
TYPE Brief Research Report

PUBLISHED 14 October 2022

DOI 10.3389/fnint.2022.974177

OPEN ACCESS

EDITED BY

Nele A. Haelterman,

Baylor College of Medicine,

United States

REVIEWED BY

Paul Miller,

Brandeis University, United States

Christian Leibold,

Ludwig Maximilian University of

Munich, Germany

*CORRESPONDENCE

Younes Bouhadjar

y.bouhadjar@fz-juelich.de

RECEIVED 20 June 2022

ACCEPTED 17 August 2022

PUBLISHED 14 October 2022

CITATION

Oberländer J, Bouhadjar Y and

Morrison A (2022) Learning and

replaying spatiotemporal sequences: A

replication study.

Front. Integr. Neurosci. 16:974177.

doi: 10.3389/fnint.2022.974177

COPYRIGHT

© 2022 Oberländer, Bouhadjar and

Morrison. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Learning and replaying
spatiotemporal sequences: A
replication study

Jette Oberländer1,2, Younes Bouhadjar1,3,4* and

Abigail Morrison1,2

1Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6),

JARA-Institute Brain Structure-Function Relationship (JBI-1/INM-10), Research Centre Jülich,

Jülich, Germany, 2Department of Computer Science 3-Software Engineering, RWTH Aachen

University, Aachen, Germany, 3Jülich Research Centre and JARA, Peter Grünberg Institute (PGI-7,

10), Jülich, Germany, 4RWTH Aachen University, Aachen, Germany

Learning and replaying spatiotemporal sequences are fundamental

computations performed by the brain and specifically the neocortex.

These features are critical for a wide variety of cognitive functions, including

sensory perception and the execution of motor and language skills. Although

several computational models demonstrate this capability, many are either

hard to reconcile with biological findings or have limited functionality. To

address this gap, a recent study proposed a biologically plausible model

based on a spiking recurrent neural network supplemented with read-out

neurons. After learning, the recurrent network develops precise switching

dynamics by successively activating and deactivating small groups of neurons.

The read-out neurons are trained to respond to particular groups and can

thereby reproduce the learned sequence. For the model to serve as the basis

for further research, it is important to determine its replicability. In this Brief

Report, we give a detailed description of themodel and identify missing details,

inconsistencies or errors in or between the original paper and its reference

implementation. We re-implement the full model in the neural simulator NEST

in conjunction with the NESTML modeling language and confirm the main

findings of the original work.

KEYWORDS

timescales, sequential dynamics, spiking networks, spatiotemporal sequences,

synaptic plasticity, recurrent network, replication

1. Introduction

The ability to learn sequences is essential for a wide range of tasks such as

motor production, language processing, and high-level cognitive processes including

planning and reasoning. To acquire such skills, the brain processes spatiotemporal

sequences (Dehaene et al., 2015; Henin et al., 2021) involving multiple regions such

as the neocortex and the hippocampus (Xu et al., 2012; Gavornik and Bear, 2014).

Depending on the nature of stimuli to be processed, learning sequences often entails

integration of multiple timescales; neurons typically operate at millisecond timescales,

Frontiers in IntegrativeNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://doi.org/10.3389/fnint.2022.974177
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2022.974177&domain=pdf&date_stamp=2022-10-14
mailto:y.bouhadjar@fz-juelich.de
https://doi.org/10.3389/fnint.2022.974177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnint.2022.974177/full
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

whereas behavioral timescales can range from a fewmilliseconds

to hundreds of milliseconds or longer (Edwards et al., 2002;

Mauk and Buonomano, 2004; Schirmer, 2004). Thus, bridging

substantially different timescales is a crucial component of

sequence learning in the brain.

The underlying neuronal mechanisms for learning

spatiotemporal sequences remain largely unknown. Machine

learning techniques such as artificial recurrent neural networks

(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal,

1997) can successfully handle tasks such as speech recognition,

translation, and text generation, but they achieve these with

no clear biological interpretation. Networks composed of

biologically plausible components rely mostly on prewired

connections to establish desired dynamics (Setareh et al., 2018).

Others learn the temporal order without learning element

specific timing and duration (Bouhadjar et al., 2022).

The model proposed by Maes et al. (2020) represents

an interesting hypothesis with regard to neural sequence

processing, as it can learn, store, and replay spatiotemporal

sequences using biologically inspired models of neurons,

synapses, and learning rules. The model uses two components

to learn the sequences: a recurrent neural network (RNN) and

a read-out layer. The temporal information is captured by the

RNN, which consists of clusters of excitatory neurons. After

learning, cluster i develops strong connections to cluster i + 1,

but weak connections to i − 1. The learned connectivity and

randomly generated external input (i. e. spontaneous input)

cause the recurrent network to exhibit sequential behavior,

with clusters becoming active one by one. Effectively, a neural

clock is created. Each cluster is active not only over the

intrinsic timescale of neurons and synapses (∼1 ms) but at

larger timescales relevant to the behavior (∼15 ms and up).

The clock then drives the read-out neurons activating different

spatial information. The model can learn complex, higher-

order sequences in parallel and is capable of learning highly

variable spatial dimensions: from simple sequences of letters

such as ABCBA to frequency spectra pertaining to the song of

a bird.

