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Sensory-motor loop

• The essence of behaviour is built upon the so-called sensory-motor loop –

i.e. processing sensory inputs to determine which motor action to perform 

next. 

• This is the most basic function of any nervous system – from worms to 

humans, from sensation to action.

• The human brain has a number of such loops, from the most primitive 

reflexes in the peripheral nervous system, up to the most abstract plans, such 

as the decision to apply to and attend University…
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Sensory-motor loop: the block scheme

• Somatosensory events are relayed through the spinal cord then brainstem 

and through the thalamus to the cerebral cortex, where they are processed.

• Commands for action are then relayed from the cortex to the basal ganglia 

and cerebellum, from there back to the brainstem and the spinal cord from 

where they result in concrete muscle actions (movements). 
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Sensory-motor loop: the brain scheme

• Somatosensory events are 

relayed through the spinal 

cord then brainstem and 

through the thalamus to the 

cerebral cortex, where they 

are processed.

• Commands for action are 

then relayed from the cortex 

to the basal ganglia and 

cerebellum, from there back 

to the brainstem and the 

spinal cord from where they 

result in concrete muscle 

actions (movements). 
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Basal Ganglia and the Cerebellum

• The most important motor output and control systems at the subcortical level 

are the cerebellum and basal ganglia, each of which has specially adapted 

learning mechanisms.

• Basal ganglia are specialized for learning from reward/punishment signals, in 

comparison to expectations for reward/punishment, respectively. This learning 

then guides the action selection, selecting the most rewarding actions and 

avoiding punishing ones. This form of learning is called the reinforcement 

learning. 

• The cerebellum is specialized for learning from errors, specifically errors 

between the sensory outcomes associated with motor actions, relative to 

expectations for these sensory outcomes associated with those motor actions. 

Thus, the cerebellum can refine the implementation of a given motor plan, to 

make it more accurate, efficient, and well-coordinated.
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Basal ganglia, cerebellum and the cortex

• In short, the basal ganglia select one out of many possible actions to perform, 

and the cerebellum then makes sure the selected action is performed well.

• In particular, parietal representations (i.e., the “where” pathway), drive motor 

action execution as coordinated by the cerebellum, and cerebellum is also 

densely interconnected with parietal cortex. 

• In contrast, the basal ganglia are driven to a much greater extent by the 

ventral “what” pathway, which indicates the kinds of rewarding objects that 

might be present in the environment.

• Interestingly, there are no direct connections between the basal ganglia and 

cerebellum -- instead, each operates in interaction with various areas in the 

cortex, where the action plans are formulated and coordinated. 
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Basal ganglia, cerebellum and the cortex

• Both the cerebellum and basal ganglia have a complex dis-inhibitory output 

dynamics, which produces a gating-like effect on the brain areas they control. 

• For example, the basal ganglia can disinhibit neurons in specific nuclei of the 

thalamus, which have bidirectional excitatory circuits through frontal and 

prefrontal cortical areas. The net effect of this disinhibition is to enable an 

action to proceed, without needing to specify any of the details for how to 

perform that action. This is what is meant by a gate -- something that broadly 

modulates the flow of other forms of activation. 

• The cerebellum similarly disinhibits parietal and frontal neurons to affect its 

form of precise control over the shape of motor actions. It also projects 

directly to motor outputs in the brain stem, something that is not true of most 

basal ganglia areas. 
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Parts of Basal ganglia (BG)

• Striatum, which is 

comprised of

– caudate nucleus 

– and putamen

• Globus pallidus 

– internal segment (GPi)  

– external segment (GPe)

• Thalamus and 

subthalamic nucleus

• Substantia nigra pars 

compacta (SNc)

Cerebellum
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Striatum

• The striatum is the major input region of BG. 

• Consists of the caudate and putamen. 

• The striatum is anatomically subdivided into many small clusters of neurons, 

with two major types of clusters: patch/striosomes and matrix/matrisomes.

• The matrix clusters contain direct (Go) and indirect (NoGo) pathway 

medium spiny neurons, which together make up 95% of striatal cells, both of 

which receive excitatory inputs from all over the cortex but are inhibitory 

on their downstream targets in the globus pallidus as described next. 

• The patch cells project to the dopaminergic system, and thus appear to play 

a more indirect role in modulating learning signals. 

• There are also a relatively few widely spaced tonically active neurons (TAN's), 

which release acetylcholine as a neurotransmitter and appear to play a 

modulatory role, and inhibitory interneurons, which likely perform the same 

kind of dynamic gain control that they play in the cortex.
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Globus pallidus: internal segment (GPi)

• Contains neurons that are constantly i.e. tonically active even with no input. 

These neurons send inhibition to specific nuclei in the thalamus. 

• When the direct/Go pathway striatum neurons fire, they inhibit these GPi

neurons, and thus disinhibit the thalamus, resulting ultimately in the initiation

of a specific motor (or cognitive) action (such as a thought). 

