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Early deep neural network (DNN) architectures commonly 
implemented a paradigm using unsupervised pre-training 
followed by supervised fine-tuning1,2. Inclusion of the ini-

tial unsupervised stage was the key to unlocking effective training 
strategies for deep architectures in the mid-2000s (see, for example,  
refs. 3–5 for details). Since the mid-2010s, unsupervised pre-training 
has become less popular and — especially in computer vision appli-
cations — has to a certain degree been superseded by supervised 
pre-training of models using large-scale labeled datasets (such as 
ImageNet6). Although supervised learning has shown impressive 
performance in a variety of applications (for example, refs. 7–9), a 
major drawback is its dependency on large-scale, well-curated data-
sets. Moreover, there is reasonable doubt regarding the efficacy10 
and further expandability11,12 of the paradigm. These and related 
considerations have triggered renewed interest in unsupervised 
(in current literature sometimes also referred to as self-supervised) 
learning (for example, refs. 13–16).

Unsupervised representation learning is attracting considerable 
attention from neuroscience and cognitive science: DNNs seem 
to offer a loosely biologically inspired modelling and analysis tool 
for the study of the human brain and mind, with representation 
learning playing a central role17,18. In fact, there is a long-standing 
tradition of prominent and active exchanges between machine 
learning (ML) and these fields19, going back at least to Rosenblatt’s 
perceptron20 and its inspiration by ‘nerve net’21. Increasingly, there 
are calls to look again at animals and humans for insights into their 
biological neural machinery and how these natural-born intelligent 
systems learn17,22–26. Commonly, these contributions take mature 
human cognizers as the conceptual starting point. In contrast, we 
advocate to focus on results from the study of infants and their 
development. Human infants are in many ways a close counterpart 
to a computational system learning in an unsupervised manner, as 
infants too must learn useful representations from unlabeled data. 
However, infants’ representations are learned rapidly, with relatively 

few examples from a relatively small number of classes as compared 
to the vast datasets required for training state-of-the-art DNNs (see, 
for example, the 15 million high-resolution images with 22,000 label 
classes used for training ImageNet6), and can be used flexibly and 
efficiently in various different tasks and contexts. Developmental 
science, the field studying cognitive development in human 
infants and children, has identified several facilitating factors for 
this surprising performance, which merit discussion also for ML. 
Specifically, they may hold the answers to some of the long-standing 
questions of representation learning (for example, ref. 27): What can 
a good representation buy us? What is a good representation in the 
first place? And what training principles can help in discovering 
such representations?

We are not the first to seek recourse from developmental research 
in an ML context28–34. However, these earlier efforts remained on 
a very general level regarding their engagement with the relevant 
insights from developmental science. In contrast, in this Perspective, 
we give specific suggestions for three aspects of infant learning that 
ML researchers should consider, and discuss to what extent current 
ML research is already — consciously or by coincidence — work-
ing towards integrating these insights. We mostly limit our focus 
to developmental learning until the first year after birth, as this 
learning period is most similar to the process of unsupervised ML. 
Although human unsupervised learning occurs later in life as well, 
the likelihood that this process is influenced by labels or knowl-
edge obtained through supervised learning increases, making it 
impossible to establish whether that unsupervised learning process 
could have happened without supervised learning. Accordingly, 
we outline the core findings from developmental science that have 
been crucial for understanding learning in early infancy and that 
offer valuable inspiration for the advancement of unsupervised 
ML. These findings relate to the way the neural architecture and 
cognitive biases guide and constrain early information processing  
(lesson 1), the richness and multimodal diversity of infants’ inputs 
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(lesson 2) and the way inputs are shaped by development and active 
learning (lesson 3). These lessons do not cover everything that is 
known about infant learning35–39. However, the lessons consid-
ered in this Perspective play an important role in infants’ cogni-
tive development and have a proven potential to integrate with and  
improve ML.

Three lessons from infant development for machine learning
We discuss three main lessons synthesized from the current state of 
knowledge regarding infant learning, and highlight their direct rel-
evance for advancing unsupervised ML. We initially zoom in on the 
starting conditions for unsupervised learning in infants, tying into 
recent work on pre-wiring and pre-training of DNNs. Subsequently, 
we summarize insights about multimodal statistical learning in 
infants and establish the connection to corresponding efforts in ML. 
Finally, we engage with the mechanisms that shape infants’ inputs. 
There, we provide an overview of research into how developmental 
changes affect infants’ inputs, which connects directly to concepts 
such as non-stationarity in continual representation learning, and 
we discuss how infants and machines process these inputs during 
active learning.