In this Brief Report within a special issue on Reproducibility

in Neuroscience, we present a replication of the original study

by Maes et al. (2020). We hereby restrict our analysis to

the replicability of the original study and do not consider

robustness to parameter settings or performance aspects. Here,

we use the term replication in the R5 sense described by

Benureau and Rougier (2018), i.e., striving to obtain the same

results using an independent code base, whereas a reproduction

(R3) of the model entails re-running the original code. These

terms are used by some authors the other way around:

see Plesser (2018) for an overview and analysis. In general,

replicating a study is an excellent method for locating any

hidden assumptions or errors in the original implementation,

far more so than examining or re-running the original code.

However, a replication crisis has become prevalent in most

fields of science, with a significant proportion of empirical

results being difficult if not impossible to replicate (Baker,

2016). Aided by the description in the original paper and by

instrumentation of the original code in Julia and MATLAB, we

re-implement the model using the open source software NEST

(Hahne et al., 2021) to simulate the network, NESTML (Babu

et al., 2021) to define the inhibitory neurons and Python for

data analysis. Access to the original code, but also to our re-

implementation, can be found below in the Data Availability

Statement.

Our results confirm the original findings. However, we

also identified discrepancies between the paper and the code

and repair numerical errors, and thereby provide an accessible

and maintainable implementation of the model which is more

consistent with its description in text and tables and contains

fewer errors. The model is therefore on a substantially better

footing to serve as a basis for future extensions to address

new problems or account for more diverse experimental

data.

2. Results

Maes et al. (2020) decompose the learning of spatiotemporal

sequences by training the timing component and the target

sequence separately. Time is discretized by sequential activation

of excitatory clusters that are recurrently connected. Each cluster

in the recurrent network represents a time interval and the

cyclical activation of the clusters constitutes a neural clock.

Once the training of the clock is complete, it drives a read-

out layer to enable the learning of the target sequence. Each

neuron in the read-out layer represents a distinct element

of the sequence. By alternate activation of these neurons in

proper order, the sequence can be replayed. In general, the

learning is enabled by allowing modifications of connections

within the RNN and between the RNN and the read-

out layer. The model is described in detail in Section 4.

In addition, a detailed model table and all corresponding

parameter values can be found in the Supplementary materials.

2.1. Encoding discrete time with a
recurrent network

The recurrent network consists of NE excitatory neurons

which are divided into NC clusters of equal size. Its purpose is

to discretize the flow of continuous time by successive activation

of the clusters. Before training, all synaptic weights between

excitatory neurons have identical strengths (Figure 1B). Due to

a voltage-based spike-timing-dependent plasticity (STDP) rule,

the strength of connections increases 1) between the excitatory

neurons of the same cluster and 2) between the neurons of

Frontiers in IntegrativeNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

FIGURE 1

Learning sequential dynamics. (A) External spike trains are sent to every excitatory neuron during the first hour of learning (sequential input).

Excitatory and inhibitory stimulus are depicted in purple and blue, respectively. Each cluster is excited sequentially for 9 ms at a rate of

22.5k spks/sec (purple) and inhibited at a rate of 4.5k spks/sec otherwise (blue). The activation of the next cluster is preceded by 6ms. Here, one

round of sequential input takes 450 ms, which is dependent on the number of clusters (NC = 30). (B) Recurrent network before learning. Purple

circles represent excitatory clusters, each consisting of 80 excitatory neurons. For visual clarity, only 8 clusters are shown rather than 30. Blue

circle represents 600 inhibitory neurons. Dashed arrows represent static connections; solid arrows represent plastic connections. Every

connection of a particular connection type has the same synaptic weight. (C) After 2 hours of training, the recurrent network develops strong

connections between cluster i and cluster i+ 1 and weaker connections between cluster i and cluster i− 1. Connections to other clusters are

vanishingly small.

cluster i to cluster i + 1 forming a feedforward structure

(Figure 1C). To avoid runaway dynamics (Chen et al., 2013),

a central inhibitory population of NI inhibitory neurons is

sparsely connected to all excitatory clusters. Their synapses

follow a symmetric STDP rule with constant depression.

Training is divided into two phases. First, an external

Poisson process stimulates the clusters one by one for 9 ms

each. Stimulation of the next cluster is preceded by a 6 ms gap.

When a cluster does not receive excitatory input, it receives

inhibitory input (see Figure 1A). Once the last cluster has

been stimulated, the first cluster is stimulated again, and the

procedure is repeated continuously for 1 hour of biological

time. Throughout the entire phase, the inhibitory neurons

constantly receive external excitatory input. In the second

phase, external Poisson processes emit spikes randomly and

without any structure to all neurons for an additional hour

but with different rates for inhibitory and excitatory neurons.

For a full description of the learning protocol, please refer to

Section 4.

After 1 hour of learning, strong intra-cluster connections

are formed (see Figure 2A). Also, weights from cluster i to

cluster i + 1 increase slightly, while all other connections are

weakened. In the second hour of learning, mainly connections

of one cluster to its adjacent clusters experience potentiation

(see Figure 2B). Weights on the main block diagonal, i.e., intra-

cluster connections undergo predominant but slight depression.

The learned feedforward structure reveals itself as a ring-

shaped pattern of eigenvalues, known as leading eigenvalues,

in the right half of the spectrum of the full weight matrix (see

Figure 2C). Besides the leading eigenvalues, most eigenvalues

are distributed inside a circle around the origin in the complex

plane. This phenomenon is known in random matrix theory as

the circular law (Tao and Vu, 2008), and has also been observed

in matrices of synaptic weights (Rajan and Abbott, 2006). The

third characteristic of the spectrum is the pair of eigenvalues

with large negative real part. They provide information about

the balance of the network in terms of excitation and inhibition

(see Maes et al., 2020).

