
fpsyg-08-02124 December 1, 2017 Time: 15:25 # 1

HYPOTHESIS AND THEORY
published: 05 December 2017

doi: 10.3389/fpsyg.2017.02124

Edited by:

James L. McClelland,
University of Pennsylvania,

United States

Reviewed by:

Eduardo Mercado,
University at Buffalo, United States

Motonori Yamaguchi,
Edge Hill University, United Kingdom

*Correspondence:

Linda B. Smith
smith4@indiana.edu

Specialty section:

This article was submitted to
Cognitive Science,

a section of the journal
Frontiers in Psychology

Received: 18 July 2017
Accepted: 21 November 2017
Published: 05 December 2017

Citation:

Smith LB and Slone LK (2017) A
Developmental Approach to Machine

Learning? Front. Psychol. 8:2124.
doi: 10.3389/fpsyg.2017.02124

A Developmental Approach to
Machine Learning?
Linda B. Smith

*

and Lauren K. Slone

Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States

Visual learning depends on both the algorithms and the training material. This essay
considers the natural statistics of infant- and toddler-egocentric vision. These natural
training sets for human visual object recognition are very different from the training
data fed into machine vision systems. Rather than equal experiences with all kinds
of things, toddlers experience extremely skewed distributions with many repeated
occurrences of a very few things. And though highly variable when considered as a
whole, individual views of things are experienced in a specific order – with slow, smooth
visual changes moment-to-moment, and developmentally ordered transitions in scene
content. We propose that the skewed, ordered, biased visual experiences of infants and
toddlers are the training data that allow human learners to develop a way to recognize
everything, both the pervasively present entities and the rarely encountered ones. The
joint consideration of real-world statistics for learning by researchers of human and
machine learning seems likely to bring advances in both disciplines.
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INTRODUCTION

Learning – adaptive intelligent change in response to experience – is a core property of human
cognition and a long-sought goal of artificial intelligence. There is growing excitement (Cadieu
et al., 2014; Kriegeskorte, 2015; Marblestone et al., 2016) that we are at the tipping point for
powerful new insights into both human and artificial intelligence and that these insights will
emerge more rapidly by explicitly connecting advances in human cognition, human neuroscience,
and machine learning. ‘Thought-papers’ are making explicit calls to researchers in machine
learning to use human and neural inspiration to build machines that learn like people (e.g.,
Kriegeskorte, 2015; Marblestone et al., 2016), and for researchers in human cognition and
neuroscience to leverage machine learning algorithms as hypotheses about cognitive, visual and
neural mechanisms (Yamins and DiCarlo, 2016). One impetus for this renewed interest is the
remarkable successes of deep-learning networks to solve very hard – and sometimes previously
unsolvable – learning problems (e.g., Silver et al., 2016). Of the lineage of neuron-inspired
perceptrons and connectionist networks, deep-learning networks take raw sensory information
as input and use multiple hierarchically organized layers with the output of each layer serving
as the input to the next, resulting in a cascade of feature extraction and transformation. One
domain in which these networks have been particularly successful is machine vision. The layered
structure and spatial pooling of these convolutional deep learning networks (CNNs) not only yield
state-of-the-art image recognition but do so via a hierarchical organization of feature extraction
that approximates the functions of the cortical layers in the human visual system (Cadieu et al.,
2014).
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On the human cognition side, recent advances in head-
mounted cameras and head-mounted eye-tracking technology
have yielded exciting discoveries concerning natural learning
environments. The structure and regularities in humans’
everyday visual environments – particularly those of infants and
children – are not at all like the training sets used in state-of-
the-art machine vision. The training images for machine learning
are photographs taken and framed by adults. Thus, they are
biased to “what looks good” for the mature system, reflecting
the outcomes of perceptual development and not necessarily
the scenes that drove that development (e.g., Fathi et al., 2011;
Foulsham et al., 2011; Smith et al., 2015). Real world perceptual
experience is not framed by a camera but is tied to the body
as it acts in the world. As a consequence, the learner’s own
view of the visual environment is highly selective, dependent
on momentary location, orientation in space, posture, and head
and eye movements (see Smith et al., 2015, for a review). The
selectivity of the ego-centric view is illustrated in Figure 1:
not everything in the immediate environment is in the infant’s
view; unless the infant turns their head and looks, the cat,
the window, the clock, the standing person’s face are not in
view. The perceiver’s posture, location, movement, interests, and
social interactions systematically bias the point-of-view visual
information.