Babies’ information processing is guided and constrained. It is 
a common belief that infants’ behavioural immaturity stems from 
a highly immature brain architecture40,41. Indeed, grey matter vol-
ume and surface area do not peak until around six and eleven years 
old, respectively, and at six months old they are growing at the fast-
est rate of the whole lifespan42. Furthermore, processes such as syn-
aptic pruning43 and myelination44 cause important changes in the 
young brain. However, recent neuroimaging research shows that, 
although the infant brain is plastic and still grows and develops, 
a lot of its structure is already present very early on. By term age, 
magnetic resonance imaging has shown that the cortex is folded 
like that of an adult45, major sulci are present46, and structural con-
nectivity patterns observed in early infancy are very similar to 
adult structural connectivity47. Adult-like functional connectiv-
ity patterns can also be observed in infants48,49 even for networks 
that support cognitive capacities that are not yet behaviourally 
manifested, such as speech50. Functional visual cortex activation 
of abstract categories (faces and scenes) is adult-like in its spa-
tial organization in infants as young as four months of age and is 
refined in its response pattern through development51. Even brain 
regions responsible for higher cognitive functions, like the hippo-
campus52 and frontal lobes53,54, are active in early infancy. Moreover, 
functional connectivity patterns in neonates have been shown to 
be predictive of later development55. Thus, although, compared to 
adults, the neural structure in infants is still more plastic and can 
change dramatically depending on the type of input it receives, it 
is already fairly determined as a whole. Infant learning is probably 
made possible by the strong plastic nature of the brain (for more 
information, see the last paragraph of this section as well as the 
section on the mechanisms shaping infants’ learning input), while 
being guided by the constrained processing through the early brain 
structure (Box 1).

In ref. 26 it is argued that creators of neural networks should take 
into consideration that the highly structured neural connectivity 
is what allows animals to learn so rapidly. Indeed, ML researchers 
have been exploring the impact of pre-wiring on network learning. 
A recent example is work on learning general identity rules. Based 
on the results of infant experiments using artificial grammar tasks, 
in ref. 56 it was suggested with regard to simple recurrent networks57 
that ‘such mechanisms cannot account for how humans generalize 
rules to new items that do not overlap with the items that appeared 
in training’. If correct, this would imply substantial limitations on 
the generalization capabilities of an entire family of recurrent neu-
ral networks. Revisiting the claim and the debate triggered by the 

original paper, ref. 58 introduced a delay-line memory (a concept 
first suggested in neuroscience59) into an Echo State Network60 and 
showed that — in combination with a training algorithm incre-
mentally challenging the network with novel stimuli — this indeed 
enables the network to perform a comparable learning task.

Additional constraints may arise from ‘pre-programmed’ capa-
bilities. Although there is consensus that both nature and nurture 
play a role in development, the developmental science community 
is still heavily debating what processes and building blocks of cogni-
tion might already be present at birth, including what the properties 
of these processes and building blocks are, and what has to be learned 
through experience (for example, refs. 61–63). Thus, many appeals to 
inborn knowledge as an explanation for empirical observations are 
heavily contested. However, there are some findings of biases in 
newborns on which there is general consensus. Rather than being 
pre-programmed knowledge, these inductive biases shape the pro-
cess of learning from the environment. For example, infants prefer 
biological motion64 and have a general attentional bias for top-heavy 
visual information64–66, which develops into a preference for faces 
within the first months67,68. Early processing biases are found also in 
non-visual domains, such as in audition and speech69–71. Regarding 
the implementation of such biases, it has been found, for instance, 
that the strong human priors towards finding continuous lines and 
contiguous surfaces probably arise from the visual cortical micro-
circuitry through local cortical motifs like feature-based lateral and 
top-down suppression and facilitation72. Initial attempts at integrat-
ing these insights into artificial neural networks (ANNs) have given 
rise to a DNN model73 solving contour detection tasks with better 
sample efficiency than state-of-the-art feedforward networks.

Going beyond the general notion of inductive bias in ML archi-
tectures74,75, biases play an important role in the training of DNNs. 
Even in the early days, the initial unsupervised pre-training stage 
— in a way similar to regularization — also served the purpose of 
introducing a type of ‘starting bias’ into the architecture, namely a 
reduction in variance and a shift in the parameter space towards 
useful configurations for supervised learning5. Since then, the 
study of biases in networks has enjoyed increasing interest, for 
example, regarding the role of shape bias within networks in per-
forming visual tasks76 or in the context of learning identity relation-
ships with different network architectures77. In the latter work, the 
authors show that relation based patterns78 can be implemented as 
a Bayesian prior on the network weights, helping to overcome the 

Box 1 | Lesson 1 from infant learning: constraining and guiding 
information processing