At the end of the second phase, the network develops

fully coherent sequential dynamics when receiving spontaneous

input (see Figure 2D). The clusters become active one after

the other with a seamless transition. Eventually, the recurrent

network operates as a neuronal clock with a period of 470 ms

on average, matching approximately the duration of one

round of sequential stimulus (450 ms). A longer activation

interval and lower spike density can be observed at the

activation of the 15th cluster. This minor quantitative disparity

from the original results can be explained by our reduced

normalization frequency of every 450 ms, chosen to reduce

simulation times, rather than every 20 ms as in Maes et al.

(2020).

The learned weight matrix and the corresponding

spectrum exhibit a connection structure consistent with

the one of Maes et al. (2020). Hence, we can confirm the

main finding that strong intra-cluster connections and

feedforward structures are established, eventually resulting in

sequential dynamics in the recurrent network with no emergent

pathological behavior.

Frontiers in IntegrativeNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

FIGURE 2

RNN learns feedforward structure and develops sequential dynamics. (A) Weight matrix of connections from excitatory to excitatory neurons

(EE) after 1 hour of training (sequential input only). Note, only a 400× 400 sub-matrix including five clusters is shown. (B) Final weight matrix of

EE connections after 2 hours of training (sequential input followed by spontaneous input). (C) Final spectrum of the full weight matrix. The

majority of the eigenvalues are distributed in a circle around the origin (appearing as an ellipse due to di�erent scaling of the axes). (D) Spiking

activity of excitatory (purple) and inhibitory (blue) neurons over time after training under spontaneous external input, while keeping the learned

weight matrix frozen.

2.2. Learning a higher-order sequence

Learning higher-order sequences is of particular relevance,

since many real-world spatiotemporal sequences have non-

Markovian properties, i.e., recalling the next element of a

sequence depends on the current and previous elements. As an

example, consider the sequence ABCBA, where the transition

from B to the next element cannot be determined by the current

element alone, since there is a transition from B to A as well as

from B to C. Typically, knowledge of the past is required, which

makes it harder to learn.

The model proposed by Maes et al. (2020) circumvents this

issue by learning the clock prior to using any spatial information.

Each element from the alphabet can then easily be assigned to

multiple moments in time and thus positions in the sequence,

by learning the appropriate connections between the clusters in

the recurrent network and the read-out neurons.

Figure 3 illustrates the training and architecture of a network

learning the sequence ABCBA composed of three elements (A,

B, C). The excitatory neurons of the clock network are all-to-

all connected to a read-out layer, following the voltage-based

STDP rule. The layer consists of several independent read-out

neurons, where each neuron is associated with a distinct element

of the target sequence. During learning, each read-out neuron is

connected to one supervisor neuron and one interneuron (see

Figure 3B).

Before the sequence is learned, the network must reach

a state where it reliably exhibits sequential dynamics. This is

achieved by running the simulation for 50 ms, with only the

neurons in the recurrent network receiving spontaneous input

(rIexc and rEexc2). Afterward, the elements of the sequence are

presented to the network by exciting the associated supervisor

neurons for 75 ms each, using a Poisson input (Figure 3A).

The sequence is repeatedly shown to the network for 12

seconds. In each round the sequence must be presented at

the same time given by the clock. Note that the presentation

time of a sequence may not exceed the duration of a

clock cycle.

Frontiers in IntegrativeNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

FIGURE 3

Learning and replaying a sequence. (A) External spike trains to supervisor neurons and interneurons during learning of sequence ABCBA. A single

presentation is shown with total duration of 400 ms including 25 ms lead time. Each element is presented for 75 ms by stimulating the

associated supervisor neuron with rate 10k spks/sec. When an element is not presented, its supervisor neuron receives input at baseline rate

1k spks/sec. (B) Model architecture while learning the sequence. Clock is all-to-all connected to the read-out layer. Units A, B and C each

consist of three neurons: read-out (R), supervisor (S) and interneuron (H).

When a cluster is active at the same time as a read-

out neuron, the voltage-based STDP rule potentiates the

connections between them. The network approximates the

element-specific presentation times of a sequence by encoding

them in the synaptic strength of read-out connections (see

Figure 4A).

After learning, the sequence can be replayed by spontaneous

input to the RNN only. The replay is shown in Figure 4B,

where the read-out neurons spike in the correct temporal order,

synchronized with the clock dynamics (Figure 4C). The replay

never stops, as the clock is active in a continuous loop.Maes et al.

(2020) report that for each element, the read-out neuron spikes

twice on average. In our hands, each read-out neuron reliably

produces one spike per element. However, the key finding that

the network can learn higher-order sequences is confirmed.

3. Discussion

3.1. Summary

We have successfully replicated the key findings of Maes

et al. (2020) with only minor quantitative deviations. The

recurrent network discretizes the time by successive activation

of the neuronal clusters. The desired sequential dynamics

are reliably reproduced under spontaneous input. Using this

temporal backbone, a higher-order sequence such asABCBA can

be learned and stored in the read-out connections between the

RNN and the read-out layer.