And all of these – posture, location, movement, interests –
change dramatically with development biasing di�erent classes
of visual experience as the individual grows. Particularly, in the
first 2 years of life, each new sensory-motor achievement – rolling
over, reaching, crawling, walking (andmore) – opens gates to new
classes of visual experience. Thus, rather than batch processing,
the human visual system develops through a systematically
ordered curriculum of visual experience designed through the
infants’ own sensory-motor development. Egocentric vision
systems provide researchers with direct access to the properties
of these developmentally constrained visual environments. Here,
we consider the potential relevance for machine learning of
these new findings about the data sets for real world visual
learning.

One might ask, given all the successes of contemporary
computer vision, why should machine learners care about how
children do it? Schank, a seminal figure in the early days of
artificial intelligence wrote: “We hope to be able to build a
program that can learn, as a child does... instead of being
spoon-fed the tremendous information necessary” (Schank,
1972). This would still seem a suitable goal for autonomous
artificial intelligence. More recently, at a large machine learning
conference, Malik (2016, personal communication, see also
Agrawal et al., 2016) told young machine learners who wanted
to be ready for the next big advances in machine learning to
“go study developmental psychology seriously and then bring
that knowledge in to build new and better algorithms.” With
this in mind, we begin with an example of why machine
learners should care about the regularities in children’s learning
environments: a well-documented example of prowess in visual
learning by human 2-year-olds that is as yet unmatched
in contemporary computer vision (but see Ritter et al.,
2017).

WHAT 2-YEAR-OLDS CAN DO

People can recognize a large number of instances of a very large
number of categories and do so under varied conditions (Kourtzi
and DiCarlo, 2006; Gauthier and Tarr, 2016). Recognizing all
these instances and categories requires visual training; people
have to see dogs, cars and toasters to visually recognize instances
of those categories (e.g., Gauthier et al., 2000; Malt and Majid,
2013; Kovack-Lesh et al., 2014). This is true for people as well as
computer vision algorithms. But the developmental trajectories
for children and algorithms are currently quite di�erent. For
children, early learning is slow and error filled (e.g., MacNamara,
1982; Mervis et al., 1992). Indeed, 11/2-year-old children may
well-perform worse in visual object recognition tasks than the
best performing computer vision algorithm, as 11/2-year-old
children’s category judgments are characterized by many over-
and under-generalizations as well as sometimes complete failure
to recognize known objects in visually crowded scenes (Farzin
et al., 2010). However, this changes after the second birthday. At
that point children can infer the extension of a whole category
from one example. Given just one instance of a novel category,
and its name, 2-year-old children immediately generalize that
name in an adult-like manner. For example, if a 2-year-old child
encounters their very first tractor – say, a green John Deere
working in a field – while hearing its name, the child from that
point forward will recognize all variety of tractors as tractors –
red Massey-Fergusons, antique tractors, ride-on mowers – but
not backhoes or trucks. This phenomenon, known as the “shape
bias” in the developmental literature is an example of “one-shot”
learning that has been observed in children’s natural category
learning and has been replicated and extensively studied in the
laboratory (e.g., Rosch et al., 1976; Landau et al., 1988; Samuelson
and Smith, 2005).

