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INTRODUCTION 
In this work, we aimed to replicate models of different cortical neurons and neuronal 

network presented in the paper by Izhikevich (2003). For this purpose, we have created python 

code, which can be found in the Appendix. We have successfully modelled every kind of 

neuron mentioned in the paper as well as the network of randomly connected 1000 neurons. 

Following two sections present the models of neurons and neuronal network 

respectively. 

 

PART A: MODELLING FIRING PATTERNS OF NEURONS 
 Below, we replicate the behaviour of different cortical neurons as mentioned in the 

paper. Our figures plot membrane voltage in blue, injected current in green and u parameter in 

orange. We note interesting observations and encountered problems below some of the figures. 

 In every model, we have used time step of 0.1. 

  



Excitatory neurons 

 

 
Figure 1 - Regular spiking (RS) 

 

 

 

 
Figure 2 - Intrinsically bursting (IB) 

  



 
Figure 3 – Chattering (CH) 

Note: Frequency of bursts in our figure is 4 bursts per 200 ms, which is 20 Hz. In the 

paper, Izhikevich claims that the inter-burst frequency can be as high as 40 Hz. 

 

 

Inhibitory neurons 

 

 
Figure 4 - Fast spiking (FS) 



 
Figure 5 - Low-threshold spiking (LTS) 

 

 

Thalamo-cortical neurons 

 

 
Figure 6 - Thalamo-cortical (TC) tonic firing 

  



 
Figure 7 - Thalamo-cortical (TC) burst 

 

Note: Model of this neuron was for us harder to simulate. We started the simulation with v0 = 

-87 as was is in the paper. Also, the initial injected current was I0 = -25, to keep the membrane 

voltage low. As soon as the injected current was turned off (set to 0), we got the bursting 

behaviour by setting the b parameter to b = 0.27, which increased the sensitivity of the neuron 

and thus increased the number of spikes. However, then we had to decrease the a parameter to 

a = 0.005 to move the spikes closer together and keep upcoming spikes further from the burst. 

  



 

Other 

 
Figure 8 - Resonator (RZ) 

Note: When simulating behaviour of the resonator, we had to change the initial voltage to v0 = 

62.5 and use very small injected current I1 = 0.2, I2 = 0.5. Also, interestingly, the timing of the 

change in injected current from I1 to I2 mattered – the change had to start on the “downslope” 

of the membrane voltage curve, if it would start on the upslope, it would not trigger the spiking 

behaviour. 

  



PART B: MODELLING NETWORK OF NEURONS 
 

 
Figure 9 – Default network of neurons, different runs 

Note on plots in this section 
Every plot in this section displays firing of one neuron as a blue pixel. Blue line 

separates inhibitory neurons from excitatory neurons and orange curve plots average voltage 

of all neurons. Above each plot, values of Ne, Ni, THe and THi are displayed. Ne means number 

of excitatory neurons, Ni number of inhibitory neurons and THe and Thi are weight of the 

thalamic input for excitatory and inhibitory neurons respectively. 

 

General observations 
We have successfully implemented model from Izhikevich’s paper in Python 3. Even 

with default (same as those from the paper) parameters, significant variations among specific 

runs can be seen (see Figure 9 above). What seems to be a regularity is strong synchronization 

at the beginning and lower later. We attribute this to neurons having the same initial membrane 

voltage. The difference between runs is most probably caused by the random thalamic input. 

 

Ratio of excitatory and inhibitory neurons 
From our observations, the grater the ratio of excitatory neurons, the greater the 

synchronisation. Below, we display what happens when we gradually increment the ratio of 

the excitatory neurons with a step of ten – the synchronisation becomes so strong that the 

plotted average activity of the neurons looks like activity of one neuron. In other words, almost 

all neurons fire roughly at the same time. This happens as soon as when the ratio is 830/170 or 

840/160. 



Increasing ratio of excitatory neurons 

 

 

 

 
Figure 10 - Network of neurons, increasing ratio of excitatory neurons 

  



Increasing ratio of inhibitory neurons 

Here, we increase the ratio of inhibitory neurons similarly to previous section. 

 

 

 

 
Figure 11 - Network of neurons, increasing ratio of inhibitory neurons 

 

When we go even further with the ratio favouring the inhibitory neurons, we can see 

not only that the inhibitory neurons fire less frequently, but they also suppress the firing of 

excitatory neurons (which they do by the definitions, but it is nice to see that it is also happening 

on our plot). 



 
Figure 12- Network of neurons, strongly favouring the ratio of inhibitory neurons 

  



Influence of thalamic noise 
We can observe, that increasing the thalamic noise increases the activity of the neurons 

and the other way around, which is obvious, because the more noise, the more input. 

 

Changing the thalamic noise for the excitatory neurons 

 
Figure 13 - Network of neurons, increasing the thalamic noise for excitatory neurons 

 
Figure 14 - Network of neurons, decreasing the thalamic noise for excitatory neurons 

 

Increasing the thalamic noise for only the excitatory neurons results in more firing, with 

higher frequency, but less synchronisation. 

