 40 objects (eight categories)
show an improvement with respect to just visual categoriza-
tion and show the possibility of a conversation between a
user and the robot based on the grounded words. In [51]
a system involving vision and audio data is presented by
Needham that is capable of autonomously learning concepts
(utterances and object properties) from perceptual observa-
tions of dynamic scenes. This work goes beyond categori-
cal learning and learns also protocols from the perceptual
observations. The motivation is the development of a syn-
thetic agent that can observe a scene containing interactions
between unknown objects and agents, and learn models of
these sufficient to act in accordance with the implicit proto-
cols present in the scene. The system is tested by learning
the protocols of simple table-top games where perceptual
classes and rules of behaviors from real world audio-visual
data is learnt in an autonomous manner.

Additional sensor modalities have been used by Groll-
man in [28] where symbol grounding in robot perception
is considered through a data-driven approach deriving cat-
egories from robot sensor data that include infrared, sonar
and data from a time-of-flight distance camera. Isomap non-
linear dimension reduction and Bayesian clustering (Gaus-
sian mixture models) with model identification techniques
are used to discover categories. Trials in various indoor and
outdoor environments with different sensor modalities are
presented and the learned categories are then used to clas-
sify new sensor data.

2.1 Perceptual Anchoring

A special case of Symbol Grounding is the connection of
sensor data coming from physical objects to higher level
symbolic information that refers to those objects. The pro-
cess of creating and maintaining this connection is called
Anchoring and has been formally defined by Coradeschi in
[17] and then in [18].

The use of anchoring in planning, recovery planning and
solving of ambiguities is explored in works of Karlsson and
Broxvall [4, 5, 35] Anchoring with other sensor modalities

like olfaction is explored in works of Loutfi and Broxvall
[6, 40–42] while the integration of high-level conceptual
knowledge on a single agent, via the combination of a fully-
fledged Knowledge Representation and Reasoning (KR&R)
system with the anchoring framework and more specifically,
the use of semantic knowledge and common-sense informa-
tion so as to enable reasoning about the perceived objects at
the conceptual level has been considered by Lemaignan and
Daoutis in [20, 38]. Cooperative anchoring among robots in
a robot soccer application is presented by LeBlanc in [37]
while multi-agent anchoring in a smart home environment
is presented in works of Broxvall and Daoutis [6, 21].

A framework for computing the spatial relations between
anchors is presented by Melchert in [43–45] where a set of
binary spatial relations were used to provide object descrip-
tions. Human interaction is used to disambiguate between
visually similar objects. Similarly in [46] an approach to es-
tablish joint object reference is formulated by Moratz. The
object recognition approach assigns natural categories (e.g.
“desk”, “chair”, “table”) to new objects based on their func-
tional design, relations (e.g. “the briefcase to the left of the
chair”) are then established allowing users to refer to ob-
jects which cannot be classified reliably by the recognition
system alone.

Anchoring has also been used by Lemaignan [39] to en-
able a grounded and shared model of the world that is suit-
able for dialogue understanding. Realistic human-robot in-
teractions are considered that deal with complex, partially
unknown human environments and a fully embodied (with
arms, head, . . .) autonomous robot that manipulates a large
range of household objects. A knowledge base models the
beliefs of the robot and also every other cognitive agent the
robot interacts with. A framework is also presented to ex-
tract symbolic facts from complex real scenes. The robot
builds a 3D model of the world on-line by merging differ-
ent sensor modalities. It computes spatial relations between
perceived objects in realtime and the system allows virtually
viewing of the same scene from different points of view.

A different approach to anchoring is presented by Heintz
in [30, 32, 33] where anchoring is considered in the con-
text of unmanned aerial vehicles. In their stream-based hier-
archical anchoring framework, a classification hierarchy is
associated with expressive conditions for hypothesizing the
type and identity of an object given streams of temporally
tagged sensor data. A metric spatio-temporal logic is used
to represent the conditions which are efficiently evaluated
over these streams using a progression-based technique. The
anchoring process constructs and maintains a set of object
linkage structures representing the best possible hypotheses
at any time. Each hypothesis can be incrementally general-
ized or narrowed down as new sensor data arrives. Symbols
can be associated with an object at any level of classification,
permitting symbolic reasoning on different levels of abstrac-
tion.
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Additional approaches of anchoring are presented in a
special issue on Anchoring published by the Robotics and
Autonomous Systems Journal. In [64] an overview of the
GLAIR approach to anchoring is outlined by Shapiro where
abstract symbolic terms that denote an agent’s mental enti-
ties are anchored to the lower-level structures used by the
embodied agent to operate in the real (or simulated) world.
In [75] the anchoring problem is approached by Vogt us-
ing semiotic symbols defined by a triadic relation between
forms, meanings and referents. Anchors are formed between
these three elements and a robotic experiment based on
adaptive language games is presented that illustrates how the
anchoring of semiotic symbols can be achieved in a bottom-
up fashion. Person tracking using anchoring has been inves-
tigated by Fritsch in [25] where laser range data is used to
extract the legs of a person while camera images from the
upper body part are used for extracting the faces. The results
of the different percepts, which originate from the same per-
son are combined in one anchor for the person.