We know a great deal about the “shape bias” and its
development. We know that the emergence of the shape
bias co-occurs with rapid growth in children’s object name
vocabularies. We know that the bias is about the perceived
shapes of things and emerges when children can recognize
known objects from the relational structure of the major parts
(Gershko�-Stowe and Smith, 2004). We know the shape bias is
itself learned as a consequence of the slow learning of an initial set
of object names (50 to 150 learned categories by some estimates,
Gershko�-Stowe and Smith, 2004). We know that early intensive
training of shape-based object categories in the context of object
play causes an earlier than typical emergence of the shape bias
in 11/2-year-olds, and an early increase in the rate of growth of
these children’s vocabularies (Samuelson, 2002; Smith et al., 2002;
Yoshida and Smith, 2005; Perry et al., 2010). We also know that
the shape bias co-develops not just with children’s learning of
object names but also with object manipulation (Smith, 2005;
James et al., 2014a), and with children’s emerging ability to
recognize objects from abstract representations of 3-dimensional
shape (Smith, 2003, 2013; Yee et al., 2012).We know that children
who have di�culty in learning language – late-talkers, children
with specific language impairment, children with autism – do
not develop a robust shape bias (Jones, 2003; Jones and Smith,
2005; Tek et al., 2008; Collisson et al., 2015; Potrzeba et al., 2015).
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FIGURE 1 | The selective nature of egocentric views. The field of view indicated with shading corresponds to the field of view of the infant’s head camera.

In brief, typically developing children, over the course of slowly
learning the names for an initial set of object categories, learn how
to visually represent object shape in a way that enables them to
approximate the boundaries for novel object categories given just
a single instance of that category. State-of-the-art machine vision
operates di�erently. There is no learning to learn that shifts the
very nature of learning itself. Instead, each to-be-learned category
requires extensive training with many examples.

Wherein lies the di�erence? All learning depends on both
the learning machinery and the training data. Toddlers are
highly successful learners of visual categories; thus, their internal
algorithms must be able to exploit the regularities in their
everyday experiences, whatever those regularities are. Therefore,
understanding infants’ everyday visual environments – and how
they change with development – not only helps to reveal the
relevant training data, but also provides information about the
internal machinery that does the learning.

DEVELOPMENTALLY CHANGING VISUAL
ENVIRONMENTS

The data from infant head camera studies are quite clear: the
training sets for human visual learning change substantially with
development. Example head-camera captured images are shown
in Figure 2. One example concerns infants’ egocentric views of
the people around them. Analyses of a large corpus of head
camera images collected by infants as they went about their daily
experiences (Jayaraman et al., 2015, 2017; Fausey et al., 2016)
show that people are persistently in infant head-camera images
and are so at the same rate for newborn infants and for 2-year-
olds. This is not surprising as infants and toddlers cannot be
left alone. However, the specific body parts in the head camera

images of younger and older infants are not the same. For infants
under 3 months of age, human faces are pervasively present,
with faces constituting more than 15 min out of every hour of
visual experience. Moreover, these faces are consistently close
to the young infant (within 2 feet of the head camera) and
show both eyes. By the time infants near their first birthday,
however, faces are rare in the recorded head camera images,
present for about only 6 min out of every waking hour. Instead,
for 1- and 2-year-olds, other people’s hands are in view (Fausey
et al., 2016). These hands are predominantly (in over 85% of
all images with hands) in contact with and manipulating an
object. This shift in the contents of the visual scenes in front of
infants is driven by changes in their sensory-motor abilities, by
the corresponding behavior of parents, and by changes in infant
interests. The products of all these interconnected forces are the
data for visual learning, and the data change – from many full
view and close faces tomany hands acting on objects.We strongly
suspect this order – early faces, later objects – matters to how
and why human visual object recognition develops the way it
does.

The importance of early visual experiences dense with faces
is indicated by sleeper e�ects in configural face processing.
Maurer et al. (2007) defined a sleeper e�ect as a permanent
deficit that emerges late in development but that results from
an early deficit in experience. One example concerns the
case of infants deprived of early visual input by congenital
cataracts that were removed by the time the infants were
just 2 to 6 months of age. By multiple benchmarks of visual
development (including acuity, contrast sensitivity) these infants,
after removal of the cataracts, caught up to their peers and
showed a typical trajectory of visual development. But as adults
these individuals show a permanent deficit in one of the
defining mature properties of human visual face processing:
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FIGURE 2 | Sample head-camera captured images for three different ages of infants.