In the replication process, we have followed as closely as

possible the parameters, learning protocols, and architectures

of the original work. However, replicating a model raises

many challenges. Parameters may be missing, unspecified, or

inconsistent. Equations may be stated incorrectly, or certain

assumptions may not have been mentioned. Implementation

errors in the original source code may, in the worst case,

fundamentally change the dynamics of the network, but even

if they do not, they prolong the replication process. We are

able to resolve many of these issues, which we summarize

below, through examination and instrumentation of the source

code provided by Maes et al. (2020). However, even after

having fixed the implementation errors, the two codes produce

similar results but are not identical. We find it likely that

the numerical disparity is largely due to differences in the

implementation frameworks. NEST provides an event-based

approach for weight updates, which are performed only after

the pre-synaptic neuron has spiked. The implementation in

Julia and MATLAB is time-based and weight updates are

constantly performed at each simulation step. Furthermore,

different random number generators and numerical integration

methods for solving differential equations prevent a one-to-one

comparison of simulation results; exact spike-correspondence

is not an achievable aim (but see Pauli et al., 2018). As the

key findings of Maes et al. (2020) are formulated in terms

of network dynamics, changes in weight between populations,

and functionality, rather than specific spike times, we conclude

that these disparities do not detract from the result, and our

implementation can be considered a successful replication of

the original. Before discussing in detail the replication issues, we

briefly evaluate the model.

3.2. Model evaluation

Over the course of replicating the model by Maes et al.

(2020), we have developed an in-depth understanding of its

strengths and weaknesses. The model successfully learns to

Frontiers in IntegrativeNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

FIGURE 4

Learning a higher-order sequence. (A) Weight matrix of connections from excitatory to read-out neurons (RE) after sequence ABCBA has been

learned. Each read-out neuron is represented by its associated element (A,B,C). The colorbar indicates the synaptic weight. (B) Spiking activity of

read-out neurons after learning the sequence ABCBA. Read-out neurons receive only input from the clock network. Dashed vertical lines mark

the end (or the beginning) of a period of the clock. (C) Spiking activity of neurons in the RNN under spontaneous external input after training.

Purple (blue) dots represent spikes of excitatory (inhibitory) neurons. Dashed vertical lines mark the end of each clock period.

replay higher-order sequences through biologically plausible

ingredients. It captures both elements specific duration and

order, while bridging intrinsic timescales of neurons and

synapses (few milliseconds) to behavioral timescales (hundreds

of milliseconds). The decomposition of the architecture into one

component that discretizes the time, and another that learns the

spatial information, permits mapping different types of sequence

elements to different time intervals. This flexibility allows the

model to learn diverse spatiotemporal sequences.

Despite these promising features, the model poses a number

of limitations and some of its mechanisms are hard to reconcile

with biology, such as the stereotypical sequential activity of

the clock. Although the network uses unsupervised learning

rules to exhibit the desired dynamics, training the clock

requires alternating excitatory and inhibitory inputs provided

in a sequential manner to specific sets of neurons. It could

therefore be argued that the biologically problematic issue of

supervised learning has been shifted from the network to the

sophisticated setup of external input. To our knowledge, the

biological structures that would support such a training signal

have not yet been identified. Furthermore, learning sequences

with arbitrary timings and durations is a challenging problem.

The period of the clock is relatively small (∼470 ms in our

case), which restricts the duration of a sequence. Learning

sequences with larger temporal scales (∼seconds) necessitates

extending the period of the clock, which is a costly operation

requiring the network size to be scaled up, i.e, increasing the

number of clusters. The activation of a single cluster in the

clock is sustained for ∼15 ms, which defines the duration of a

discrete step within the temporal backbone of the clock. This

step dictates the smallest time interval that can represent an

element in a sequence. Learning sequences with finer temporal

details requires either redesigning the learning rules or fine

tuning network parameters. An additional issue with learning

sequences using a clock network is that the presentation of a

sequence must always be synchronized with the period of the

Frontiers in IntegrativeNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

clock. Therefore, the time at which the first cluster is active must

be identified every round, which requires more than just local

information.

The model of Maes et al. (2020) can learn sequences

in parallel, but replays them separately only if an external

inhibitory signal is selectively provided to all the read-out

neurons that are not associated with the elements of the

sequence to be replayed. These mechanisms explaining such an

inhibitory signal are hard to explain biologically. In addition,

if the sequences to be learned in parallel contain the same

elements, a new read-out neuron is needed for each one of these

elements, even though they constitute the same alphabetic token,

such as ABCBA and AABBC.

3.3. Implementation errors

In this study, we identify a number of implementation

errors in the original code provided by Maes et al. (2020),

some of which are shortly described below. The authors

apparently apply Forward Euler to solve for the weight change

of excitatory plasticity, i.e., using Equation 3 as derivative and

multiplying it by step size dt. However, the LTD term depends

on the discontinuous and non-differentiable spike train of

the presynaptic neuron and therefore Euler methods are non-

applicable. Consequently, the simulation step size dt acts as

a proportionality factor. Decreasing dt from 0.1 to 0.01 ms,

which is supposed to increase the simulation accuracy, leads to

vanishingly small long-term depression.

Confusion of 0- and 1-based indexing in the code also

leads to a number of errors. For example, an excitatory

neuron is partially treated as an inhibitory neuron, or

clusters in the RNN are stimulated for 1 ms less than

described in the text. Furthermore, some mistakes have

been made in the computation of synaptic conductance.