Even when not invoking rich interpretations of newborn cogni-
tion, the earliest processing of information is constrained by the 
neural architecture and guided by biases. Developmental science 
suggests that it is not only the type of ML architecture selected 
and the training algorithm or the training data that matter, but 
that the particular instantiation of the architecture and set-up of 
the network play an important role as enablers of efficient and 
effective training. These insights find a direct ML counterpart 
in the importance of starting conditions and the growing efforts 
invested in the study of pre-wiring and pre-training of neural 
networks. Architectural paradigms such as fibred neural net-
works offer ways to create richer models, which — when com-
bined with novel, more efficient approaches to hyperparameter 
optimization — may unlock previously unachievable levels of 
generality for ML systems. In summary, not all inductive biases 
have been made equal and infants do not have to start their de-
velopmental trajectory from a tabula rasa or from an arbitrary 
starting set-up — and neither should neural networks.
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limitations neural networks frequently exhibit related to the learn-
ing of identity rules and to generalization beyond the training data-
set. In computer vision, the usefulness of combining innate biases 
and learning mechanisms was demonstrated by the striking perfor-
mance of a model that was trained to be sensitive to mover events 
(that is, events in which something changes a previously stationary 
part of the image, which often found hands grasping objects in the 
training dataset) — a parallel to infants’ bias for biological move-
ment — in recognizing hands and gaze direction from video input79.

Given these early successes and the insights from developmental 
science, we believe that there is overwhelming evidence for the role 
biases and architectural constraints can play in guiding and aug-
menting the training of neural networks. Unsupervised ML needs 
to explore richer architectures that are likely to be pre-wired in 
some ways and plastic in others. The human neural network has a 
very complex architecture. If one compares the connectivity of the 
primate visual cortex (mapped out, for instance, for the macaque80) 
to ANNs typically used for vision (for example, AlexNet81, ResNet82 
and Inception83), the difference is unmistakable (Fig. 1). In addition, 
although the human neural network is strongly recurrent, many 
ANNs in use today still follow an exclusively feedforward architec-
tural paradigm. Thus far, ‘evolution by engineers’ has not yielded a 
change towards a level of network complexity and richness that is 
comparable to the human brain, by any measure. An example for a 
promising method to change this comes from the neural–symbolic 
integration84 community: fibring85. The fibring paradigm allows 
the putting together of different types of computational system (for 
example, different types of neural network, Bayesian network or even 
logical systems) to work together in a coordinated manner as a ‘net-
work of networks’, including recursively embedded subnetworks,  

subnetworks whose connection weights depend on the activation 
status of other neurons (that is, subnetworks) in the global network, 
and so on.

Another avenue worth exploring comprises richer and more 
complex hyperparameter spaces as a starting point. Following 
the analogy to infant learning, these could allow us to encode the 
counterparts of biological evolution or parental instructions and 
teaching, with the agent subsequently optimizing the model dur-
ing training. Possible implementation mechanisms can include the 
optimization of model parameters on the hyperparameter level, 
altering the topology and/or the size of the network top-down, or 
the approximation of individual connection weights to 0 over the 
course of a training cycle, effectively pruning the network’s topol-
ogy bottom-up. Combining these notions with richer architectural 
paradigms such as fibring networks, the distinction between hyper-
parameter tuning and parameter training starts to weaken. There, 
parameter training on the level of the top-level ‘network of networks’ 
amounts to hyperparameter tuning of the overall, fully expanded 
network structure including all subnetworks, effectively reconciling 
the top-down and bottom-up evolution in a mechanism more akin 
to the evolution of neural networks in the human brain. Pointing 
towards the later discussion regarding the impact different learn-
ing inputs can have, in a developmentally inspired implementation 
the hyperparameter space could then be seen as suggesting a learn-
ing curriculum, facilitating model fine-tuning via active learning. 
Having said that, it is unlikely that current hyperparameter optimi-
zation methods will in practice be able to deal with the complexity 
of networks like the ones we proposed earlier. The combinatorial 
space resulting from millions of possible values for the respective 
parameters within the neural architecture soon becomes intractable 
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Fig. 1 | Schematic overview of the connectivity within biological and artificial neural networks. a, The macaque visual cortex80. b, AlexNet81. c, ResNet82.  
d, Inception83. There is a large difference in the level of complexity between the primate visual cortex and the three ANNs. Figure created with code adapted 
from https://github.com/ericmjonas/vanessen using macaque network rendering from Neurooptikon, Janelia Farm Research Campus Software.
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using current computational resources and brute-force approaches. 
Deploying methods like fibring will thus also require progress to 
be made on the efficiency of hyperparameter optimization meth-
ods applicable within the respective architectural paradigm. Still, we 
are convinced that solving these open challenges and subsequently 
deploying these approaches will prove to be crucial for achieving the 
complex but plastic nature of the human neural architecture.

Babies learn statistical relations across diverse inputs. There is an 
abundance of literature studying the capacity of infants for detecting 
and learning from statistical regularities in their physical and social 
environment across different domains and from birth86,87. Infants 
readily learn simple associations, such as sensorimotor contingen-
cies88,89, (in)correct handling of objects90 and associations between 
voices and faces91. Interest in more complex statistical learning 
emerged initially in the language domain when researchers showed 
that infants can use statistical properties in the language input to 
detect a wide range of phenomena92–94. However, statistical learn-
ing is not limited to language learning; infants pick up statistical 
regularities in, for example, visual stimuli95,96, auditory stimuli95 
and in action sequences97,98 as well. Probabilistic relations have also 
been shown to affect infants’ attention99. In addition to cognitive 
domains, statistical learning has been suggested as a basis for social 
learning as well100.