configural face processing. Configural processing refers to the
discrimination and recognition of individual faces based on
a gestalt-like representation that suppresses information about
individual features. This is an aspect of human visual processing
that does not begin to emerge until relatively late, around 5
to 7 years of age (Mondloch et al., 2002). Maurer et al. (2007)
hypothesized that early experiences preserve and/or establish
the neural substrate for face-processing abilities that develop
much later (see also Byrge et al., 2014). We conjecture that
the dense experience of close, full-view faces by very young
infants is the missing component of the very early experiences
of infants with congenital cataracts. Because these experiences
are tied to the infant’s own changing biases and sensorimotor
skills, they will not be replaced by their social partners when
the infant’s cataracts are later removed because by that time the
infant’s own behaviors and autonomy will create very di�erent
social interactions. By hypothesis, then, dense early experiences
with faces may be necessary to set up or maintain the cortical
circuitry that supports the later emergence of specialized face
processing.

It could be the case that early face experiences are only
important for face processing, a domain-specific experience for a
domain-specific outcome. However, there is a case to be made for
an alternative view. The human visual cortex builds the world we

see through a hierarchical system of successive feature extractions
and transformations (e.g., Hochstein and Ahissar, 2002). All
input goes through and tunes the same lower layers and all higher
layers of representations – faces, objects, letters – compute over
the activity of lower layers. In this way, learning about faces
and learning about non-face object categories both depend on
the precision, tuning, and activation patterns of the same lower
layers. Simple visual discriminations at lower layers can have
far-reaching generality across higher level visual processes (e.g.,
Ahissar and Hochstein, 1997). The head-camera images from
human infants indicate that the initial tuning and development
of the lower layers is done through visual scenes that include
many close faces with two eyes in view. Because of this, children’s
later learning and extraction of features of non-face objects will be
shaped at least in part by an early tuning of lower layers, tuning
heavily biased by the low-level visual features of up-close faces.

Although Maurer et al. (2007) used the term sleeper e�ects to
refer to deficits in experience, the role of early visual experience
on later emerging achievements may be conceptualized both
negatively and positively. Regularities in an individual’s early
experiences will train and tune layers in this hierarchical system,
and in so doing may set up potentially hidden competencies,
that are critical to and play out in later learning. Research on
human development provides many unexplained examples of
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FIGURE 3 | The distribution of common object categories in head camera
images of 8- to 10-month-old infants (Clerkin et al., 2017). Object categories
are colored based on norms for their age of acquisition (Fenson et al., 1994):
first nouns (object names that are in the receptive vocabulary of at least 50%
of 16-month-old infants), early nouns (object names that are not first nouns
and in the productive vocabularies of at least 50% of 30-month-old children),
and later nouns (all other object names).

the far reach of past learning into future learning. For example,
the precision of visual discrimination of dot arrays predicts later
mathematics achievement (Halberda et al., 2008) and the shape
bias in toddlers predicts the ability to learn letters (Augustine
et al., 2015; see also Zorzi et al., 2013). Similar to the human visual
system, deep learning networks are “deep” in that they contain a
hierarchical cascade of layers. This structure means that, similar
to human vision, the early layer representations formed in
one task will be reused and in principle can influence – both
negatively and positively – the solutions that are found in learning
in other tasks. The computational value of ordered training sets
for such hierarchically layered learning systems is not yet well-
understood. Could the whole curriculum of developmentally
constrained training sets – from faces to hands on objects – be
part of the complete explanation of how 2-year-olds seem to
know the boundaries of non-face object categories from just one
or a few instances?