Inhibitory input is partially added to excitatory input,

occasionally resulting in negative conductance values.

The conductance calculation is further flawed by using

double buffers only for a subset of state variables, leading to

occasional erroneous usage of already modified synaptic weight

values.

3.4. Parameter issues

The replication was hampered by inconsistent parameter

definitions across text, tables and code. Some parameters are

only mentioned in the text but not in the summarizing tables.

This reduces the effectiveness of the tables as a resource for

finding errors in a replication under development—any mistake

in transferring the value of a parameter not mentioned in the

tables will take much longer to find. Other parameters appeared

only in the tables but not in the text. In this case, their role

had to be conjectured from the source code. Additionally, some

parameters are stated in neither the text nor the tables, for

example, the synaptic delays. Also, no initial values such as

the membrane potential or its low-pass filtered versions are

specified. Furthermore, the code resets all state variables, except

the synaptic weights, to their initial values every 2 minutes with

no justification. After ensuring that this has no particular impact

on the network dynamics, we refrain from resetting the values

in our simulation. A table containing all parameters that have

inconsistent values, are missing, or are only mentioned once in

the paper, can be found in the Supplementary materials. Note

that in the case of inconsistency between tables, text and code,

we always take the source code as a final authority.

3.5. Absent and inconsistent information

Absent or inconsistent information hindered the replication

beyond the issue of parameter specification. Examples of absent

information include relevant details of the learning protocol

or the equation defining the synaptic normalization procedure.

With regards to inconsistent information, the low-pass filtering

of spikes is defined differently in the text (Equation 12 in

the original study) than in the code, resulting in substantially

different synaptic weight developments before the issue is

identified. In all cases, we are able to reconstruct the modelers’

intentions by careful examination and instrumentation of the

source code, which underlines the importance of providing this

with every published numerical study.

3.6. Physical units

Most programming languages and tools do not take physical

units into account. If using such tools, manual unit consistency

checking of the equations is advisable to ensure the physical

plausibility of all model components. We find unit mismatches

in Equations (8), (9), and (14) of Maes et al. (2020). The

kernel function (see Supplementary material), which enters the

synaptic conductance through convolution, has a unit of ms−1

in Equation (8) of Maes et al. (2020). This kernel, however, must

be unitless. To compensate, we introduce a constant cK = 1 ms

into the kernel function. Equations (9) and (14) of Maes et al.

(2020) define excitatory and inhibitory plasticity, respectively. In

Equation (9), the units of the learning rates ALTD and ALTP have

been swapped, but even when corrected, the units of the left- and

right-hand sides of the equation do not match. For this reason,

we assign new units to the learning rates (see our Equation 3). As

for Equation (14), we modify the unit of the learning rate Ainh

and introduce an additional constant α of unit ms−1 to the LTD

term (see our Equation 6).

Frontiers in IntegrativeNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

3.7. Simulation and numerical techniques

There are advantages and disadvantages both to

homebrewing code, as with the original study, or using

purpose-built simulation tools, as with our replication. The

source code for the model in Maes et al. (2020) is in Julia and

MATLAB. These are general-purpose numeric computing

platforms, consequently the researcher must develop all specific

neuroscientific models and simulation algorithms from scratch,

which presents a higher risk for implementation errors and

poorly-suited numerics (Pauli et al., 2018). Examples from the

current work include adding a variable intended to represent the

conductance of an inhibitory synapse to a variable representing

the excitatory input of a neuron, or using a Forward Euler solver

for the neuron dynamics, resulting in membrane potentials

that reach values of up to 17 mV. Domain-specific simulators

such as NEST have key concepts (such as inhibition and

excitation, or synaptic delays) integrated with their design,

thus a lapse of attention by the developer will more likely

result in a simulation time error, thereby flagging the problem

and allowing it to be fixed. Similarly, the modeling language

NESTML removes the burden of selecting and implementing

appropriate numerical solvers. Additionally, it provides strict

unit checking, substantially reducing the risk of implementing

physically inconsistent equations as discussed above. Finally, as

MATLAB is closed source and proprietary, it is less accessible

than the available FOSS simulators and more prone to becoming

non-executable legacy code, unless the code is regularly

maintained (for an example, see Schulte To Brinke et al., 2022).

The major advantage of homebrewing code is the additional

flexibility it gives the researcher. For example, synaptic

normalization is not currently available in NEST as a built-

in feature on the C++ level. Certainly it is faster to add

features to a homebrewed solution than to an established

simulator. However, a higher priority should be given to

correct code than to rapid results—given the disadvantages of

homebrewing discussed above, in the case that no available

simulator has all the features one requires for a model, we

would recommend selecting the simulator that is the best fit and

working with the developers to fill the gap. If missing features

cannot be incorporated into the simulator in a reasonable

amount of time, the next best approach may well be a hybrid

method, in which the simulator is supplemented with additional

homebrewed features. Indeed, our implementation applies the

synaptic normalization on the Python level, which is less

performant than a C++ implementation would be, but still

allows us to take full advantage of NEST’s built-in models,

algorithms and safety features such as type checking. Note that

the implementation errors, physically inconsistent expressions

and unsuitable numerics we find in the original code did not

occur in the “missing feature” of synaptic normalization, but in

the core simulator features such as solving neuronal and synaptic

dynamics. Thus, many of these issues could have been avoided

by using such a hybrid approach. We therefore conclude that

resorting to a purely homebrewed framework should be a matter

of last resort.