So far, a major difference between statistical learning in infants 
and in machines resides in the multi- and cross-modal nature of 
infants’ learning processes, as contrasted to the predominantly 
unimodal computational setting. In everyday life, infants encoun-
ter many situations in which they learn and integrate signals from 
multiple modalities (Box 2). Many studies have shown that infants 
are sensitive to the statistical relations between, for example, visual 
and auditory (linguistic and non-linguistic) stimuli91,101, visual and 
tactile stimuli102,103, and auditory and tactile stimuli104. These mul-
timodal associations are thought to develop by means of a com-
bination of brain maturation and multimodal experience, which 
allow for the detection of temporal synchrony (for example, ref. 105).  
The importance of early experience was shown in individuals who 
were temporarily deaf before they received a cochlear implant:  

They showed decreased audiotactile106 and audiovisual107 integra-
tion, even after their hearing had been restored.

Infants’ processing of signals from diverse inputs probably leads 
to improved representations and task performance. Multimodal 
information can support the disambiguation of conflicting or seem-
ingly incoherent input otherwise obtained from a single sensory 
stream (for example, ref. 108). It further enables the performance of 
tasks for which a single type of input is not sufficient. Even repre-
sentations that seem related to one sensory domain benefit from 
input from other modalities. Reference 109 has shown that spatial 
representations (for example, distance) for both auditory and pro-
prioceptive stimuli are impaired in congenitally blind children and 
adults, suggesting that visual input is important for these non-visual 
representations. This work hints at a much greater need for learning 
from diverse multimodal inputs than one might intuitively consider 
necessary for unimodal tasks. Moreover, multimodal inputs are 
thought to lead to richer conceptual representations110, an impor-
tant aspect of human intelligence.

Some ML researchers are already actively making use of the 
advantages that multi- or cross-modal information processing 
offers. Multimodal processing has been exploited, for instance, in 
robotics in object categorization tasks111,112, and at the intersection 
between the vision and the language domain113, including in emo-
tion recognition systems114,115 and in movie summarization tasks116. 
Regarding unsupervised learning, early successes were achieved in 
the late 1990s, for example, by performing category learning through 
multimodal sensing117. Multimodality has also moved into the focus 
of some researchers in the DNN community, spanning a range 
of application scenarios from image synthesis118 to unsupervised 
robot perception119 and image captioning120. However, although the 
advantages of multimodal feature learning were identified almost a 
decade ago121,122, most current DNNs are still being trained on uni-
modal data. The recent surge in interest in contrastive learning (for 
example, refs. 15,123) suggests that this might be about to change. It 
is worth noting that state-of-the-art contributions such as contras-
tive learning124 make explicit reference to the structure and perfor-
mance of human multimodal information processing as inspiration 
and motivation for the approach. Similarly, ref. 125 takes inspiration 
from infant learning when leveraging manifold alignment126,127 
for building and aligning conceptual systems across modalities. 
The examples presented in a recent review of (mostly supervised) 
multimodal ML research128 show that progress has been made in 
audio–visual integration, but that other types of sensory informa-
tion are still lacking. In contrast, infants receive a continuous stream 
of multimodal input, which does not stop at pictures or movies and 
audio or text. Exploration and learning happen through taste, smell, 
sensations of temperature and hunger, proprioception and motion, 
touch and so on. Because the infant has the benefit of having a body 
through which it can sense different types of input and supervised 
ML algorithms have the benefit of labels, the challenge for unsuper-
vised ML will be to generate the same richness of information. We 
believe that multimodal ML approaches have achieved good results 
so far (for example, refs. 129,130) and should become the standard for 
many tasks that require unsupervised learning solutions. We sug-
gest that next generations of unsupervised ML will need to include 
richer and different modalities.

Babies’ input is shaped by development and active learning. 
Infants’ input is shaped both by their development (that is, their 
change over time) as well as by their active learning capacities (Box 3).  
The type of input infants receive is critically dependent on what 
they can do at any given point in time. In utero, fetuses have lim-
ited visual experience. Notwithstanding, they can already learn 
from waves spontaneously generated in the retina131. Sound from 
the environment can be heard (although being low-pass filtered), 
and newborns can recognize properties of their native language132 

Box 2 | Lesson 2 from infant learning: richer representations 
through multimodal input