LEARNING A LOT ABOUT A FEW THINGS

Analyses of head camera images from infants in the first 2 years
of life also tell us that the distribution of entities in these images
is neither a random sample of entities in the world nor are the
entities present in these egocentric images uniformly distributed.
Instead, experience is extremely right-skewed. The objects in
infants’ head camera images are highly selective – a very few
kinds are pervasive and most things are rare. Here is a key
question then: how does extensive (and potentially slow) learning
about a few things yield a learning system that can rapidly
learn about all those individually rare things? A power-law-like
distribution characterizes both infants’ experiences of unique
individual’s faces (Jayaraman et al., 2015) and their experiences

of objects (Clerkin et al., 2017). Throughout the whole first
year of their lives, infants see the faces of a very few people
repeatedly, with the three most frequent individuals accounting
for about 80% of all faces in the head camera images. Likewise,
the objects in infants’ visual environments are also extremely
right skewed, with some object categories much more frequent
that others (Clerkin et al., 2017). Figure 3 shows the distribution
of common object categories in one analysis of head camera
images for 8- to 10-month-old infants across 147 unique meal-
time events (Clerkin et al., 2017). A very few object categories
are pervasively present while most are very rare. Intriguingly,
the most frequently encountered object categories have names
that are also acquired very early, but later than 8 to 10 months,
just after the first birthday, suggesting that dense early visual
experiences prepare the system for later learning of these specific
objects’ labels.

One possible advantage of extremely right-skewed
distributions is that the pervasiveness of a relatively small
set of individual objects and object categories enables the infant
to define an initial target set for learning (Clerkin et al., 2017;
see also Salakhutdinov et al., 2011) and then to master the visual
invariances relevant to recognizing these few objects across many
di�erent viewing conditions. This may be a key step – complete
learning about a few things – that then leads to generalized
competencies that enable rapid learning from limited experience,
such as seen in the shape bias in 2-year-old children (Smith,
2013). This complete learning about a very few things may
depend on not just many experiences but extended experiences
in time. When a single object is viewed for an extended time, the
retinal information with respect to that object will necessarily
and continuously change, revealing relevant transformations
and the invariances for recognition that may be extendable to
recognizing novel things (Földiák, 1991; Wiskott and Sejnowski,
2002; Li and DiCarlo, 2008).

Research with controlled-reared chicks (Wood, 2013; Wood
and Wood, 2016) provides a demonstration proof of this idea:
slow-changing transformations of objects provide su�cient input
for generalized learning by chicks about object shape. In these
studies, newborn chicks were raised in tightly controlled visual
environments and shownmoving and rotating individual objects.
Across a series of controlled-rearing experiences, the properties
of movement and rotation were experimentally manipulated.
The results show that experiences of a single object seen over
time are su�cient for chicks to build robust object recognition
skills that generalize to unseen views of that object and unseen
objects (Wood, 2013, 2015). The controlled rearing experiments
(Wood, 2016; Wood et al., 2016) also indicate two major
constraints on chick learning: slowness and smoothness. Changes
in object views needed to occur slowly and smoothly, adhering
to the spatiotemporal properties of a physical object in the world.
Chickens have very di�erent brains and visual systems than
humans and thus the relevance of the chick data is not that
of an animal model of the human visual system. Rather, the
relevance of these findings is that they clearly show useable
information in temporally sustained experience with a single
visual object and by implication indicate as-yet unspecified
algorithms that could rapidly learn to recognize object categories
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from extended visual experiences with very few, perhaps just one,
object.

SELF-GENERATED VISUAL
EXPERIENCES

Toddlers’ knowledge of object names is measured either by their
choice of a referent when asked for an object by name or by
their spontaneous production of an object name upon visually
encountering an object. Toddlers’ object name vocabulary is thus
a good proxy for measuring their ability to visually recognize
objects. Object name learning begins very slowly prior to the first
birthday, with children’s knowledge of individual object names
growing incrementally and initially characterized by errors (e.g.,
MacNamara, 1982; Mervis et al., 1992, see also Bloom, 2000).
Around 18 to 24 months (with the timing di�erent for di�erent
children), the character and rate of learning changes. Around
2 years of age, object name learning becomes seemingly e�ortless
as typically developing children need very little experience, often
just a single experience with a named object, to generalize the
name appropriately to new instances (Landau et al., 1988; Smith,
2003). The shift from slow incremental learning to rapid nearly
“one-shot” learning reflects changes in the internal machinery
brought on by learning itself (Smith et al., 2002). However,
growing evidence indicates that there is also a dramatic change
in the visual data for learning.