  



Changing the thalamic noise for the inhibitory neurons 

 
Figure 15 - Network of neurons, increasing the thalamic noise for inhibitory neurons 

 
Figure 16 - Network of neurons, decreasing the thalamic noise for inhibitory neurons 

 

Increasing the thalamic noise for only the inhibitory neurons results in greater activity 

of the inhibitory neurons, but smaller activity in excitatory neurons and weaker 

synchronisation. 

Decreasing the thalamic noise for only the inhibitory neurons causes higher 

synchronisation with higher frequency. 

  



Increasing the thalamic noise for both the excitatory and inhibitory neurons 

 
Figure 17 - Network of neurons, increasing the thalamic noise for all neurons 

 
Figure 18 - Network of neurons, decreasing the thalamic noise for all neurons 

 

Increasing the overall noise causes more activity, but almost no synchronisation. 

Interesting is the high initial synchronisation at around time 0, which is probably cause by the 

non-random initial starting membrane voltage of 65 mV. 

Decreasing the noise simply decreases the activity of all neurons, and turning the noise 

off results in no firing. 

 

Final notes 
The periodic synchronisation seems to be influenced by the inhibitory neurons. When 

they are in low number, the excitatory neurons take charge and there is nothing in their way to 

fire synchronously. Also, when the inhibitory neurons receive less thalamic input, they are 

dependent from the input from excitatory neurons and thus they fire with them synchronously. 

Analogously, letting the inhibitory neurons take charge, either by increasing the 

thalamic input they receive or their number, they cause the network to fire asynchronously.  
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APPENDIX 
Our code for task A: 
import math 
import matplotlib.pyplot as plt 
 
 
class Neuron: 
 
    def __init__(self, a, b, c, d, v0, time, time_step, i_times): 
        # i_times: iterable in form of number couples: at what time should 
what stimulation start 
        # e.g.: (0,0,20,10) means at time 0, start with curret 0, at time 
20, start with current 10 
        #                   (and continue till the end) 
        if len(i_times) == 0 or len(i_times) % 2 != 0 or i_times[0] != 0: 
            raise Exception("i_times argument must start with 0, has even 
length and have at least 2 numbers in it.\n" 
                            "e.g. (0, 10) or (0, 0, 20, 10) etc. are 
correct, () or (2) or (10, 5) etc. are incorrect") 
        self.time = time  # whole simulation duration 
        self.h = time_step  # time step 
        self.T = math.ceil(self.time / self.h)  # overall number of steps 
 
        # model parameters 
        self.a = a  # typical value is a = 0.02 
        self.b = b  # typical value is b = 0.2 
        self.c = c  # typical value is c = -65 
        self.d = d  # typical value is d = 2 
 
        # create lists of size T filled with zeros 
        self.v = [0] * self.T 
        self.u = [0] * self.T 
        self.i = [] 
        ind = 0 
        for t in range(self.T): 
            if ind < len(i_times) and t == math.ceil(i_times[ind] / 
self.h): 
                I = i_times[ind+1] 
                ind += 2 
            self.i.append(I) 
        # set v and u in time 0 
        self.v[0] = v0 
        self.u[0] = self.b * self.v[0]  # we do not know why this is as it 
is 
 
        self.integrate() 
        self.plot() 
 
    def integrate(self): 
        for t in range(self.T - 1): 
            if self.v[t] < 30:  # if v is less than apex, do update v and u 
acording to (1) and (2): 
                # v' = 0.04v^2 + 5v + 140 - u + I: 
                dv = (0.04 * self.v[t]**2) + 5 * self.v[t] + 140 - 
self.u[t] + self.i[t] 
                self.v[t + 1] = self.v[t] + dv * self.h 
                du = self.a * (self.b * self.v[t] - self.u[t])  # u' = a * 
(b * v - u) 
                self.u[t + 1] = self.u[t] + du * self.h 



            else:  # if v is over apex, do after-spike resetting of u and v 
according to (3): 
                self.v[t] = 30 
                self.v[t + 1] = self.c  # v ← c 
                self.u[t + 1] = self.u[t] + self.d  # u ← u + d 
 
    def plot(self): 
        plt.plot(self.v)  # voltage on plot in blue 
        plt.plot(self.u)  # u on plot in orange 
        plt.plot(self.i)  # injected current on plot in green 
        plt.suptitle(name) 
        plt.title('a={}, b={}, c={}, d={}'.format(self.a, self.b, self.c, 
self.d)) 
        plt.xticks(range(0, self.T+1, self.T//10), range(0, self.time+1, 
self.time//10)) 
        plt.xlabel('time [t]') 
        plt.ylabel('voltage [v]') 
        plt.show() 
 
 
# Neuron(a, b, c, d, v0, time, time_step, i_times) 
# typical values: a = 0.02, b = 0.2, c = -65, d = 2 
# =============================================== 
 