Infants learn statistical relations across diverse multimodal input 
streams and the resulting representations provably benefit from 
these richer sources of information. Multimodal approaches 
have also successfully been pursued in ML for decades. How-
ever, these successes have not caused a widespread shift from 
unimodal to multimodal training of DNNs. The recent surge in 
interest in multimodal ML, with methods such as contrastive 
learning in a multiview setting, might trigger the wider adop-
tion of multimodal representation learning more generally, even 
for unimodal tasks. Unsupervised ML will not only incremen-
tally benefit from the use of richer datasets during training, 
but we also expect that without them it will not reach sufficient 
performance. Until now, unsupervised ML has closely followed 
the developments on the side of supervised ML, using similar 
benchmarks and relying on similar (usually relatively simple) 
datasets. In doing so — although, in comparison, already being 
handicapped by the lack of supervision — unsupervised ML has 
inherited the (especially data-related) limitations of supervised 
ML. To develop the next generation of unsupervised ML algo-
rithms, it is time to let go of the supervised ML traditions and 
make use of the additional possibilities that the rich and varied 
world of unlabeled data has to offer.
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and even recognize passages they heard in utero133. These first expe-
riences shape infants’ later learning and biases. A newborn infant 
will primarily see whatever their caregivers bring into their visual 
field, a crawling infant will get extensive visual input of the floor, 
and a sitting infant will be able to see as far into the distance as a 
walking infant, but does not get the experience of optical flow while 
seated. The result is that the level and possibilities of exploration of 
the environment change when infants transition from one motor 
ability to the next. For example, differences in posture affect infants’ 
possibilities for object exploration134,135. Furthermore, the onset of 
locomotion makes infants aware of height and space136. These types 
of finding show how much a developmental step in one domain can 
affect other domains of cognition, and how, similar to the influence 
of embodied/grounded cognition on mental representations in 
adults137, infants’ physical developmental stages affect their mental 
representations. Sensory processing goes through developmental 
changes too. For example, rather than being born with full visual 
capacities, newborns’ visual acuity is low and gradually increases in 
the first six months of life138,139. These changes in sensory and motor 
development not only allow infants to explore different aspects of 
their environment — they also drive an expansion of the range of 
obtained inputs in the direction of increasingly varied stimuli occur-
ring in increasingly complex combinations, thereby introducing a 
phased structure in infants’ learning experiences. Recent experi-
mentation with head-mounted cameras (for example, refs. 140–143) 
provides further evidence for phased input and for the natural cur-
riculum that is generated by child development144. For example, ref. 
145 showed that, in approximately a quarter of 1- to 24-month-old 
infants’ visual input, there is another person present (as measured 
by the presence of at least a face or a hand in the infant’s visual 
field). Importantly, the frequency of faces versus hands signifi-
cantly changed as a function of age: the proportion of faces in view 
declined with age while the proportion of hands increased.

In addition to this natural curriculum generated by physi-
cal and cognitive development, the infants’ learning process is 
guided and supported by other agents (such as their caregivers) in 
their environment. Decades of research have shown that infants 
learn from observation and imitation (for example, refs. 146–150). 

Furthermore, caregivers facilitate language and action learning 
through infant-directed speech (for example, ref. 151) and motio-
nese152,153. Caregivers also increase infants’ attentiveness to objects 
during joint play154 and are responsive to where infants are look-
ing155. Parental responsivity and contingent reactions to an infant’s 
actions means that scaffolding and guided play are both interac-
tive as well as dynamic156, ensuring maximal support to the infant’s 
learning process. Moreover, infants have been shown to use the 
knowledge and expertise of other agents when they need informa-
tion or support157,158.

Development thus shapes the inputs that infants might have 
access to, and caregivers can facilitate this curriculum. At the same 
time, infant learning does not just happen passively based on what-
ever input happens to be in their environment. Infants play an 
active role in directing their attention to stimuli from which they 
learn. This process is known as curiosity-driven or active learning. 
Curiosity is taken to be a state of arousal that requires actions to 
modulate the aroused state, with the degree of novelty determining 
infants’ ability to learn159. The spectrum of arousal is subdivided into 
relaxation (insufficient arousal), curiosity (optimal for learning) 
and anxiety (too much arousal)160, with relaxation and anxiety con-
sidered to create little opportunity for learning. Empirical research 
shows that infants attend significantly longer to stimuli that are at 
an intermediate level of complexity, a finding that was dubbed ‘the 
Goldilocks effect’161,162. Moreover, ref. 163 showed that infants allo-
cate their attention as a function of the learning progress a stimulus 
offers. Infants have been shown to use violations of expectations as 
indicators of learning opportunities and to preferably explore sur-
prising events63. Related to this U-shaped curve of attention, infants 
vary in their preference for familiar or novel stimuli. This is thought 
to be dependent on the degree of encoding of the stimuli164,165. If the 
encoding is not yet complete, infants will show a familiarity prefer-
ence. Once encoding is complete, they exhibit a novelty preference. 
These ideas have led to a plethora of looking time studies. Although 
the richness of the interpretation of looking time studies can be 
questioned (for example, refs. 166,167), the theories on active learn-
ing and methods to investigate stimulus encoding have provided 
important insights into the nature of infants’ learning mechanisms. 
Infants’ drive to explore can be seen in their motor behaviour as 
well. Infants travel big distances, with ~2,400 steps per waking hour 
in the first half of their second year168. Their walking bouts tend to 
have a distinguishable destination for only a small proportion, giv-
ing rise to the idea that movement ‘is enough motivation for infants 
to get up and go’169. Moreover, active exploration of objects has 
been shown to increase learning about those objects compared to  
passive observation170.

