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The project’s main focus was to explore firing patterns of neurons using the Simple Model of Spiking 
Neurons by Izhikevich (2003). This model’s advantage is that it manages the balancing act between a 
biologically plausible and a computationally simple approach. Therefore, it is not a problem anymore to 
simulate tens of thousands of cortical neurons’ firings and to investigate a rich variety of spiking and bursting 
dynamics using a simple PC. 

The following two simple differential equations form the model’s core, where ´ = d / dt and t is time: 

v´ = 0.04v2 + 5v + 140 - u + I 
u´ = a (bv - u) 

Additionally the following rule is applied for resetting u and v after a spike: 

The variables u and v as well as the parameters a, b, c, and d represent the following: 
v … membrane potential 
u … membrane recovery 
a … time scale of u (decay rate after peak) 
b … sensitivity of u to fluctuations of v below the threshold 
c … after-spike reset value of v 
d … after-spike reset of u 

PART A: FIRING PATTERNS

By setting different values for the parameters, various firing patterns can be investigated. The following eight 
who are known from biological neurons will be presented in this report: regular spiking, intrinsically 
bursting, chattering, fast spiking, low-threshold spiking, two types of behavior of thalamo-cortical neurons, 
and one of resonator neurons. The parameters used and their resulting graphical representations are shown 
below (Figure 1-8). The parameters were mainly taken from Izhikevich’s article (2003) or slightly modified. 



 

Fig. 1. Regular spiking. This spiking pattern is probably the most typical of excitatory cortical neurons. 
After approximately 4ms the neuron was presented to a lasting stimulus. At the beginning it induces a few 
spikes of higher frequency, then the neuron continues firing in a decreasing frequency. 
Parameters: a = 0.02, b = 0.2, c = -65, d = 12, I = 15. 

Fig. 2. Intrinsically bursting is also observed in excitatory cortical neurons. After current is applied, the 
neuron responds in a bursting pattern that then continues in spiking. 
Parameters: a = 0.02, b = 0.2, c = -55, d = 4, I = 10. 



Fig. 3. Chattering is another class of spiking discovered in excitatory cortical cells manifesting in bursts of 
high frequency spikes. Parameter c is set relatively high, whereas d is kept moderately. 
Parameters: a = 0.02, b = 0.2, c = -50, d = 2, I = 16. 

Fig. 4. Fast spiking can be observed in inhibitory cortical neurons. Due to fast recovery (a set to a high 
value) very high frequency spiking can be reached with barely any adaptation, which would show in a 
decreasing frequency over time.  
Parameters: a = 0.1, b = 0.2, c = -65, d = 2, I = 20. 



Fig. 5. Low threshold-spiking neurons form the second class of inhibitory cortical cells. Similar to fast 
spiking neurons, they fire in high frequency, but they show adaptation to the stimulus, noticeable in 
increasing interspike periods over time. Parameter b is set quite high to obtain a low threshold. 
Parameters: a = 0.02, b = 0.25, c = -65, d = 2, I = 10. 

Fig. 6. Thalamo-cortical neurons provide the main input for the cortex. If they are at rest before being 
depolarized they show tonic firing. 
Parameters: a = 0.02, b = 0.25, c = -65, d = 0.05, I = 2. 



Fig. 7. Thalamo-cortical neurons that are hyperpolarized (reached through a negative current I) show a burst 
of action potentials when excited by a stimulus that then flattens to eventually reach the resting potential 
again. 
Parameters: a = 0.02, b = 0.25, c = -60, d = 0.05, I = -28. 

Fig. 8. Resonator neurons show subthreshold oscillations that are visible here in the slightly curvy part 
between 0 and about 45ms. They are achieved by a fast decay rate (high a) and high sensitivity (b). When 
given an excitatory pulse, they switch to repeated spiking. 
Parameters: a = 0.1, b = 0.26, c = -65, d = 2, I = 0.2. 



PART B: NETWORK OF NEURONS

Using Izhikevich’s Matlab code for a network of 1000 randomly connected neurons, that was published in 
the same article (2003), I explored its ability to self-organize. Special focus was laid a) on the ratio between 
excitatory and inhibitory neurons and b) the influence of thalamic noise on the model’s behavior. 

a) Excitatory/inhibitory neurons 

In the following graphs (Fig. 9-13) time in milliseconds is represented on the x-axis. The neuron number can 
be seen on the y-axis, whereas the higher numbers represent the inhibitory neurons and the lower the 
excitatory neurons. The figure’s title always represents the ratio excitatory neurons / inhibitory neurons. 

!  
Fig 9. 800/200. This is the default ratio of Izhikevich’s 1000 neurons model, inspired by the mammalian 
brain’s anatomy. Even though the neurons are randomly connected, they self-organize forming oscillations in 
alpha and gamma band rhythms. 



!  
Fig. 10. 825/175. Even small increases in the number of excitatory neurons result in much higher self 
organization and more pronounced rhythmic patterns. 

!  
Fig. 11. 1000/0. A network consisting of only excitatory neurons shows barely any noise anymore. 



!  
Fig. 12. 500/500. If the amount of excitatory neurons is the same as the amount of inhibitory neurons, barely 
any organized structures are visible anymore. 

!  

Fig. 13. 0/1000. Eventually, in a network of only inhibitory neurons the distribution of spikes appears to be 
totally random. 



b) Thalamic noise 

The thalamic input I in Izhikevich’s 1000 neurons model is created by the following part of the Matlab code: 

I = [5 * randn(Ne,1); 2 * randn(Ni,1)] 

where Ne and Ni are the amounts of excitatory/inhibitory neurons. 

Increasing the thalamic input and therefore also its noise seems to result in higher frequency firing. 
Depending on whether the excitatory or inhibitory noise is changed, various degrees of organization can be 
detected as shown in the following series of graphs (Fig. 14-16). The numbers given in the graph’s title 
represent the coefficients that were used (e.g. 5, 2 for the equation above). The ratio between excitatory and 
inhibitory neurons was left in default settings (800/200). 

!  
Fig. 14. 5, 2. This is the default thalamic input. Self-organizing patterns are distinguishable but not overly 
excessive. This graph was already shown in the previous section (Fig. 9), it is only printed here again to 
provide direct comparability. 



!  
Fig. 15. 10, 2. Doubling the thalamic noise for the excitatory neurons (1-800) only, creates more distinct 
patterns of high frequencies, especially in inhibitory neurons’ firings. 

!  
Fig. 16. 5, 4. Doubling the thalamic noise for the inhibitory neurons (801-1000) only, results in higher 
disorganization, but still some patterns are visible, especially in excitatory neurons’ firings. 
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