An interesting application of Anchoring is in the field
of topological maps and in particular the investigation of
the connection of symbolic information to spatial informa-
tion. Work in this area has been presented by Galindo in
[26, 27] where a multi-hierarchical approach is used to ac-
quire semantic information from a mobile robot sensors
for navigation tasks. The spatial information is anchored to
the semantic information and the approach is validated via
experiments where a mobile robot uses and infers new se-
mantic information from its environment, improving its op-
eration. Similarly Elmogy in [23] investigates how a topo-
logical map is generated to describe relationships among
features of the environment in a more abstract form to be
used in a robot navigation system. A language for instruct-
ing the robot to execute a route in an indoor environment is
presented where an instruction interpreter processes a route
description and generates its equivalent symbolic and topo-
logical map representations. Finally Blodow in [3] uses se-
mantic mapping in kitchen environments to help performing
manipulation tasks.

3 Grounding Words in Action

The research group headed by Cangelosi has been work-
ing in cognitive robotics models using the humanoid robot
iCub. In [66, 67] a cognitive robotics model is described
in which the linguistic input provided by the experimenter
guides the autonomous organization of the knowledge of
the iCub. A hierarchical organization of concepts is used for
the acquisition of abstract words. Higher-order concepts are
grounded using basic concepts and actions that are directly
grounded in sensorimotor experiences. The method used is a

recurrent neural network that permits the learning of higher-
order concepts based on temporal sequences of action prim-
itives. In [10] a review of cognitive agent and developmental
robotics models of the grounding of language is presented.
Three models are discussed: a multi-agent simulation of lan-
guage evolution, a simulated robotic agent model for symbol
grounding transfer, and a model of language comprehension
in the humanoid robot iCub. The complexity of the agent’s
sensorimotor and cognitive system gradually increases in the
three models. In previous works [14, 15] the combination of
cognitive robotics with neural modeling methodologies is
also considered to demonstrate how the language acquired
by robotic agents can be directly grounded in action repre-
sentations, in particular language learning simulations show
that robots are able to acquire new action concepts via lin-
guistic instructions. Finally in [13] an embodied model for
the grounding of language in action is presented and exper-
imented on epigenetic robots. Epigenetic robots have an in-
tegrative vision of language in which linguistic abilities are
strictly dependent on and grounded in other behaviors and
skills. Experiments done with simulated robots show that
higher order behavioral abilities can be autonomously built
on previously grounded basic action categories following
linguistic interaction with human users.

Another approach to learning of actions is presented by
Oladell in [54] where representational complexity is man-
aged using a symbolic feature representation generated via
policies, affordances and goals. The approach is demon-
strated in a simulation environment with a robot arm and
camera. Learning tasks revolve around lift, move, and drop
and the policies are learnt using QLearning. The agent
learns new policies, affordances and goals and adds them
to the dictionary. After each addition, the best common sub-
structure is extracted.

Learning of meanings of both action and substantive
words is presented by Tellex in [70] where a probabilistic
approach is used to learn word meanings from large corpora
of examples and use those meanings to find good ground-
ings in the external world. The framework handles complex
linguistic structures such as referring expressions (for ex-
ample, “the door across from the elevators”) and multiargu-
ment verbs (for example, “put the pallet on the truck”) by
dynamically instantiating a conditional probabilistic graph-
ical model that factors according to the compositional and
hierarchical structure of a natural language phrase.

4 Social Symbol Grounding

A recent line of research in Symbol Grounding is Social
Symbol Grounding. As defined by Cangelosi [9] the social
symbol grounding considers the next step after the connec-
tions between the sensor data and symbols for individual
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agents are achieved, that is how can these connections be
shared among many agents. Several approaches have been
presented to address this issue. Heintz in [31] presents a dis-
tributed information fusion system for collaborative UAVs.
In [65] Steels examines if a perceptually grounded categor-
ical repertoire can become sufficiently shared among the
members of a population to allow successful communica-
tion, using color categorization as a case study. Several mod-
els are proposed that are inspired by alternative hypotheses
of human categorization. He has proposed various robotic
models of the emergence of communication based on the
languages games for the Talking Heads experiments and the
AIBO and QRIO robots. The paper argues that the collec-
tive choice of a shared repertoire must integrate multiple
constraints, including constraints coming from communi-
cation. Similarly Fontanari in [24] use language games to
study evolution of compositional lexicons. In [76] the New
Ties project is presented. The project aims at evolving a
virtual simulated cultural society where the agents evolve
a communication system that is grounded in their interac-
tions with their virtual environment and with other individ-
uals. An hybrid model of language learning involving joint
attention, feedback, cross-situational learning and the prin-
ciple of contrast is investigated. A number of experiments
are carried out in simulation showing that levels of com-
municative accuracy better than chance evolve quite rapidly
and that accuracy is mainly achieved by the joint attention
and cross-situational learning mechanisms while feedback
and the principle of contrast contribute less. As mentioned
in the introduction the social symbol grounding problem is a
difficult problem to solve, because an unknown word can—
theoretically—refer to an infinite number of objects. Vogt
investigated in [76] a number of heuristics from child lan-
guage acquisition literature that help to reduce this indeter-
minacy: joint attention, principle of contrast and corrective
feedback. In [77] mutual exclusivity, and a few potential di-
alogues that help to reduce referential indeterminacy have
been also implemented. In [68] it is argued that the pri-
mary motivation for an agent to construct a symbol-meaning
mapping is to solve a tasks, in particular it is investigated
how agents learn to solve multiple tasks and extract cumula-
tive knowledge that helps them to solve each new task more
quickly and accurately.