The general idea of applying a structured learning curriculum — 
as naturally experienced by infants during development — to arti-
ficial systems has been put forward by ref. 171 and was prominently 
addressed in the deep learning literature172. Improved performance 
and generalization of CNNs with low initial visual acuity — 
obtained by starting the network training with blurred rather than 
with high-resolution images — corroborates the idea that phased 
sensory input indeed improves learning173. Moreover, using rich 
head-mounted camera data from infants as training data for unsu-
pervised machine learning can lead to the emergence of powerful 
high-level visual representations174. One of the main challenges of 
providing a structured training scheme for neural networks is the 
high sensitivity of the curriculum’s effectiveness to the mode of pro-
gression through the learning tasks, that is, the syllabus. Two of the 
main factors influencing this sensitivity are critical learning periods 
and catastrophic interference.

Critical periods — which are well documented in biological 
learners — reflect moments of peak plasticity during a specific 
developmental state (often early in life) that are followed by reduced 
plasticity (see, for example, ref. 175 for review and reflection). Around 

Box 3 | Lesson 3 from infant learning: learning through curricula  
and curiosity

The infant cortex changes its learning mechanisms and archi-
tecture during maturation. Most ANNs are fixed in architecture, 
and those that change during training to a certain extent (such 
as refs. 1,171) have far simpler trajectories than the infant cortex. 
We hypothesize that the changing infant architecture shapes the 
development of the representations that allow adults to general-
ize so effectively. Critical periods might be transferred to ANNs 
by instantiating temporally limited windows of elevated learn-
ing rate in targeted parts of a network, freezing aspects of the 
representation. A bio-mimetic subplate would exist just for the 
first part of training, and could comprise a self-organizing map 
that induces ordering in the primary network that would in turn 
grow as the subplate disappears. Infants’ experience also changes 
dramatically with development due to their changing senses and 
body, the ‘natural curriculum’ provided by their caregivers, and 
the way infants curate their training set through curiosity. Train-
ing sets for ANNs are typically stationary, and infant-like chang-
es might alter representations in a way that improves generali-
zation. For example, the bias towards local features rather than 
global form in existing visual recognition networks208 might be 
reduced if networks had an initially blurry visual experience, like 
newborn infants, and make recognition more robust to noise.
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the time of birth, infants are undergoing a striking change in brain 
architecture. In adults, the cortex receives input from the senses and 
elsewhere via the white matter tracts — the ‘wiring’ of the brain. 
Early in development, however, a structure called the subplate sepa-
rates the white matter tracts from the cortex, and mediates all con-
nections. The subplate is thought to play a role in organizing the  
cortex and is, for example, responsible for the spatial maps in  
the visual cortex and frequency maps in the auditory cortex176. In 
the middle of gestation, the subplate is thicker than the cortex, yet 
it is gone by one year of age. It evolved recently and is largest in 
humans, suggesting it may be particularly important for complex 
brains177. Critical periods can be contrasted to open-ended learn-
ing systems or systems in which plasticity increases with maturation 
or experience175. Reference 178 shows that DNNs also exhibit criti-
cal periods during which a temporary stimulus deficit can impair 
the future performance of the network, even to an unrecoverable 
degree: the initial learning transient plays a key role in determining 
the outcome of the training process, and shortcomings or biases, for 
example, in the variety of input samples, during early training may 
not be recovered during the remainder of the training process.

As a consequence of the stability/plasticity dilemma179, ANNs 
can suffer from catastrophic interference — a process whereby new 
knowledge overwrites rather than integrates previous knowledge180. 
Different solutions for this general problem have been proposed181, 
including rehearsal and pseudo-rehearsal learning182, the use of pairs 
of (slowly changing) plastic network weights storing long(er)-term 
knowledge and (fast-changing) elastic weights encoding a tempo-
rary context that can be used to efficiently ‘deblur’ previous learn-
ing outcomes183, and brain-inspired approaches suggesting the use 
of dual-memory architectures184 or building on synaptic consolida-
tion185. Regarding unsupervised learning in particular, catastrophic 
interference has, among others, been addressed in the context of 
continuous and lifelong learning, including the use of undercom-
plete autoencoders trained for feature transfer across tasks186 or 
approaches motivated by results from neuroscience such as neu-
rogenesis deep learning187. Relatedly, the explicit (meta-)learning 
of representations for continual learning that avoid catastrophic 
interference has been proposed188. Still, although presenting a major 
hurdle on the road to further advanced ML systems, as of now the 
problem of catastrophic interference remains unsolved189. To over-
come this challenge, we suggest another closer look at the brain and 
its development during infancy, taking inspiration in the temporal 
evolution of network characteristics. In today’s practice, much focus 
is put on exploring different learning rates, and less effort is dedi-
cated to better understanding and eventually exploiting the impact 
of altering the structure of neural networks (for example, the num-
ber and type of neurons) over time.