• In another fronto-basal ganglia circuits, the role of the GPi is taken up by the 

substantia nigra pars reticulata (SNr), which receives input from other areas of 

striatum and projects to outputs regulating other actions (e.g., eye movements 

in the superior colliculus). 
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Globus pallidus: external segment (GPe)

• Contains tonically active neurons that send focused inhibitory projections to 

corresponding GPi neurons. 

• When the indirect/NoGo pathway neurons in the striatum fire, they inhibit 

the GPe neurons, and thus disinhibit the GPi neurons, causing them to 

provide even greater inhibition onto the thalamus. 

• This blocks the initiation of specific actions coded by the population of active 

NoGo neurons.



12

Thalamus

• The thalamus, specifically the medial dorsal (MD), ventral anterior (VA), and 

ventrolateral (VL) nuclei. When the thalamic neurons get disinhibited by the 

Go pathway firing, they can fire, but only when driven by top-down excitatory 

input from the frontal cortex. In this way, the basal ganglia serve as a gate on 

the thalamocortical circuit – Go firing opens the gate, while NoGo firing 

closes it.

MD
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The sub-thalamic nucleus (STN)

• Acts as the so-called hyperdirect pathway, because it receives input directly 

from frontal cortex and sends excitatory projections directly to BG output 

(GPi), bypassing the striatum altogether. 

• A single STN neuron projects broadly to many GPi neurons, and as such the 

STN is thought to provide a global NoGo function that prevents gating of 

any motor or cognitive action (technically, it raises the threshold for gating). 
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Substantia nigra pars compacta (SNc)

• SNc has neurons release the neuromodulator dopamine and innervate the 

striatum. 

• There are two different kinds of dopamine receptors in the striatum. 

– D1 receptors are prevalent in Go pathway neurons, and dopamine has an 

excitatory effect on neurons with D1 receptors. 

– In contrast, D2 receptors are prevalent in NoGo pathway neurons, and 

dopamine has an inhibitory effect via the D2 receptors. 
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The basal ganglia – cortex loop
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• DA burst activity drives the direct "Go" pathway neurons in the striatum, 

which then inhibit the tonic activation in the globus pallidus internal segment 

(GPi), which releases specific nuclei in the thalamus from inhibition, allowing 

them to complete a bidirectional excitatory circuit with the frontal cortex, 

resulting in the initiation of a motor action. 

• The increased Go activity during DA bursts results in potentiation of cortico-

striatal synapses, and hence learning to select actions that tend to result in 

positive outcomes.
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• DA dip (decrease in tonic DA neuron firing in SNc) leads to preferential 

activity of indirect "NoGo" pathway neurons in the striatum, which inhibit the 

external segment globus pallidus neurons (GPe), that inhibit the GPi. 

• Increased NoGo activity thus results in disinhibition of GPi, making it more 

active and thus inhibiting the thalamus, preventing initiation of the 

corresponding motor action. 

• The DA dip results in potentiation of corticostriatal NoGo synapses, and hence 

learning to avoid selection of actions that tend to result in negative outcomes.



Which inputs influence SNc

• How the dopamine neurons in the SNc come to exhibit their reward prediction 

error firing.

• Lateral hypothalamus (LHA) provides a primary reward signal for basic 

rewards like food, water, etc.

• Patch-like neurons in the ventral striatum (VS-patch) have direct inhibitory 

connections onto the dopamine neurons in the SNc, and likely play the role of 

cancelling out the influence of primary reward signals when these rewards have 

successfully been predicted.

• Central nucleus of the amygdala (CNA) is important for driving dopamine 

firing to the onset of conditioned stimuli. It receives broadly from the cortex, 

and projects directly and indirectly to the SNc. Neurons in the CNA exhibit 

CS-related firing.
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Dopamine (DA) and Reinforcement Learning

• The DA neurons in SNc encode the difference between reward received 

versus an expectation of reward. 

• Prior to conditioning, when a reward is delivered, the dopamine neurons fire a 

burst of activity. 

• After the animal has learned to associate a conditioned stimulus (CS) (e.g., a 

tone) with the reward, the dopamine neurons now fire to the onset of the CS, 

and not to the reward itself. 

• If a reward is withheld after the CS, there is a dip or pause in DA firing, 

indicating that there was a prediction of the reward, and when it failed to arrive, 

there was a negative prediction error. 

• This pattern of firing is consistent with reinforcement learning applied to 

cortico-striatal synapses based on reward prediction error.
19



Reinforcement Learning

• Computationally, the simplest model of reward prediction error is the Rescorla-

Wagner conditioning model, which is mathematically identical to the delta rule 

for perceptron learning, and is simply the difference between the actual reward 

r and the expected reward R: 

• Where Dw is the change of the weight, x is the input, w is the weight.