For 8- to 10-month-old infants, the scenes captured by head
cameras are often cluttered (Clerkin et al., 2017). After 12 months
scenes are still often cluttered, but these are punctuated by
sustained series of scenes in which just one object visually
dominates (e.g., Yu and Smith, 2012). The change in scene
composition is the direct consequence of infants’ developing
manual skills. Well-before their first birthday, infants reach for
and hold objects but they lack the trunk stability required for long
engaged play sessions (Rochat, 1992; Soska et al., 2010) and they
lack the manual skills to rotate, stack or insert objects (Pereira
et al., 2010; Street et al., 2011). Further, they are mostly interested
in putting objects in their mouths which is not ideal for visual
learning. As a consequence, they often look at the world from
afar and from afar the world is cluttered with many things. After
their first birthday, all this changes. Toddlers view objects up
close while actively handling them. This manual activity supports
improved visual object memory and discrimination (Ru�, 1984;
Soska et al., 2010; Möhring and Frick, 2013; James et al., 2014a)
and object-name learning (e.g., Yu and Smith, 2012; LeBarton
and Iverson, 2013; James et al., 2014a). There are three properties
of toddlers’ self-generated object views that likely underlie these
advances.

First, toddlers’ handling of objects creates visual scenes that
are less cluttered than those of younger infants (Yu and Smith,
2012; Clerkin et al., 2017) and also of adults (Smith et al.,
2011; Yu and Smith, 2012). Toddlers have short arms and lean
in to look closely at handled objects. In so doing, they create
scenes in which one object fills the visual field. This solves many
fundamental problems including segmentation, competition, and
referential ambiguity. One study (Bambach et al., 2017) directly

compared how well a commonly used CNN (Simonyan and
Zisserman, 2014) could learn to recognize objects given training
sets consisting of toddler versus adult head camera images (of
the same real world events). The network was not presented
cropped images of the to-be-trained object, but whole scenes,
with no information about the relevant location of the target
object in the scene. Learning was more robust and showed
better generalization given toddler than adult scenes. This fits
contemporary practices in computer vision, which commonly
feed their algorithms cropped images or scenes with bounding
boxes to specify the object for learning. Toddlers use their own
hands and heads to do this.

A second property of toddlers’ handling of objects is that
they generate highly variable images of a single object. Figure 4
shows an assortment of views of a single object generated by one
15-month-old toddler during play (Slone et al., under review).
In this study, head-mounted eye-trackers were used to capture
fixated object in the first-person scenes. A single algorithmic
measure, mask orientation (MO), was used to capture the frame-
by-frame image variability of objects on which infants fixated
their gaze: MO is the orientation of the most elongated axis of the
object pixels in the image. Critically, this is not a measure of the
real-world orientation or shape of the object, nor does it relate in
any direct way to the shape properties of the distal stimulus, but
is instead a measure of the proximal image properties from which
the visual system must determine the distal object. The main
result is this: the amount of variability in MO generated by an
infant during toy play at 15 months predicted infant object-name
vocabulary 6 months later, when the infants were 21 months
of age. In brief, greater variability led to better learning. In a
related computational study (Bambach et al., 2017), a CNN was
fed training sets consisting of images of a joint play event captured
from either parent- or toddler-worn head cameras. The more
variable object images from the toddler-worn camera led to more
robust learning and generalization of that learning than did the
less variable views of the same objects from the parent-worn
cameras. These findings should change how we think of one-
shot learning. Toddler’s visual experience with one object is not
a single experience but a series of very di�erent views of the same
things. Could this series of di�erent views of a single instance
(for example, the John Deere working in the field) lead young
learners to the generative principle that enables recognition of all
members (for example, tractors in general)?