Turning to active learning, the recognition that an algorithm may 
learn better and more efficiently if it is allowed to select the data 
from which it learns (for example, refs. 190,191) is not new. Over the 
years, different types of curiosity mechanism have been proposed 
for artificial systems. Some researchers suggest that curiosity could 
be prediction-based, causing agents to attend to input for which pre-
dictability is minimal192 or maximal193. In the context of curriculum 
learning, ref. 194 proposed a multi-armed bandit-based approach 
to finding progress-maximizing stochastic policies over different 
learning tasks. More closely related to the findings in developmen-
tal science, ref. 195 argued that curiosity-driven learning occurs most 
optimally when the agent seeks out information as a function of 
its compressibility. Furthermore, it has been suggested that active 
learning is driven by a goal to maximize learning progress by inter-
acting with the environment in a novel manner196,197. Supporting 
this line of thought, computational modelling approaches that com-
pared presenting stimuli in a fixed order or allowing the model to 
choose its own input showed that maximal learning happens when 
the model can maximize stimulus novelty relative to its internal 

states198. This work emphasized the importance of the interac-
tion between the structure of the environment and the previously 
acquired knowledge of the learner. Similarly, ref. 199 created an agent 
with a world model that learned to predict the consequences of the 
agent’s actions, and a meta-cognitive self-model that tracks and 
adversarially challenges the performance of the world model. This 
caused the agent to autonomously explore novel interactions with 
the environment, leading to new behaviours and improved learning.

Discussion
We have presented three insights from developmental science that 
have the potential to make a fundamental difference to ML through 
the learning of more flexible and efficient representations. We have 
focused especially on infant learning in the first year of life as their 
learning process also requires them to learn useful representations 
from unlabeled data. Throughout the Perspective, we have spelled 
out to what extent these three components of infant learning are 
already mirrored in ML algorithms, and where further steps can 
reasonably be made. Improving the quality, flexibility and efficiency 
of learned representations will directly translate to improved ML 
performance.

Our review has highlighted the considerable differences between 
the prevailing practices in ML and infant learning. In ML, it is 
common to remove targeted interference in the learning process 
as much as possible and leave everything to be learned to the data 
itself4, which stands in stark contrast to infant learning. Infants’ 
input has been found to be optimized for learning about specific 
features of the input. When comparing the three lessons on infant 
learning to current approaches in ML, the following overarching 
insights can be extracted (Fig. 2):
 (1) There is more initial structure to constrain and guide infants’ 

learning processes.
 (2) Infants’ learning opportunities are richer and more flexible.
 (3) Infant learning is shaped by an interaction of environmental, 

developmental and intrinsic factors.

Factors such as innate biases, saliency, curiosity and devel-
opment over time all play an important role in shaping infants’ 
learning curriculum and contribute to the speed and flexibility  
with which infants learn. Reflecting these insights back into ML, 
they cast substantial doubt on the assumption that ‘the data will fix 
it’ is indeed the most efficient and effective approach to training 
neural networks.

Regarding the implications for current architectural paradigms 
in ML, we are convinced that complex cognition arises from a ‘sys-
tem of systems’ consisting of interacting but heterogeneous com-
ponents. Although monolithic models might in principle be able to 
learn any computable function and subsequently exhibit the cor-
responding behaviour, and although further increases in network 
depth, quantity of training data and available computing power 
might gradually boost the performance of such models further, we 
believe that, to reach complex behaviour, a qualitatively different 
approach is required. Thinking about the search for the right archi-
tecture, we want to explicitly mention three — and, in our opinion, 
very promising — directions.

First, the discussed ‘innate architectures’ could themselves be 
the result of self-organization throughout development. Regarding 
biological inspiration for this line of thought, in our discussion of 
different learning inputs and the potential role(s) these play, we 
mention, for example, the spontaneous waves of activity across the 
retina in utero that propagate to the primary visual cortex V1 and 
help wire up a retinotopic visual cortex long before visual stimu-
lation from the outside world is ever received. Although there has 
been some work on evolved plastic ANNs200, more generally the 
idea of multiple timescales of self-organization constraining first 
the connectivity and then the ‘weights’ is a concept that in our  
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opinion has not yet received sufficient consideration in ML research 
(as also supported by our discussions relating to hyperparam-
eters and networks-of-networks). The potential implications are 
far-reaching, though, as this general approach would alleviate the 
need to figure out and hand-build the whole complex intercon-
nected architecture; instead, it would suffice to identify the correct 
rules and stimuli for self-organization.