• Thus, d (“delta”) is the prediction error and R = S xw is the amount of 

expected reward, which is computed as a weighted sum over stimuli x over 

weights w. 
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Reinforcement Learning

• The weights adapt to try to accurately predict the actual reward values, and in 

fact this delta value specifies the direction in which the weights should change: 

• When the reward prediction is correct, i.e. r = R, then the actual reward value is 

cancelled out by the prediction, i.e. d = 0 and then Dw = 0. 

• If the actual reward r is smaller than R, then d < 0  and the weights from 

cortex to striatum decrease in strength.

• If the actual reward r is bigger that R, then d > 0  and the weights from 

cortex to striatum increase in strength.
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Temporal Difference (TD) Reinforcement Learning

• As the reward may occur later in time, relative to Rescorla-Wagner, TD just 

adds one additional term to the delta equation, representing the future reward 

values that might come later in time: 

• where f represents the future rewards, and now the reward expectation R has 

to try to anticipate both the current reward r and this future reward f. 

• In a simple conditioning task, where the CS reliably predicts a subsequent 

reward, the onset of the CS results in an increase in this f value, because once 

the CS arrives, there is a high probability of reward in the near future. 

• Furthermore, this f itself is not predictable, because the onset of the CS is not 

predicted by any earlier cue (and if it was, then that earlier cue would be the real 

CS, and drive the dopamine burst). Therefore, the R expectation cannot cancel 

out the f value, and a dopamine burst lasts. 
22
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Temporal Difference (TD) Reinforcement Learning

• Although the f value explains CS-onset dopamine firing, it raises the question 

of how can the system know what kind of rewards are coming in the future?

• Like anything having to do with the future, you fundamentally just have to use 

the past as your guide to guess the future. 

• TD does this by specifying something known as a value function, v(t) that is a 

sum of all present and future rewards, with the future rewards discounted by a 

g "gamma" factor, which captures the intuitive notion that rewards further in 

the future are worth less than those that will occur sooner.

• Thus if 0< g < 1, then 
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TD Reinforcement Learning

• Computationally, if the actual reward r and the expected reward R, then

• Thus 

• Thus, our reward expectation is now a "value expectation" instead (replacing 

the R with V). 

• As with Rescorla-Wagner ruler, the TD delta value here drives learning of the 

value expectations of the cortico-striatal synapses. This rule has been very 
successful in modelling.
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The Cerebellum: inputs

• Once the basal ganglia elect an action to perform based on the reinforcement 

learning, the cerebellum takes over once the action has been initiated and uses 

an error-driven learning to shape the performance of the action so that it is 

accurate and well-coordinated.

• The cerebellum only receives inputs from cortical areas directly involved in 

the motor production, including the parietal cortex and the motor areas of 

frontal cortex. 

• Unlike the basal ganglia, it does not receive inputs from prefrontal cortex or 

temporal cortex
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Cerebellum: anatomy

• The cerebellum has a very 

characteristic anatomy, with 

the same basic circuit 

replicated million times over 

and over.

• There are several neuron types 

among which the Purkinje cells 

with extremely large dendritic 

trees are the most dominant. 

• These cells were discovered by 

the Czech scientist Jan 

Evangelista Purkyně in the 19th

century. 
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Cerebellum: elementary circuitry

• There are cca 15 million 

Purkinje cells (PC) and these 

cells produce output from 

cerebellum. 

• There are cca 40 billion 

granule cells (GC).

• Each PC receives as many as 

200,000 inputs from GCs via 

their axons called parallel 

fibers, but only one input 

climbing fiber.



28

Cerebellum: learning

• It is thought that climbing fiber inputs relay a training or error signal to the 

Purkinje cells, which then drives synaptic plasticity in its associated granule 

cell inputs. 

• One prominent idea is that this synaptic plasticity tends to produce LTD 

(weight decrease) for synaptic inputs where the granule cells are active, which 

then makes these neurons less likely to fire the Purkinje cell in the future. 

• This would make sense given that the Purkinje cells are inhibitory on the 

deep cerebellar nuclei neurons, so to produce an output from them, the 

Purkinje cell needs to be turned off. 

• David Marr and James Albus have become famous for developing this theory 

of cerebellum.
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mGluR-mediated long-term depression (LTD)

Kano M and Watanabe T. Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in 
health and disease. F1000Research 2017, 6:416 (doi: 10.12688/f1000research.10485.1)
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Cerebellum: look-up table

• The goal of this machinery is to associate stimulus inputs with motor output 

commands, under the command of the climbing fiber inputs. 

• One important principle of cerebellar function is the projection of inputs 

into a very high-dimensional space over the granule cells – computationally 

this achieves the separation form of learning, where each combination of 

inputs activates a unique pattern of granule cell neurons. 

• This unique pattern can then be associated with a different output signal 

from the cerebellum, producing something approximating a lookup table of 

input/output values (for each input pattern x there is only one output f(x)). 

• A lookup table provides a very robust solution to learning very complex, 

arbitrary functions – it will always be able to encode any kind of function. 

The drawback is that it does not generalize to novel input patterns very well.
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