4. Methods

The model is described in detail in Maes et al. (2020).

However, given the differences between the description of the

model and its implementation (see Section 3), this chapter

presents all important mechanisms and key components, which

are essential for comprehension, replication, and validation. In

addition, a detailed model table and all parameter values can

be found in the Supplementary material. Furthermore, we make

adjustments to physical units and added constants to resolve unit

mismatches in some of the equations.

4.1. Network architecture

The model consists of two subnetworks: a recurrent

network that learns the temporal pattern and a read-out layer

responsible for learning the spatial patterns. The recurrent

network (RNN) contains NI inhibitory neurons (I) and NE

excitatory neurons (E). The excitatory neurons are divided

uniformly into NC clusters, each receiving a particular external

input during training (see Section 4.4). A connection is created

with probability p for each possible pair of neurons in the RNN,

excluding autapses and multapses. Connections from excitatory

to excitatory neurons (EE) and from inhibitory to excitatory

neurons (EI) are plastic, all other connections are static. Plastic

synapses have a lower boundWmin and an upper boundWmax.

The weights are initialized such that the network activity is in the

E-I balanced state (Brunel, 2000).

The read-out layer contains NR excitatory read-out neurons

(R), each representing an element of the spatial dimension.

There are no connections between the R neurons. Plastic all-

to-all connections link excitatory neurons of the RNN to the

read-out neurons (RE). Each read-out neuron is connected

to an excitatory supervisor neuron (S) and an inhibitory

interneuron (H).

4.2. Neuron and synapse models

Excitatory neuron model. The E, R, and S neurons are

implemented as an adaptive exponential integrate-and-fire

model (Brette and Gerstner, 2005):

dVexc

dt
=

1

τE

(

EEL − Vexc +1E
T exp

(

Vexc − VE
T

1E
T

))

−γx
aE

C
+ Qx, x ∈ {E,R,S} (1)

Frontiers in IntegrativeNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

where τE is the membrane time constant, EEL is the reversal

potential, VE
T is an adaptive threshold, 1E

T is the slope of the

exponential, aE is the adaption current, and Qx is the current

received by the neuron. Only E neurons implement synaptic

adaptation (γE = 1,γS = 0, γR = 0). More details about the

adaptive threshold VE
T , the adaption current aE and the received

current Qx can be found in the Supplementary material.

Inhibitory neuron model. The I and H neurons are

implemented as a leaky integrate-and-fire model:

dV inh

dt
=

EIL − V inh

τI
+ Qx, x ∈ {I,H} (2)

where τI is the membrane time constant, EIL is the reversal

potential and Qx is the current received by the neuron.

4.3. Plasticity

Excitatory plasticity. The synaptic weights from excitatory

to excitatory neurons (EE) and from excitatory to read-out

neurons (RE) evolve according to a voltage-based STDP rule

(Clopath et al., 2010):

dWEE, RE
ij

dt
=− ALTD sj(t − d) R(ui(t)−2LTD)

+ ALTP xj(t − d) R(Vi(t)−2LTP)

R(vi(t)−2LTD),

(3)

where ALTD (ALTP) is the learning rate and 2LTD (2LTP)

the voltage threshold for depression (potentiation), R(x) is a

linear-rectifying function, d is the synaptic delay, and Vi is

the postsynaptic membrane potential. The traces ui and vi are

low-pass filtered versions of Vi with the corresponding time

constants τu and τv

dui

dt
=

1

τu
(Vi − ui) (4)

and analog for vi,τv. The presynaptic spike train is sj (t) =
∑

k δ

(

t − tj,k

)

, where δ is the Dirac delta function, and tj,k is the

kth spike time of neuron j. The potentiation term of Equation 3

depends on the low-pass filtered version xj of the spike train sj

dxj

dt
= αsj −

xj

τx
, (5)

with different values of time constant τx for synapses within

the excitatory recurrent network (τxEE) and synapses connecting

to the read-out neurons (τxRE). The parameter α is introduced

to correct for unit mismatch. In contrast to Maes et al. (2020),

we omit the weight dependent potentiation in the voltage-based

STDP rule applied to the RE connections.

Inhibitory Plasticity. The synaptic weights from inhibitory

neurons to excitatory neurons evolve according to the plasticity

rule proposed by Vogels et al. (2011), where the synaptic change

is driven by either pre- or postsynaptic spikes:

dWEI
ij

dt
= Ainh

(

yEi (t)− 2αr0τy

)

sIj (t − d) + Ainh yIj (t) s
E
i (t).

(6)

Here, Ainh is the learning rate of inhibitory plasticity, r0 is

the target firing rate, τy is the time constant, sEi and sIj are spike

trains of the excitatory postsynaptic neuron i and the inhibitory

presynaptic neuron j, respectively, d is the synaptic delay, and yEi
and yIj are the corresponding low-pass filtered versions, which

can be derived with the time constant τy as in Equation 5. The

parameter α is introduced to correct for unit mismatch (see

Section 3).

Synaptic Normalization. The connections from excitatory

to excitatory neurons within the recurrent network (EE) exhibit

synaptic normalization. This is achieved by keeping the sum of

all incoming weights to a neuron i constant at regular intervals

τnorm by applying

Wij ←Wij −

(

∑NE

k=1Wik

)

− K

l
, K =

NE
∑

k=1

W0
ik, (7)

where l is the number of incoming connections.