Second, multimodality in infant learning occurs in at least two 
ways. As discussed, infants experience a continuous stream of mul-
timodal input, allowing them to learn rich representations. At the 
same time, presumably they are also often learning by several objec-
tives at once, for example, aiming to predict their visual input at the 
next moment from their current visual experience combined with 
their motor actions, tactile sensations and auditory data. The use-
fulness of this multi-objective approach varies, however. Several 
sensory modalities probably help with the prediction of each indi-
vidual one, but the actual contributions of each to the others are in 
most cases unequal and may vary greatly by situation. For example, 
when we imagine a child shaking a rattle, in that case motor signals, 
tactile sensation, audition and vision all are informative for predict-
ing one another. This is probably different when watching a leaf fall 
silently to the ground — then vision, touch and audition are likely 
to be uncorrelated. Additionally, the specifics of the input change 
with development (both in terms of the type of input as well as the 
features of that input (for example, there are big differences between 
visual input in the womb, visual input in the first postnatal months 
and visual input later in development), which will affect in what 
ways multimodality influences individual modalities. The ML com-
munity has started to look into multimodal, multi-objective learn-
ing (see, for example, refs. 201–203 for recent contributions). Zooming 
in on a particular example, ref. 129 takes inspiration in research into 
learning by expectation204 and presents an unsupervised learning 
model for stimulus prediction across modalities using multimodal 
bindings to enhance unimodal perception. (In light of our sugges-
tion regarding systems-of-systems, it is worth noting that the applied 

model in ref. 129 implements a hybrid architecture combining neural 
autoencoder networks for each of the unimodal channels with an 
extended recurrent, self-organizing Gamma-GWR network205). Still, 
as was the case with the previous point, we believe that this topic 
deserves a marked increase in attention and might hold the key to 
several critical advances, especially regarding unsupervised ML.

Third, when considering neural adaptation and comparing 
between biological and artificial neural networks, it has to be noted 
that although ML has studied notions of plasticity under the con-
ceptual headline of ‘lifelong learning’, little attention has been given 
to short- and mid-term adaptations. In the brain, neurons change 
their response properties constantly to keep their regions of maxi-
mal response sensitivity matched to the properties of the sorts of 
stimuli they recently encountered. In what precise way an ANN 
would profit from similar features is an open research question, but 
we believe that understanding the consequences of this salient dif-
ference between biological and artificial networks will be a worth-
while undertaking.

Neither the developmental nor the ML research presented in this 
Perspective is exhaustive. For example, one important aspect that 
we have only touched briefly upon is the role of other agents. Other 
agents in infants’ everyday life provide essential scaffolds to their 
learning process. In unsupervised ML, parental scaffolding has not 
been widely adopted, but the successes gained by training networks 
first on auxiliary tasks before moving onto the target task suggests 
that this is a space worth exploring. As concluded in a review on 
computationally modelling infant learning: “[...] to understand 
[the] power of children’s learning, it is important to investigate it 
in a social context” (p. 98 in ref. 206). This does not have to take the 
form of a teacher–student set-up, which would introduce some lev-
els of supervision. Instead, one could consider an approach similar 
to an expanded OpenAI Gym207. Such a framework could simulta-
neously incorporate aspects of curriculum learning (for example, by 
enabling different syllabi composed of sequences of benchmarks) 
and aspects of active learning (for example, by allowing agents to 

Training/learning

GPU

Woof Woof
Woof

Woof

Fig. 2 | Typical aNN training versus infant development. Compared to the ANN, the neural architecture of the infant has a more complex initial structure, 
which provides an inductive bias that guides learning. The infant’s inputs are multimodal (only visual and auditory are depicted here, but infants could 
touch and smell the dog too) and variable (not every dog looks or moves the same, not every woof sounds the same), allowing for a richer representation 
and generalization, while the ANN learns from pictures only, which are frequently of a stereotypical composition. The infant’s inputs are structured by their 
embodied development: they see things from different perspectives depending on their motor development (lying down, sitting up, walking) and their 
bodily changes (their vision becomes gradually less blurry, for example). The ANN’s input does not have this variety or the non-stationarity of experiences 
seen in a human developmental trajectory.
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optimize their path through learning space by choosing from what 
they are learning). It is outside of the scope of this Perspective to 
go into these topics more deeply. Nonetheless, we hope to have 
provided a representative sample of previous work on the topics 
we have addressed. Importantly, the three lessons presented here 
were chosen based on their potential to qualitatively improve the 
next generation of unsupervised ML algorithms as well as on their 
integration with current ML implementations. By focusing on this 
intersection, we aim to increase the likelihood that these lessons can 
be meaningfully considered in theory and implementations.

The argument to take inspiration from human (infant) learn-
ing that we and others have made rests on the observation that 
human learning leads to robust representations that can be flexibly 
used in various tasks with an acceptable to excellent level of perfor-
mance across the board. Clearly, some scepticism is warranted as to 
whether adopting insights from infant learning will be equally valu-
able for all ML purposes. It is possible that some of the lessons pro-
vide an advantage across domains, whereas others might turn out to 
be particularly beneficial for specific tasks. Taking this Perspective 
as a conceptual anchor, future research will explore the exact inter-
actions of each of the given insights from infant learning with their 
counterpart(s) in ML.
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