A third property of toddler self-generated object views is that
they are biased (Pereira et al., 2010) toward views in which the
most elongated axis of the object is perpendicular to the line
of sight (easiest way to hold) and also (albeit more weakly)
to views in which the most elongated axis is parallel to the
line of sight (easiest way to insert a held object into another).
Toddlers transition between these favored views by rotating the
major axis of the object in depth. These biased views and the
in-depth rotations highlight non-accidental shape features. The
biases created by how hands hold objects may have a visual source
as well in that they are stronger when toddlers hold and view
objects contained in transparent spheres (James et al., 2014b)
such that all views are equipotential with respect to the hands.
Neither the right analyses nor the right experiments have been
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FIGURE 4 | Sample images of a single object captured by a 15-month-old infant’s head-camera during play.

done to compare the properties of these self-generated views of
objects to the smoothness and slow-change constraints proposed
by Wood (2016) in his studies of chicks. But given the spatio-
temporal constraints of the physical world and physical bodies,
there is every reason to believe toddler self-generated views will
comply.

Toddlers’ whole-body approach to seeing creates unique visual
training sets that seem structured to teach a very specific lesson:
view-independent recognition of three-dimensional shape. The
single object is visually isolated in the image because it fills
the image. The di�erent views are connected to each other by
their proximity in time and by hand contact, which provides
a potent learning signal that two di�erent views belong to the
same object. The dynamic structure of the views highlights
non-accidental shape properties. Here is a hard problem in
visual object recognition that may be solved pretty much by the
structure in the data itself.

FROM DEVELOPMENT TO MACHINE
LEARNING AND BACK

The visual environments of infants and toddlers change with
development, segregating and ordering di�erent learning tasks,
such that later learning may build on prior learning in a di�erent
domain. Within each domain, the training sets concentrate on
a limited sample of individual entities – the faces of 2 to 3
individuals, a small set of pervasive objects, many views of a single
thing – but from these experiences builds general knowledge

of how to recognize and learn about many di�erent kinds of
things. This is not a case of learning from limited data; the data
are massive – about your mother’s face, about all the views of
your sippy cup. The overall structure of these training sets are
very di�erent from those commonly used in computer vision.
Could they be part of a next advance in more powerful machine
learning?

Machine learning has made enormous strides without
taking a developmental multistage approach to training. It
is arguable that learning machines that do not require this
tutoring and structured curricula are more powerful. Indeed,
connectionist theories of linguistic development that used
ordered training sets (Rumelhart and McClelland, 1986) and
added di�culty as learning progressed were strongly criticized
as cheating (Pinker and Prince, 1988). But, the criticized
idea is the developmentally right one (Elman, 1993). There
are current approaches to machine learning (curriculum
learning, and iterative teaching, for example) that seek to
optimize learning through ordered and structured training
sets (e.g., Bengio et al., 2009; Krueger and Dayan, 2009).
These e�orts have not worried much about the structure in
the natural learning environments of infants; it might be
a useful convergence of human and machine learning to
do so. The data for infant and toddler learning, however,
are not just ordered over developmental time, but are also
dynamically structured in real time by the learners’ own
activity. The input at any moment depends on the current
state of the learner, and will in real time change as the
learner’s internal system changes as a function of learning.
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In this way, the information provided at any point in time
may be optimal for the current state of learning, providing just
the right information at the right time. One current relevant
approach in machine learning trains attention in deep networks
during the course of learning so that the data selected for
learning changes with learning (Mnih et al., 2014; Gregor et al.,
2015). Another approach uses curiosity to shift attention to
new learning problems as learning progresses (Oudeyer, 2004;
Houthooft et al., 2016; see also Kidd and Hayden, 2015). How
can we foster the incorporation of developmental insights into
machine learning? In considering the case of how a machine
learner might progress from a slow and incremental learner to
a “one-shot” learner with a shape bias of the kind shown by
children, Ritter et al. (2017) “cognitive psychology” experiments
on machine learners. Such experiments might manipulate both
the structures of training sets (see Liu et al., 2017) as well as
the algorithms to understand how early learning constrains later
learning and how learning a lot about a very little may yield more
generalized and powerful learning than learning a little about a
lot of things.

There is, of course, no guarantee that by pursuing these ideas
that machine learners will build powerful algorithms that can
win current competitions. But, it seems certain that such an
e�ort would yield new principles of learning. These principles –
expressed in algorithmic form – would constitute a great advance
in understanding human learning and intelligence.
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