4.4. Learning protocol

The learning undergoes two stages. First, the RNN learns the

sequential dynamics and then the connections from the RNN

to the read-out layer are learned to represent the respective

sequence.

Recurrent network. The learning of the internal clock,

which exhibits sequential dynamics, is divided into two learning

phases. In the first phase, the clusters are stimulated one by one

with external excitatory input from a Poisson process with rate

rEexc1: starting at cluster 1, each cluster is stimulated in ascending

order for 9ms. Gaps of 6ms each separate the excitation periods

of two adjacent clusters. When the last cluster (here, the 30th),

has been excited, the stimulation starts again at the first cluster.

Once a cluster is no longer receiving excitatory input, each of

its neurons immediately receives inhibitory external input with

rate rE
inh

. Throughout the first phase, inhibitory neurons are

stimulated at a constant rate of rIexc. The sequential routine is

performed around 8, 000 times, resulting in 1 hour of biological

time.

The second learning phase of the clock is carried out for

one additional hour, during which all excitatory neurons receive

ongoing external excitatory input with rate rEexc2. Input to

inhibitory neurons remains the same as in the first learning

phase. Both Poisson generators stay active over the whole time

interval.

Frontiers in IntegrativeNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

After the second phase, the connectivity stabilizes. The

sequential dynamics get encoded in the recurrent network

and can be activated by external spontaneous input (rIexc and

rEexc2). Nevertheless, the weights of all connections in the clock

are frozen after the learning of the sequential dynamics has

succeeded.

Read-out Layer. During learning of the read-out synapses,

external input drives both supervisor neurons as well as

interneurons. Each element of the sequence is assigned to one

of the read-out neurons and its supervisor neuron. Thus, an

element of the sequence is learned by producing and sending a

spike train with rate rSexc to the associated S neuron for a certain

time interval. Meanwhile all other supervisor neurons receive a

baseline input with rate rS
base

.

Before the sequence is learned, the RNN must first exhibit

sequential dynamics, which is ensured by stimulating the

network using spontaneous input (rIexc and rEexc2). After the

sequential dynamics have stabilized, the sequence is presented

to the network by sequentially stimulating the associated

supervisor neuron for 75 ms with rate rSexc for each element.

Throughout the learning, each interneuron receives a constant

input with rate rHexc. The sequence is repeatedly shown to the

network for 12 seconds, with each element always appearing

at the same time relative to the activation of the first cluster.

After training has been completed, supervisor neurons and

interneurons no longer receive external input. Replay of the

learned sequence can be triggered by external spontaneous input

to the recurrent network alone.

The number of elements and their type has a strong

influence on the learning of the read-out synapses, since it

determines the number of read-out neurons and the intensity

of the supervisor input.

4.5. Simulation details

The network simulations are performed in the neural

simulator NEST 3.0 (Hahne et al., 2021). The inhibitory neurons

are defined in the domain-specific language NESTML 5.0 (Babu

et al., 2021), which generates the required C++ code for the

dynamic loading into NEST.

Data availability statement

Our PyNEST implementation is available on Zenodo at

https://doi.org/10.5281/zenodo.7046137. The original source

code used in Maes et al. (2020) can be found in a ModelDB

repository at http://modeldb.yale.edu/257609.

Author contributions

JO, YB, and AM designed the study and contributed to

writing of manuscript. JO re-implemented the model and

performed all simulations and analyzes. All authors contributed

to the article and approved the submitted version.

Funding

This work has received partial support from the Initiative

and Networking Fund of the Helmholtz Association, the

Helmholtz Portfolio Theme Supercomputing and Modeling

for the Human Brain, and the Excellence Initiative of the

German Federal and State Governments (G:(DE-82)EXS-

SFneuroIC002). Open access publication was funded by the

Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation; Grant 491111487).

Acknowledgments

We would like to thank Charl Linssen for his support

concerning the neuron and synapse model implementations.

All network simulations were carried out with NEST

(http://www.nest-simulator.org).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnint.2022.974177/full#supplementary-material

Frontiers in IntegrativeNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://doi.org/10.5281/zenodo.7046137
http://modeldb.yale.edu/257609
http://www.nest-simulator.org
https://www.frontiersin.org/articles/10.3389/fnint.2022.974177/full#supplementary-material
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Oberländer et al. 10.3389/fnint.2022.974177

References

Babu, P. N., Linssen, C., Eppler, J. M., Schulte to Brinke, T., Ziaeemehr, A.,
Fardet, T., et al. (2021). NESTML 4.0. doi: 10.5281/zenodo.4740083

Baker, M. (2016). 1, 500 scientists lift the lid on reproducibility. Nature 533,
452–454. doi: 10.1038/533452a

Benureau, F. C. Y., and Rougier, N. P. (2018). Re-run, repeat, reproduce, reuse,
replicate: transforming code into scientific contributions. Front. Neuroinform. 11,
69. doi: 10.3389/fninf.2017.00069

Bouhadjar, Y., Wouters, D. J., Diesmann, M., and Tetzlaff, T. (2022). Sequence
learning, prediction, and replay in networks of spiking neurons. PLoS Comput. Biol.
18, e1010233. doi: 10.1371/journal.pcbi.1010233

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. J. Neurophysiol. 94,
3637–3642. doi: 10.1152/jn.00686.2005