The relevance of joint attention as found by [76] and the
motivation to solve a joint task [68] indicate the relevance of
taking cues arising from the current situation into account.
Even more, Belpaeme & Cowley [1] argue that the symbol
grounding problem as defined by Harnad [29] has to be ex-
tended to incorporate the process of language acquisition it-
self as language facilitates the acquisition of meaning [12].

Indeed, studies of parent-infant interaction indicate that
parents help their infants to understand not simply the re-
lationship between a symbol and a referent, but rather by

making sense of a whole situation to them. They do so by
presenting re-curring patterns of interaction that facilitate
further learning of new items or actions in similar situa-
tions. Recurring patterns (or “pragmatic frames”) contain
important pragmatic information that help to decode the se-
mantic information. More specifically, frames provide “pre-
dictable, recurrent interactive structures” [52] (p. 171) that
scaffold the child’s emerging understanding [72] as new lin-
guistic labels will be perceived as a new slot within a famil-
iar routine. Some robotic approaches already try to model
these interactional cues by establishing frames to achieve
Joint Attention through mutual gaze [47], guiding atten-
tion through saliency-based strategies [48], or to establish a
temporal alignment through synchrony-based strategies [63]
or the elicitation of contingent feedback [7]. These frames
provide more information than the simple establishment of
symbol-referent associations. Rather, they contain—among
others—information about semantic roles (e.g. agent-patient
relations but also about the nature of goals or constraints of
actions, as well as success and failure) and thus semantic-
syntactic relations which are important to enable generalisa-
tion to new situations. Understanding is thus seen as a con-
tinuous process rather than a (static) representation that es-
tablishes associations between symbols and internal sensori-
motor concepts.

The process of how joint understanding of a shared sit-
uation can be achieved has also been formulated in a more
formalised way through the step-wise process of “ground-
ing” [16] which describes 4 levels (attention, signal decod-
ing, semantic processing, intention recognition) that need to
be grounded in order to achieve mutual understanding.

However, while well founded in infant development,
these concepts yet lack the proof-of-concept that they in-
deed facilitate language learning by providing relevant in-
formation that—if taken into account—would significantly
influence the learning dynamics. If these considerations hold
true, this would mean to re-consider Cangelosi’s definition
of social symbol grounding as a second step that enables to
share connections between percepts and symbols [9]: one
would have to consider the social symbol grounding prob-
lem as the initial step that facilitates the acquisition of lan-
guage and meaning without which no such relations can be
learned.

5 Grounding Symbols in the Semantic Web

Recent trends examine the Symbol Grounding Problem in
the context of web technologies and specifically the seman-
tic web. In [34] Semantic Web technologies are used by
Johnston for grounding robotic systems. In particular the
OBOC robotic software system including an ontology-based
vision subsystem is presented. OBOC has been tested and
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evaluated in the robot soccer domain. The grounding of
knowledge for everyday tasks using the World Wide Web
has been considered by Nyga and Tenorth in [53, 71] while
a first attempt of an extension of the anchoring framework
to handle the grounding and integrate symbolic and percep-
tual data that are available on the web is outlined by Daoutis
in [22].

The problem of giving semantics to the semantic web is
considered by Cregan in [19]. The paper argues that the sym-
bol grounding problem is of relevance for the Semantic Web
as inappropriate correspondence between symbol and refer-
ent can result in logically valid but meaningless inferences.
In fact ontology languages can provide a means to relate data
items to each other in logically well-defined ways, but they
are intricate “castles in the air” without a pragmatic seman-
tics linking them in a systematic and unambiguous way to
the real world entities they represent.

6 Conclusions

This short review presents recent work in Symbol Ground-
ing that is focused on the use of symbol grounding in
robotics and intelligent systems applications. The field is
clearly very active and many articles have been published
in recent years. This is a consequence of the current trends
of integrating robots and distributed systems in unstructured
and dynamic environments. Such environments require a
flexible handling of knowledge and the connection of sym-
bolic and sensory information to be able to successfully op-
erate. In addition systems where humans have an active role
are becoming more common. Here symbol grounding is es-
sential to ensure meaningful natural language communica-
tion. Finally the use of the web as a source of information
about objects and their properties is providing new oppor-
tunities to access a very large and updated storage of data,
both symbolic and visual. The use of symbol grounding to
connect the information in the web to real data is maybe the
most important challenge for the field.
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