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Introduction 
 
Thanks to Izhikevich, E. M. (2003), we can simulate and explore firing patterns of neurons. He 
designed a Simple Model of Spiking Neurons. Advantage of this model lies in its ability to 
manage the balance between biologically plausible scenario and simple computational 
approach.  
 
We will be working with the differential equations:  
 

𝑣! = 	0.04𝑣" + 5𝑣 + 140 − 𝑢 + 𝐼 (1) 
𝑢! = 𝑎(𝑏𝑣 − 𝑢) (2) 

      
where: 
 v is membrane potential of the neuron,  
 a is time of the recovery variable u, 
 b is sensitivity of the recovery variable u, 
 c is after-spike reset value of the membrane potential v, 
 d is after-spike reset value of the recovery variable u, 
 I is step of dc-current. 
 
These equations allow us to reduce many biophysically accurate Hodgin-Huxley-type of the 
neuronal models (Izhikevich, E. M., 2003). 
These variables have their typical settings as follows: 
 a is typically set to 0.02, 
 b is typically set to 0.2, 
 c is typically set to – 65 mV, 
 d is typically set to 2 and 
 I is typically set to 10. 
  
 
For these equations to function properly, there is a need for after-spike resetting.  
  
  

if	𝑣 ≥ 30	mV, (3) 
then	𝑣 ← 𝑐; 	𝑢	 ← 𝑢 + 𝑑  

 
Using (1) and (2), we will be calculating membrane potential and observe spiking patterns. 
 
Spiking 
 
Using different combinations of parameters, we are aiming for different neurons firing 
representation. They are shown in Figure 1 through Figure 8. We take a look at biologically 
known types of neurons using simulation.  



 
1 Regular spiking 
 

 
Figure 1: Regular spiking, parameters: a = 0.02, b = 0.2, c = -65, d = 6, v0 = -70, I = 10 

 
Figure 1 portraits regular spiking neurons, where we can observe firing or spiking after 
approximately 40ms. We are observing more regular firing at the beginning with a slow 
decrease. Note that we are observing excitatory cortical neurons.  
 
2 Intrinsically bursting  

 
Figure 2: Intrinsically bursting neurons. Parameters: a = 0.02, b = 0.2, c = -65, d = 12, 

 v0 = -90, I = 10  



 
Observing excitatory cortical neurons in intrinsically bursting state, seen on Figure 2. Here, 
we see neuronal response in firing after applying the current. Afterwards, the neurons keep 
spiking.   

 
 

3 Chattering 

 
Figure 3: Chattering. Parameters: a = 0.02, b = 0.2, c = -50, d = 2, v0 = -70, I = 10 

 
Chattering (seen in Figure 3) is another pattern to observe in excitatory cortical neurons firing. 
It shows bursting of the neurons at high frequency followed by short resting period. 
 
4 Fast spiking 

 
Figure 4: Fast spiking. Parameters: a = 0.1, b = 0.2, c = -60, d = 2, v0 = -70, I = 10 



 
From the name of the observed spiking, we can conclude and see on Figure 4, regular and 
high frequency spiking. This firing pattern can be seen in inhibitory cortical neurons. We are 
also observing decrease in frequency with time.  

 
 

5 Low threshold spiking 

 
Figure 5: Low threshold spiking. Parameters: a = 0.2, b = 0.25, c = -65, d = 2, I = 10 

 
Low threshold spiking neurons (Figure 5) belong to the inhibitory cortical neurons part of the 
neurons. We can observe similar firing patters than in fast spiking neurons (Figure 4). Low 
threshold cortical neurons are also firing with high frequency. The difference between the 
two might be observable if we focus on time 160ms and later (Figure 5), where we observe 
lower frequency suggesting adaptation to the stimulus.  
 
 
 
 
 
 
 
 
 
 
 
 



6 Thalamo-cortical spiking at rest 
 

 
Figure 6: Thalamo-cortical neurons at rest. Parameters: a = 0.02, b = 0.2, c = -68, d = 0.05, v0 

= -90, I = 10 
 

Following firing (Figure 6) is caused by implying a negative current. We are observing resting 
state before the firing and firing is extensive and high frequency. Keep in mind that these are 
inhibitory cortical neurons.  

 
7 Thalamo-cortical neurons in hyperpolarized state 
 

 
Figure 7: Thalamo-cortical neurons in hyperpolarized state. Parameters: a = 0.02, b = 0.25,  

c = -60, d = 0.05, v0 = -90, I = 10 
 



Comparing thalamo-cortical neurons in the resting state (Figure 6) and thalamo-cortical 
neurons in hyperpolarized state (Figure 7), we notice there are no oscillation before the fast 
spiking of the neurons. These types of neurons belong to inhibitory cortical neurons.  

 
 

8 Resonator neurons 
 

 
Figure 8: Resonator neurons. Parameters: a = 0.1, b = 0.3, c = -65, d = 2, I = 2 

 
In the Figure 8, we may observe subthreshold oscillation until 20ms. This is achieved by 
creating an environment where neurons are sensitive to firing.  

 
 

Network of neurons 
 
1 Neural distribution 
 
In this part of the assignment, we are exploring the ability of neurons to self-organize. We are 
observing different ratios of amount of excitatory and inhibitory neurons in order to 
determine .. and we are adjusting the thalamic noise to determine its involvement in the 
ability to self-organize and on the model. 
 
Following, we can observe multiple graphs. On the x-axis, we are portraying time and we are 
portraying number of fired neurons on y-axis.  
 
On Figure 9 we can observe the default amount of neurons, inspired by mammalian brain. 
Here, we can observe some self-organization forming.  



 
Figure 9: Default distribution of the neurons based on mammalian brain. 

 
Figure 10: Increase in amount of inhibitory neurons causing dissolving of self-organization. 



 
Figure 11: Majority of inhibitory neurons causing patterns to be lost and self-organization is 

not recognizable anymore. 
 

 



Figure 12: With slightly higher number of excitatory neurons, we observe better self-
organization of the neurons. Note, that changes are small, yet we see clear pattern being 

created. 

 
Figure 13: Complete absence of inhibitory neurons is causing decrease of the noise. 

 
 
From the figures above (Figure 9 – Figure 13), we may observe that increasing amount of 
excitatory neurons results in better self-organization of the neurons and we are starting to 
see a clear patters. Even slight adjustment of the ratios can leave significant effect (Figure N, 
Figure N). On the other hand, if we take a look at Figure N, we can observe that neurons are 
randomly spread, without signs of organization. This happens when we increase the amount 
of inhibitory neurons (Figure N). 
 
2 Thalamic noise 
 
When dealing with thalamic noise, we have not been changing the ratio between excitatory 
and inhibitory neurons. We have tried to give neurons a constant values and enhance the 
noise on either side of the neurons – excitatory neurons and inhibitory, too. For Figure 14 and 
15, we have used a constant value of thalamic noise. We have observed that thalamic noise 
around the value I = 2 (see Figure 15), neurons start to self-organize and we start to observe 
a structure.  
 



 
Figure 14: Default  ratio of excitatory and inhibitory neurons according to mammalian brain 

with default value of thalamic noise set to 1.  

 
Figure 15: Default  ratio of excitatory and inhibitory neurons according to mammalian brain 

with default value of thalamic noise set to 2. Note the structure being created. 
 



 

 
Figure 16: With increased excitatory thalamic noise, we can observe excitatory neurons 
forming into self-organized pattern. For purposes of this graph, we have doubled excitatory 
thalamic noise. 
 



 
Figure 17: Doubling inhibitory thalamic noise results in creating disoriented patterns and 

disturbs the process of self-organization. 
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