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Chen, J.-Y., Lonjers, P., Lee, C., Chistiakova, M., Volgushev, M., and Bazhenov,
M. (2013). Heterosynaptic plasticity prevents runaway synaptic dynamics. J.
Neurosci. 33, 15915–15929. doi: 10.1523/JNEUROSCI.5088-12.2013

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity
reflects coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13,
344–352. doi: 10.1038/nn.2479

Dehaene, S., Cohen, L., Morais, J., and Kolinsky, R. (2015). Illiterate to
literate: behavioural and cerebral changes induced by reading acquisition.Nat. Rev.
Neurosci. 16, 234–244. doi: 10.1038/nrn3924

Edwards, C. J., Alder, T. B., and Rose, G. J. (2002). Auditory
midbrain neurons that count. Nat. Neurosci. 5, 934–936. doi: 10.1038/
nn916

Gavornik, J. P., and Bear, M. F. (2014). Learned spatiotemporal sequence
recognition and prediction in primary visual cortex. Nat. Neurosci. 17, 732–737.
doi: 10.1038/nn.3683

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).
NEST 3.0. doi: 10.5281/zenodo.4739103

Henin, S., Turk-Browne, N. B., Friedman, D., Liu, A., Dugan, P.,
Flinker, A., et al. (2021). Learning hierarchical sequence representations across

human cortex and hippocampus. Sci. Adv. 7, eabc4530. doi: 10.1126/sciadv.
abc4530

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Maes, A., Barahona, M., and Clopath, C. (2020). Learning spatiotemporal signals
using a recurrent spiking network that discretizes time. PLoS Comput. Biol. 16,
e1007606. doi: 10.1371/journal.pcbi.1007606

Mauk, M. D., and Buonomano, D. V. (2004). The neural
basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340.
doi: 10.1146/annurev.neuro.27.070203.144247

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models. Front. Neuroinform. 12, 46. doi: 10.3389/fninf.2018.00046

Plesser, H. E. (2018). Reproducibility vs. replicability: A brief history of a
confused terminology. Front. Neuroinform. 11, 76. doi: 10.3389/fninf.2017.00076

Rajan, K., and Abbott, L. F. (2006). Eigenvalue spectra of random matrices for
neural networks. Phys. Rev. Lett. 97, 188104. doi: 10.1103/PhysRevLett.97.188104

Schirmer, A. (2004). Timing speech: a review of lesion and neuroimaging
findings. Cogn. Brain Res. 21, 269–287. doi: 10.1016/j.cogbrainres.2004.04.003

Schulte To Brinke, T., Duarte, R., and Morrison, A. (2022). Characteristic
columnar connectivity caters to cortical computation: replication, simulation
and evaluation of a micro-circuit model. Front. Integr. Neurosci. 16, 923468.
doi: 10.3389/fnint.2022.923468

Schuster, M., and Paliwal, K. (1997). Bidirectional recurrent neural networks.
IEEE Trans. Signal Process. 45, 2673–2681. doi: 10.1109/78.650093

Setareh, H., Deger, M., and Gerstner, W. (2018). Excitable neuronal assemblies
with adaptation as a building block of brain circuits for velocity-controlled signal
propagation. PLoS Comput. Biol. 14, e1006216. doi: 10.1371/journal.pcbi.1006216

Tao, T., and Vu, V. (2008). Random matrices: the circular law. Commun.
Contemporary Math. 10, 261–307. doi: 10.1142/S0219199708002788

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011).
Inhibitory plasticity balances excitation and inhibition in sensory pathways and
memory networks. Science 334, 1569–1573. doi: 10.1126/science.1211095

Xu, S., Jiang, W., ming Poo, M., and Dan, Y. (2012). Activity recall in a visual
cortical ensemble. Nat. Neurosci. 15, 449–455. doi: 10.1038/nn.3036

Frontiers in IntegrativeNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnint.2022.974177
https://doi.org/10.5281/zenodo.4740083
https://doi.org/10.1038/533452a
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1371/journal.pcbi.1010233
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1523/JNEUROSCI.5088-12.2013
https://doi.org/10.1038/nn.2479
https://doi.org/10.1038/nrn3924
https://doi.org/10.1038/nn916
https://doi.org/10.1038/nn.3683
https://doi.org/10.5281/zenodo.4739103
https://doi.org/10.1126/sciadv.abc4530
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1371/journal.pcbi.1007606
https://doi.org/10.1146/annurev.neuro.27.070203.144247
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1103/PhysRevLett.97.188104
https://doi.org/10.1016/j.cogbrainres.2004.04.003
https://doi.org/10.3389/fnint.2022.923468
https://doi.org/10.1109/78.650093
https://doi.org/10.1371/journal.pcbi.1006216
https://doi.org/10.1142/S0219199708002788
https://doi.org/10.1126/science.1211095
https://doi.org/10.1038/nn.3036
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org

	Learning and replaying spatiotemporal sequences: A replication study
	1. Introduction
	2. Results
	2.1. Encoding discrete time with a recurrent network
	2.2. Learning a higher-order sequence

	3. Discussion
	3.1. Summary
	3.2. Model evaluation
	3.3. Implementation errors
	3.4. Parameter issues
	3.5. Absent and inconsistent information
	3.6. Physical units
	3.7. Simulation and numerical techniques

	4. Methods
	4.1. Network architecture
	4.2. Neuron and synapse models
	4.3. Plasticity
	4.4. Learning protocol
	4.5. Simulation details

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