# name = "regular spiking (RS)" 
# c = -65 mV, d = 8 
# params = {'a': 0.02, 'b': 0.2, 'c': -65, 'd': 8, 'v0': -70, 'time': 200, 
'time_step': 0.1, 'i_times': (0, 0, 20, 10)} 
 
# name = "intrinsically bursting (IB)" 
# c = -55 mV, d = 4 
# params = {'a': 0.02, 'b': 0.2, 'c': -55, 'd': 4, 'v0': -70, 'time': 200, 
'time_step': 0.1, 'i_times': (0, 0, 20, 10)} 
 
# name = "chattering (CH)" 
# c = -50 mV, d = 2 
# params = {'a': 0.02, 'b': 0.2, 'c': -50, 'd': 2, 'v0': -70, 'time': 200, 
'time_step': 0.1, 'i_times': (0, 0, 20, 10)} 
 
# name = "fast spiking (FS)" 
# a = 0.1 
# params = {'a': 0.1, 'b': 0.2, 'c': -65, 'd': 2, 'v0': -70, 'time': 200, 
'time_step': 0.1, 'i_times': (0, 0, 20, 10)} 
 
# name = "low-threshold spiking (LTS)" 
# b = 0.25 
# params = {'a': 0.02, 'b': 0.25, 'c': -65, 'd': 2, 'v0': -64.5, 'time': 
200, 'time_step': 0.1, 
#           'i_times': (0, 0, 20, 10)} 
 
# name = "thalamo-cortical (TC) tonic firing" 
# v0 = -63 mV 
# params = {'a': 0.02, 'b': 0.2, 'c': -65, 'd': 2, 'v0': -63, 'time': 200, 
'time_step': 0.1, 'i_times': (0, 0, 20, 5)} 
 
# name = "thalamo-cortical (TC) burst" 
# v0 = -87 mV 
# params = {'a': 0.02, 'b': 0.2, 'c': -46, 'd': 2, 'v0': -87, 'time': 200, 
'time_step': 0.1, 'i_times': (0, -25, 40, 0)} 
 
name = "rezonator (RZ)" 



# a = 0.1, b= 0.26 
params = {'a': 0.1, 'b': 0.26, 'c': -65, 'd': 2, 'v0': -62.5, 'time': 250, 
'time_step': 0.1, 
          'i_times': (0, 0, 20, 0.2, 140, 0.5, 145, 0.2)} 
 
Neuron(*params.values()) 
 
 

 

Our code for task B: 
import numpy as np 
from pylab import rand, randn 
import matplotlib.pyplot as plt 
 
TIME = 1000 
 
Ne = 800  # number of excitatory neurons 
Ni = 1000-Ne  # number of inhibitory neurons 
 
THe = 5 
THi = 2 
 
# rand(N) creates an array of size N filled with random numbers from [0,1) 
interval, uniformly distributed 
re = rand(Ne) 
ri = rand(Ni) 
 
# creates arrays of size Ne + Ni 
a = np.r_[0.02 * np.ones(Ne), 0.02 + 0.08 * ri] 
b = np.r_[0.2 * np.ones(Ne), 0.25 - 0.05 * ri] 
c = np.r_[-65 + 15 * re ** 2, -65 * np.ones(Ni)] 
d = np.r_[8 - 6 * re ** 2, 2 * np.ones(Ni)] 
# creates matrix S of synaptic connections 
S = np.c_[0.5 * rand(Ne + Ni, Ne), -rand(Ne + Ni, Ni)] 
 
v = -65 * np.ones(Ne + Ni)  # Initial values of v 
u = b * v  # Initial values of u ( u = b * -65) 
firings = np.zeros((0, 2))  # spike timings will be in this array, used in 
plot 
avg_v = np.zeros(TIME) 
 
for t in range(TIME):  # simulation of 1000 ms 
    I = np.r_[THe * randn(Ne), THi * randn(Ni)]  # thalamic input, normally 
distributed random values 
    fired = np.flatnonzero(v >= 30)  # indices of neurons which have fired 
    if any(fired): 
        firings = np.vstack((firings, np.c_[t + 0 * fired, fired]))  # 
remember spike timings for plot 
        v[fired] = c[fired]  # v ← c for those neurons which have fired 
        u[fired] = u[fired] + d[fired]  # u ← u + d for those neurons which 
have fired 
        I = I + S[:, fired].sum(1)  # gets the input for each neuron from 
all neurons that have fired 
    v = v + 0.5 * (0.04 * v ** 2 + 5 * v + 140 - u + I)  # step 0.5 ms 
    v = v + 0.5 * (0.04 * v ** 2 + 5 * v + 140 - u + I)  # for numerical 
stability 
    u = u + a * (b * v - u) 
    avg_v[t] = np.average(v) 



 
plt.plot(firings[:, 0], firings[:, 1], ',') 
plt.plot(Ne + 0 * v, ',', color="blue") 
plt.plot(avg_v) 
plt.title(f'Ne/Ni={Ne}/{Ni}, THe={THe}, THi={THi}') 
plt.xlabel('time [ms]') 
plt.ylabel('fired neurons [indices]') 
plt.show() 

 


